
Proceedings of GO 2005, pp. 1 – 3.

A global optimization model for locating chaos: numerical

results∗

Balázs Bánhelyi1, Tibor Csendes1, and Barnabás Garay2

1University of Szeged, Szeged, Hungary, banhelyi|csendes@inf.u-szeged.hu

2Budapest University of Technology, Budapest, Hungary, garay@math.bme.hu

Abstract We present a computer assisted proofs for the existence of so-called horseshoes of the different it-
erates of the classical Hénon map (H(x, y) = (1 + y − αx2, βx)). An associated abstract provides
algorithms and the theoretical basis for the checking of three geometrical conditions to be fulfilled by
all points of the solution region. The method applies interval arithmetic and recursive subdivision.
This verified technique proved to be fast on the investigated problem instances. So we were able to
solve some unsolved problems, the present talk will summarize these computational results.
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After having introduced our computational methodology to locate chaotic regions (see the
associated abstract and the papers [4] and [1]), now we concentrate on the obtained numerical
results. First we have checked the reported chaotic region [6] by our checking routine.

We have investigated the seventh iterate of the Hénon mapping with the parameters of
A = 1.4 and B = 0.3. The checked region consists of two parallelograms with sides parallel to
the x-axis, the first coordinates of the lower corner points were 0.460, 0.556, 0.588, and 0.620,
while the second coordinates were the same, 0.01. The common y coordinate for the upper
corner points was 0.28. The tangent of the sides was 2. We have set the ε threshold value for
the checking routine to be 10−10.

First the algorithm determined the starting interval, that contains the region to be checked:

[0.46000000000, 0.75500000000] × [0.01000000000, 0.28000000000].

Then the three conditions were checked one after the other. All of these proved to be valid
— as expected. The amount of function evaluations (for the transformation, i.e. for the sev-
enth iterate of the Hénon mapping in each case) were 273, 523, and 1613, respectively. The
algorithm stores those subintervals for which it was impossible to prove whether the given
condition holds, these required further subdivision to achieve a conclusion. The depth of the
stack necessary for the checking was 11, 13, and 14, respectively. The CPU time used proved
to be negligible, only a few seconds.

Then, We have applied the global optimization model for the 5th iterate Hénon mapping.
Note that the less the iteration number, the more difficult the related problem: no chaotic
regions were reported for the iterates less than 7 till now. We have solved the optimization
problem with a clustering method [2]. After some experimentation, the search domain set for
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Figure 1. Illustration of the H3 transformation with the obtained chaotic region of two parallelograms.

the parameters to be optimized was:

A ∈ [1.00, 2.00],

B ∈ [0.10, 1.00],

xa, xb, xc, xd ∈ [0.40, 0.64].

Table 1 presents the numerical results of the ten search runs.

Table 1. Numerical results of the search runs

LO ZO FE PE T

12 4 13,197 4,086 17
12 1 12,913 3,365 16
12 1 13,569 4,303 19
12 2 12,918 3,394 16
12 1 14,117 5,083 18
12 3 21,391 7,400 25
12 2 12,623 3,296 16
12 0 15,388 6,221 30
12 3 13,458 3,858 15
12 2 14,643 5,002 16

Here LO stands for number of local optima found, ZO for the number of zero optimum values, FE for the number of function
evaluations, PE for the number of penalty function evaluations, and finally T for the CPU time used in minutes.

One example of the obtained optimized parameter values is as follows:

A = 1.7484856, B = 0.3784193,

xa = 0.4379310, xb = 0.5143267,

xc = 0.5661056, xd = 0.6339521.

Finally we consider the 3rd iterate of Hénon-mapping. The first successful run of our global
optimization algorithm involved beyond the earlier six parameters also the angle α, and 3
coordinates of the set E. The numerical results with the ten parameters (see also Figure 1):
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Figure 2. Illustration of the obtained interval containing only such A and B values that ensure a chaotic region
in the classic two parallelograms. Those grid points that also fulfill the conditions are denoted by small circles.

A = 2.5569088, B = 0.15963498,

tanα = 3.3579163,

xa = 0.29188440, xb = 0.53887296,

xc = 0.74663494, xd = 0.84359572,

E1,bottom = 0.18937143, E1,left = 0.21673342, E2,right = 0.84386042.

Beyond the above mentioned results, we have achieved intervals of positive measure con-
taining exclusively feasible points for our constraint satisfaction problem with a tolerance
optimization method [3]. As an illustration of the results see Figure 2.
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