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Abstract. J. Hubbard [4] has discovered that some motions of the damped
forced pendulum

x
′′ + 10−1

x
′ + sin x = cos t

are chaotic in the sense that the behaviour of these motions on intervals
[2kπ, 2(k + 1)π] (k ∈ Z) can be prescribed arbitrarily independently of
one another. We give a review of our work [1], in which we prove rigor-
ously this assertion. The proof is based upon a theorem detecting chaos
for general system of discrete dynamical sytems. To check conditions of
this theorem we need reliable computer simulations using the methods of
interval arithmetic.

MSC 2000. 34C28, 37D45, 70K40, 70K55, 65G30

1 Introduction

The mathematical pendulum is a material point of mass m hanging on a weightless
rod of length ℓ in the gravitational field. The other hand of the rod is fixed, and
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the rod can move in a plane (see Figure 1). Let x denote the angle measured

x
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mg

mg sinx

Fig. 1. Mathematical pendulum

counterclockwise from the direction of the gravity to the rod. If there acts also
friction, i.e., the pendulum is damped, then, by Newton’s Second Law, the motions
of the pendulum are described by the second order differential equation

mx′′ = −mg sin x − bx′, (1)

where g is the magnitude of the gravity, b > 0 is the damping coefficient; x′ =
d x/d t denotes the angle velocity. The motions can be represented by trajectories
on the phase plane (x, x′) which are curves t �→ (x(t), x′(t)) belonging solutions x
of equation (1) (see Figure 2). There are asymptotically stable equilibria (sinks)
x = 2kπ, x′ = 0 (k ∈ Z) at the downward position of the pendulum and unstable
equilibria (saddles) x = (2k+1)π, x′ = 0 at the upward position of the pendulum.
The basins of the sinks are “vertical strips” separated by the stable curves of the
saddles. We can say that almost all trajectories tend to sinks, some exceptional
trajectories tend to saddles as t → ∞.

The situation becomes essentially more difficult when a periodic outer force
also acts on the point:

mx′′ = −mg sin x − bx′ + A cosωt, (2)

where A is the amplitude and ω is the frequency of the outer force. R. Borelli
and C. Coleman [2] observed that numerical solutions of equation (2) were very
sensitive to the integration method, step-length, initial conditions near some points
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Fig. 2. Phase plane of the damped pendulum

of the plane (x, x′) at certain values of the parameters in the equation. We can
illustrate this phenomenon integrating numerically the equation

x′′ + 10−1x′ + sin x = cos t (3)

starting from the three initial points

P1(0, 1.98), P2(0, 2.00), P3(0, 2.01).

The t−x graphs of the corresponding solutions can be seen on Figure 3. One has to
observe that the solutions are asymptotically periodic with period 2π (period of the
outer force). This experiment suggests that there exists a stable periodic motion
around the downward position, which ultimately attracts all the three solutions.
This attracting periodic motion appears at different “levels” in our experiment;
e.g., in the case of start point P2 the motion goes “over the top” three times
counterclockwise before settling down. After this experiment a superficial observer
could think that a 2π- periodic solution attracts all solutions. But this is not true!
J. Hubbard [4] has discovered uncountably many “strange” motions of the damped
forced pendulum (3) whose asymptotic behaviour is unpredictable. He stated the
following surprising result on the existence of chaos formulated by natural terms
of the dynamics of such a natural mechanical system of one degree of freedom as
the damped forced pendulum.

Theorem 1 (J.H. Hubbard [4]). Suppose we are given a biinfinite sequence
{εk}k∈Z ∈ {−1; 0; 1}Z arbitrarily chosen. Then the forced damped pendulum de-
scribed by equation (3) has at least one motion that corresponds to the biinfinite
sequence {εk}k∈Z in the sense that during the time interval (2kπ, 2(k + 1)π) the
pendulum

– crosses the bottom position exactly once clockwise if and only if εk = −1,
– does not crosses the bottom position at all if and only if εk = 0,
– crosses the bottom position exactly once counterclockwise if and only if εk = 1,
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Fig. 3. Sensitivity to initial conditions

and does not point downwards at the time instant t = 2kπ, k ∈ Z.

This theorem can be interpreted in the following way. εk is an event, so a
biinfinite sequence {εk}k∈Z is an “itinerary” for the past and the future of the
pendulum during a motion. The theorem says that for an arbitrary itinerary there
exists a motion of the forced damped pendulum that during each time interval
[2kπ, 2(k + 1)π] will “do” εk. For example, during the motion corresponding to
the itinerary {. . . , 0, 0, 0, . . .} the pendulum never crosses the bottom position. In
fact, we can prove that there exists an unstable 2π-periodic solution around the
upper position not touching the bottom position.

Therefore, comparing the motions of the forced damped pendulum with those
of the unforced damped pendulum we can say, that, as an influence of the forcing,
the stable and unstable equilibria of the unforced damped pendulum disappear,
instead of them there are born a stable and an unstable periodic solution with the
period of the forcing. The stable periodic solution attracts almost all motions, but
there are exceptional motions, which are chaotic in some sense.

In [4] Hubbard did not prove Theorem 1. In a forthcoming paper we give a
general theorem for detecting chaos in systems of differential equations, which can
be applied to prove Theorem 1. The application of our theorem needs rigorous
methods of computations, which will be done by interval arithmetic. By the same
method we can prove the exitence of a stable and an unstable periodic solution to
equation (3). Here we give a review of these results.
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2 The tools of the proof

Let x(·; t0, x0, x
′

0) denote the solution of (3) satisfying the initial condition x(t0; t0, x0, x
′

0) =
x0, x(t0; t0, x0, x

′

0) = x′

0. The mapping

P : R
2 → R

2, P : (x0, x
′

0) �→ (x(2π; 0, x0, x
′

0), x′(2π; 0, x0, x
′

0))

is called the period mapping or Poincaré mapping to equation (3). If we are in-
terested in stability properties of solutions of (3), then, instead of the differential
equation (3), we can investigate the discrete dynamical system

P k := P ◦ P ◦ · · · ◦ P
︸ ︷︷ ︸

k−times

: R
2 → R

2 (k ∈ Z). (4)

An orbit of (4) is a biinfinite sequence

{P k(x0, x
′

0)}k∈Z ((x0, x
′

0) ∈ R
2).

Solution x(·; 0, x0, x
′

0) of (3) is 2π-periodic if and only if (x0, x
′

0) is a fixed point
of P . A 2π-periodic solution of (3) is stable if and only if the corresponding fixed
point of P is stable in the discrete dynamical system (4).

J. Mawhin [5] gave sufficient conditions for the existence of periodic solutions
to so called “pendulum like” second order differential equations. This theory guar-
antees et least one 2π-periodic solution to equation (3). We will prove that P has
at least two fixed points in the region (0, 2π)× (−∞,∞): a sink s0(4.2 . . . , 0.5 . . .)
and a saddle u0(2.5 . . . , 0.1 . . .). The function x �→ sinx is 2π-periodic, so a hori-
zontal 2π-shift of a fixed point of P is a fixed point, too. This means that we have
infinitely many sinks and saddles:

sk := s0 + (2kπ, 0), uk := u0 + (2kπ, 0) (k ∈ Z).

The basins of the sinks are of a very sophisticated structure. They are tangled;
every basin meander around the plane. To be more precise: the basins have the
Wada property, i.e., every point of the boundary of any basin belongs to the
boundaries of all others [4]. This is the root of the chaotic behaviour formulated
in Theorem 1.

In the proof of Theorem 1 we will need certain quadrilaterals {Qk}k∈Z “long”
in the unstable and “short” in the stable directions so that there are “exceptional”
orbits of Poincaré mapping P with the following properties:

– an exceptional orbit is contained in ∪k∈ZQk;
– an exceptional orbit visits the quadrilaterals consecutively: if Pn(x0, x

′

0) ∈ Qk

for some k, n ∈ Z, then either Pn+1(x0, x
′

0) ∈ Qk−1 or Pn+1(x0, x
′

0) ∈ Qk or
Pn+1(x0, x

′

0) ∈ Qk+1.

In the main step of the proof of Theorem 1 we will show that for an arbitrary
consecutive order {Qik

}k∈Z of quadrilaterals there is an exceptional orbit visiting
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the quadrilaterals in the prescribed order. To this end we have to know forward
images P (Qk) and backward images P−1(Qk). Thanks to the 2π-periodicity of the
phase plane of the discrete dynamical system (4) it is enough to know the images
P (Q0) and P−1(Q0). For suitably chosen quadrilaterals the forward image P (Q0)
crosses Q−1, Q0, Q1 in long and thin “vertical strips”, and the backward image
P−1(Q0) crosses Q−1, Q0, Q1 in short and flat “horizontal strips” (see Figure 4).
Let us denote these horizontal strips by R−1, M0, L1, respectively (P moves R−1 ⊂
Q−1 to the right, it leaves the middle strip M0 ⊂ Q0 in Q0, and it moves L1 ⊂ Q1

to the left. The same connection is true for any triple Qk−1, Qk, Qk+1 (k ∈ Z) with
Rk−1 ⊂ Qk−1, Mk ⊂ Qk, Lk+1 ⊂ Qk+1. Using the method of interval arithmetics
we can prove by reliable computer simulations that such {Qk, Rk, Mk, Lk}k∈Z exist.

3 A topological theorem detecting chaos

Let us be given rectangular sets Tj = Uj × Sj ⊂ R
m × R

n (where Uj ⊂ R
m

and Sj ⊂ R
n are compact topological balls) and a continuous function φ : X :=

∪j∈ZTj → R
m×R

n whose coordinate functions are denoted by φu : X → R
m, φs :

X → R
n. We define a so called transition graph G(φ) to these objects. The vertex

set of G(φ) is Z, and (j, j′) ∈ Z
2 belongs to the edge set E(φ) if and only if the

following two conditions are satisfied:

(i) φs(Tj) ⊂ S′

j , i.e., φ contracts in the s (stable) direction;

(ii) set φu(∂ Uj × Sj) “sorrounds” set U ′

j (φ dilates in the unstable direction).

For example, on the plane (m = n = 1) Tj , Tj′ are real rectangles and the second
condition means that the interval Uj′ is located between the projections onto
the horizontal u-axis of the images of the two vertical sides of Tj . (The rather
sophisticated precise analytical formulation of the geometrical condition (ii) can
be found in [1].) (j0, . . . , jN ) ∈ Z

N+1 (N ≥ 0) is a directed circle in G(φ) iff
(jk, jk+1) ∈ E(φ) (k = 0, 1, . . . , N ; jN+1 := j0).

Theorem 2. Suppose that j0, j1, . . . , jN form a directed circle of G(φ). Then there
exists (q0, q1, . . . , qN ) such that

qk ∈ Tjk
, φ(qk) = qk+1 (k = 0, 1, . . . , N ; qN+1 := q0).

In other words, for every directed circle (j0, j1, . . . , jN ) of the transition graph
G(φ) there exists a closed orbit of φ visiting the rectangles of the circle in order
j0, j1, . . . , jN .

The main tool of the proof (see [1]) is Brower’s Fixed Point Theorem.
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4 Sketch of the proof

We apply Theorem 2 to the rectangles

{Tj}j∈Z := {. . . , L−1, M−1, R−1, L0, M0, R0, L1, M1, L1, . . .}

and to the Poincaré mapping P in (4). The edges of the corresponding transition
graph (P) can be deduced from Figure 4.

Let us given an itinerary

{. . . ε−3 ε−2 ε−1. ε0 ε1 ε2 ε3 . . .}.

In the first step we realize a finite piece

{ε−k ε−k+1 . . . ε−1. ε0 ε1 . . . εk−1 εk} (k ∈ Z). (5)

We illustrate the procedure by the example

{−1 − 1 0 . 1 − 1 0 0} (k = 3). (6)

We construct the chain of consecutive rectangles

{Tj−3
Tj−2

Tj−1
. Tj0 Tj1 Tj2 Tj3}

has to be visited by the desired orbit realizing (6). We start from Q0. Since ε0 = 1,
we have to move to the right into Q1; therefore, Tj0 = R0. ε1 = −1, hence we
have to move from Q1 to the left into Q0; therefore, Tj1 = L1. In the same way
we get Tj2 = M0, Tj3 = M0. On the other hand, ε−1 = 0 means that during
[−2π, 0] the phase point has to move from Q0 into R0, so Tj−1

= M0. Similarly,
Tj−2

= L1, Tj−3
= L2, so the chain of rectangles sought for is

{L2 L1 M0. R0 L1 M0 M0}.

Since the transition graph (P) is connected (see Figure 4), this chain can be
completed by auxiliary edges into a circle:

{L2 L1 M0. R0 L1 M0 M0 R0 R1
︸ ︷︷ ︸

auxiliary

}

Theorem 2 yields a closed orbit whose piece realizes (6). Similarly, we can construct
a closed orbit {qk

ji
}Nk

i=−k (Nk ≥ k) whose piece realizes the finite itinerary (5). We

can make the same procedure for all k’s. But qk
j0

∈ Q0 (k ∈ Z) and Q0 is compact;

consequently, we may suppose that lim
k→∞

qk
i0

=: q0 ∈ Q0 exists. Then lim
k→∞

qk
ji

=: qi

also exist for every i ∈ Z, and {qi}i∈Z is the desired orbit realizing the itinerary
{εk}k∈Z.
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5 Reliable computer simulations

In the application of Theorem 2 we essentially used that the structure of transition
graph (P) is determined by Figure 4. To complete the proof we have to show that
there are Rk, Mk, Lk (k ∈ Z) such that (P) has the edges drawn in Figure 4;
e.g., P (R−1) ∩ Q0 is a “long strip” in Q0 crossing Q0 in the way which can be
seen in the figure. The problem is that the Poincaré mapping P is defined by
solutions of differential equation (3). However, these solutions are not known, they
have to be found numerically so that the assumed mutual positions of P (R−1) and
R0, M0, L0 could be proved reliably. Using the method of interval arithmetic to
find validated solutions of initial value problem for ODE’s [6] we could prove the
existence of quadrilaterals Qk (k ∈ Z). The result is represented in Figure 5 (for

Fig. 5. Construction of R0, M0, and L0

details see [3,1]).

There is another gap in the proof that needs the same approach. For example,
to realize ε0 = 1 in example (6) we chose Tj0 = R0, Tj1 = L1 guaranteeing that
the solution curve t �→ (x(t; 0, x0, x

′

0), x′(t; 0, x0, x
′

0)) starts from Q0 at t = 0 and
crosses Q1 at t = 2π. Consequently the curve crosses the vertical line x = 2π, i.e.,
the pendulum crosses the bottom position counterclockwise at least once. However,
ε0 = 1 means that this happens exactly once. To this end it is enough to show that
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if (x0, x
′

0) ∈ R0 and x(2π; 0, x0, x
′

0) ∈ Q1, then

x(t; 0, x0, x
′

0) 
= 0, x(t; 0, x0, x
′

0) 
= 4π
x(t; 0, x0, x

′

0) = 2π ⇒ x′(t) > 0

}

(0 ≤ t ≤ 2π).

(Geometrically, the second condition means that the broken curve in Figure 5 must

x

x′

0 2π

R0

(x0, x
′

0)

(x(t), x′(t))

P (x0, x
′

0)

Fig. 6. The desired and excluded behaviour of solution curves

not be a solution curve.) To show these properties we gave a reliable enclosure of
the curves starting from R0. Figure 5 shows one step of this procedure. While the

x
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Fig. 7. Enclosure of solution curves

small rectangles a, b, . . . of the large rectangles A, B, C, . . . gives an enclosure for
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the points of the curve at certain finite values of t ∈ [0, 2π], the large rectangles
give an enclosure for the bundle of curves starting from the small rectangles.
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