
Proceedings of GO 2005, pp. 1 – 4.

A global optimization model for locating chaos∗

Tibor Csendes1, Balázs Bánhelyi1, and Barnabás Garay2

1University of Szeged, Szeged, Hungary, csendes|banhelyi@inf.u-szeged.hu

2Budapest University of Technology, Budapest, Hungary, garay@math.bme.hu

Abstract We present a global optimization model to find chaotic regions of certain dynamic systems. The tech-
nique has two innovations: first an interval arithmetic based guaranteed reliability checking routine
to decide whether an inclusion relation holds, and a penalty function based nonlinear optimization
problem that enables us to automatize the search for fitting problem instances. We provide the theo-
retical results proving correctness and convergence properties for the new algorithm. A companion
talk discusses the results achieved by the presented method.
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An important question is while studying approximations of the solutions of differential
equations, whether the given problem has a chaotic solution. The problem is usually solved
by careful studying of the given problem with much human interaction, followed by an esti-
mation of the Lipschitz constant, bounding the rounding errors to be committed, and finally
a number of grid points are checked one by one by a proper computer program [6].

We study verified computational methods to check and locate regions the points of which
fulfill the conditions of chaotic behaviour. The investigated Hénon mapping is H(x, y) =
(1 + y − Ax2, Bx). The paper [6] considered the A = 1.4 and B = 0.3 values and some
regions of the two dimensional Euclidean space: E = E1 ∪ E2 = {(x, y) | x ≥ 0.4, y ≥
0.28} ∪ {(x, y) | x ≤ 0.64, |y| ≤ 0.01}, O1 = {(x, y) | x < 0.4, y > 0.01}, O2 = {(x, y) | y < 0}.

According to [6] Theorem 1 below ensures the chaotic behaviour for the points of the par-
allelograms Q0 and Q1 with parallel sides with the x axis (for y0 = 0.01 and y1 = 0.28, respec-
tively), with the common tangent of 2, and x coordinates of the lower vertices are xa = 0.460,
xb = 0.556; and xc = 0.558, xd = 0.620, respectively. The mapping and the problem details
(such as the transformed sides of the parallelograms, H7(a), H7(b), H7(c), and H7(d)) are
illustrated on Figure 1.

Theorem 1. Assume that the following relations hold for the given particular Hénon mapping:

H7(a ∪ d) ⊂ O2, (1)

H7(b ∪ c) ⊂ O1, (2)

H7(Q0 ∪ Q1) ⊂ R
2 \ E, (3)

then chaotic trajectories belong to the starting points of the regions Q0 and Q1.

To check the inclusion relations required in Theorem 1 we have set up an adaptive subdivi-
sion algorithm based on interval arithmetic:
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Figure 1. Illustration of the H7 transformation for the classic Hénon parameters A = 1.4 and B = 0.3 together
with the chaotic region of two parallelograms. The a, b, c, and d sides of the parallelograms are depicted on the
upper left picture of Figure 2.

Algorithm 1 : The Checking Routine

Inputs: – ε: the user set limit size of subintervals,
– Q: the argument set to be proved,
– O: the aimed set for which T (Q) ⊂ O is to be checked.

1 Calculate the initial interval I , that contains the regions of interest
2 Push the initial interval into the stack
3 while ( the stack is nonempty )
4 Pop an interval v out of the stack
5 Calculate the width of v

6 Determine the widest coordinate direction
7 Calculate the transformed interval w = T (v)
8 if v ∩ Q 6= ∅, and the condition w ⊂ O does not hold, then
9 if the width of interval v is less than ε then

10 print that the condition is hurt by v and stop
11 else bisect v along the widest side: v = v1 ∪ v2

12 push the subintervals into the stack
13 endif
14 endif
15 end while
16 print that the condition is proven and stop

We have proven that this algorithm is capable to provide the positive answer after a finite
number of steps, and also that the given answer is rigorous in the mathematical sense. Once
we have a reliable computer procedure to check the conditions of chaotic behavior of a map-
ping it is straightforward to set up an optimization model that transforms the original chaos
location problem to a global optimization problem.

The key question for the successful application of a global optimization algorithm was how
to compose the penalty functions. On the basis of earlier experiences collected with similar
constrained problems, we have decided to add a nonnegative value proportional to how much
the given condition was hurt, plus a fixed penalty term in case at least one of the constraints
was not satisfied.

As an example, consider the case when one of the conditions for the transformed region
was hurt, e.g. when (2), i.e. the relation

Hk(b ∪ c) ⊂ O1
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Figure 2. The parallelograms and the starting interval covered by the verified subintervals for which either the
given condition holds (in the order of mentioning in Theorem 1), or they do not contain a point of the argument
set.

does not hold for a given kth iterate, and for a region of two parallelograms. In such a case the
checking routine will provide a subinterval that contains at least one point of the investigated
region, and which contradicts the given condition. Then we have calculated the Hausdorff
distance of the transformed subinterval Hk(I) to the set O1 of the right side of the condition,

max
z∈Hk(I)

inf
y∈O1

d(z, y),

where d(z, y) is a given metric, a distance between a two dimensional interval and a point.
Notice that the use of maximum in the expression is crucial, with minimization instead our
optimization approach could provide (and has provided) result regions that do not fulfill the
given conditions of chaotic behaviour. On the other hand, the minimal distance according to
points of the aimed set (this time O1) is satisfactory, since it enables the technique to push
the search into proper directions. In cases when the checking routine answered that the in-
vestigated subinterval has fulfilled the given condition, we have not changed the objective
function.

Summing it up, we have considered the following bound constrained problem for the T

inclusion function of the mapping T :

min
x∈X

g(x), (4)

where

g(x) = f(x) + p

(

m
∑

i=1

max
z∈T (I)

inf
y∈Si

d(z, y)

)

,

X is the n-dimensional interval of admissible values for the parameters x to be optimized,
f(x) is the original, nonnegative objective function, and p(y) = y + C if y is positive, and
p(y) = 0 otherwise. C is a positive constant, larger than f(x) for all the feasible x points, m is
the number of conditions to be fulfilled, and Si is the aimed set for the i-th condition.

The emerging global optimization problem has been solved by the clustering optimization
method described in citecst. We have proven the correctness of this global optimization model:

Theorem 2. For the bound constrained global optimization problem defined in (4) the following prop-
erties hold:
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1. In case a global optimization algorithm finds a point for which the objective function g has a value
below C, i.e. when each penalty term maxz∈T (I) infy∈Si

d(z, y) is zero, then all the conditions of chaos
are fulfilled by the found region represented by the corresponding optimal parameters found. At the
same time, the checking routine provided a guaranteed reliability computational proof of the respective
subset relations.

2. In case the given problem does not have a parameter set within the bounds of the parameters to be
optimized such that the corresponding region would fulfill the criteria of chaos, then the optimization
cannot result in an approximate optimizer point with an objective function value below C.

Talk will provide an insight into the theoretical statements and their proofs. On this basis
we have checked chaos for an earlier investigated 7th iterate Hénon mapping and also other
problem instances, some of them have involved tolerance optimization too [3]. The numerical
results (see also in [1],[4]) will be covered by an other talk.
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