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Abstract. In this paper, we introduce our approach for defining sparse
word representations that are comparable across languages. The pro-
posed approach is designed to require as little linguistic resources as
possible. Our experimental results suggests that it is sufficient to rely
on an artificially created highly noisy dictionary to map sparse word
representations across languages.

1 Introduction

Distributed word representations [1,2] aim at representing symbolic word forms
as some relatively low dimensional continuous vectors. Such word representations
have been found to be extremely useful in a variety of natural language processing
tasks. In fact most state-of-the-art approaches in NLP rely on their utilization [3].

Over the past few years, there has also been an emerging research inter-
est in constructing word representations which are applicable over a variety of
languages, see e.g. [4] for an empirical comparison. Providing word representa-
tions which are comparable across languages have huge potential because they
could enable the effortless creation of machine learning models which can oper-
ate across languages. As an illustrative example, if one has access to comparable
word representations for both English and French, it becomes possible to train a
document classifier purely on English-written documents and then reliably apply
it on French documents as well.

A further line of research which has gained attention is related to the applica-
tion of sparse word representations [5,6]. Such sparse word representations have
been shown to often outperform the application of dense word representations in
a monolingual setting. However, to the best of our knowledge, there has not been
any work conducted towards the creation of sparse word representations which
are comparable across languages. In this paper, we present our proposed solution
for solving that task by creating and evaluating sparse word representations for
English and Hungarian which are intended to be used interchangeably.



2 The proposed solution

In this section we introduce our proposed solution for determining sparse word
representations which are comparable across languages. Throughout the rest of
the paper we shall denote the dense word embeddings of the source (English)
and target (Hungarian) languages by S ∈ Rk×|Vs| and T ∈ Rk×|Vt|, respectively,
with Vs and Vt indicating the vocabulary of the two languages. Recall that in
the followings we shall denote some symbolic word form as x and the vectorial
representation that gets assigned to it in boldface, i.e. x.

2.1 Preprocessing of continuous word embeddings

Our algorithm takes as input a pair of ”traditional” dense word embeddings for
both the source and target languages trained independently. Pre-trained word
embeddings for a variety of languages are already accessible and we relied on
the 64-dimensional pre-trained polyglot word embeddings [7]. Utilizing fasttext
embeddings [8] would have been a viable alternative. In fact, the proposed ap-
proach naturally generalizes to the application of word embeddings trained in
any other kinds of ways. We also conducted experiments with dense word embed-
dings trained according to the popular continuous bag-of-words and skip-gram
models but experienced no significant difference in the results.

We performed experiments with the embeddings in their unmodified form
as well as experiments that modified the pre-trained word embeddings in ways
commonly met in the literature [9,10]. The two kinds of preprocessing steps we
performed are making the word embeddings unit length and centralizing the
word representations across all the dimensions.

2.2 Mapping of word embeddings

In order to map word representations between English and Hungarian that are
trained independently, we perform a linear mapping which brings Hungarian
word representations as close to semantically similar English word representa-
tions as possible. As firstly proposed in [11] such a linear mapping M can be

defined by minimizing the objective function
n∑
i=1

‖Msi−ti‖, with {(si, ti)}ni=1 be-

ing the seed set of word pairs which are cross-lingual equivalents of each other.
Multiple studies have showed recently that ensuring the additional constraint

for M to be orthonormal can significantly improve the quality of the mapping
of word embeddings from one language to the embedding space of another one
[12,9,10]. Requiring M to be orthonormal can be especially useful if the set of
seed word pairs used for determining the linear mapping contains a high fraction
of noise, i.e. erroneously aligned word pairs.

Since our goal is to design an approach for mapping sparse word represen-
tations which relies on as little human labor and external resources (such as
parallel text) as possible, we created a pseudo-dictionary similar to [12]. We
aligned word forms that are present in their exact same surface forms in the



vocabulary of both languages. Recall that the pseudo-dictionary created in such
a manner undoubtedly contains substantial noise, e.g. the English noun “hat”
(referring to the clothing accessory) gets aligned to the Hungarian word with
the same surface form which – on the other hand – can either refer to a numeral
and a verb as well.

The pseudo-dictionary constructed that way consists of 20,292 entries. The
full size of the English and Hungarian vocabularies of the polyglot vectors include
100K and 150K word forms. The large number of aligned word pairs relative to
the vocabulary sizes also implies that this automatically generated dictionary
is not really reliable for which reason the orthonormal constraint for the linear
mapping matrixM is expected to provide important gains over its unconstrained
counterpart.

2.3 Determining the cross lingual representations

Previous studies have shown that trying to reconstruct dense word embeddings
as a sparse linear combination of an overcomplete set of basis vectors can pro-
vide useful word representations [5,6]. More formally, for some word embedding
matrix X ∈ Rk×|V |, such approaches seek to find a decomposition for X such
that ‖X −Dα‖F + λ‖α‖1 gets minimized, with D ∈ Rk×l containing the set of
overcomplete basis vectors and α ∈ Rl×|V | containing the sparse linear coeffi-
cients for the individual word forms, respectively. In the previous expression λ is
the regularization coefficient which controls for the amount of sparsity emerging
in the sparse coefficient matrix α.

The kind of decomposition we employ in this work differs both from [5] and
[6] as here we not only require D to be a member of the convex set of matrices
comprising of unit norm column vectors, but also enforce the coefficients in α to
be non-negative. We used the SPAMS package accompanying [13] for performing
the matrix decompositions for our experiments.

Putting the various steps together, our approach can be summarized in the
following:

1. (Optionally) pre-process the embedding matrices S and T by making the
embeddings unit long and centered at the origin

2. Create a (pseudo-)dictionary {(si, ti)}ni=1

3. Find M for which
n∑
i=1

‖Msi − ti‖ is minimized (with the optional constraint

for M to be orthonormal).
4. Find Ds and αs such that ‖S −Dsαs‖F + λ‖αs‖1 gets minimized
5. Find αt by relying on Ds such that ‖MT −Dsαt‖F + λ‖αt‖1 is minimized.

Since target word vectors are mapped to the embedding space of source
word vectors and the same dictionary matrix Ds is used for decomposing the
embedding matrices S and T , the nonzero coefficients in αs and αt provide a
sparse representation being comparable across languages. Note that if we choose
M to be the identity matrix, we can keep the target language embeddings intact.



3 Experiments

During our experiments, we treated English as the source language and Hun-
garian as the target language. Throughout our experiments, we relied on pre-
trained polyglot embeddings [7] which are publicly available for a variety of
languages.1 In order to conduct comparable experiments with previous studies,
we applied the same number of basis vectors (i.e. 1024) which was previously
utilized in [5]. When setting the value for λ, we chose the regularization coef-
ficient from {0.1, 0.3, 0.5} in order to see how different sparsity levels influence
results. The sparse word representation that we define for some word form wi
is simply taken by the indices of the positive coefficients in α for the particular
word, that is φ(wi) = {j | αi[j] > 0}, where αi refers to the vector of sparse
coefficients determined for word wi during the sparse decomposition procedure.

3.1 Evaluation on the Swadesh word list

Swadesh lists are collections of English words of varying cardinalities that are
collected as part of a universal basic vocabulary[14]. The elements of the lists
are expected to be found in the majority of languages. Consequently, the lists
have been translated into various languages, including Hungarian as well.

There exist multiple Swadesh lists with different amount of words included
in them. During our experiments we utilized the Swadesh list translated for
Hungarian2 which consists of 207 word forms.

Unlike the pseudo-dictionary that we created for learning the linear mapping
between the embedding space of the two languages, the quality of the translation
pairs is much higher in this case. We should also note that none of the translation
pairs originating from the English and Hungarian Swadesh lists are included in
the automatically created pseudo-dictionary.

For the 207-element Swadesh list there are 161 words for which Hungarian
translations are given in a one-to-one manner, thus we perform our evaluation
over these word pairs alone. During this evaluation phase, we calculate for every
word pair (si, ti) – located in the filtered Swadesh list – the extent of overlap
in the sparse representations of words si and ti. We define precision and recall
as P = |φ(si)∩φ(ti)|

|φ(ti)| and R = |φ(si)∩φ(ti)|
|φ(si)| , respectively. In order to get an ag-

gregated score for quantifying the overlap between the sparse representation of
semantically equivalent words in different languages, we take the harmonic mean
(F-score) of the precision and recall scores.

Table 1 includes the results quantifying the extent to which source and target
level sparse features overlap for mapped word pairs based on the 161-element
subset of the Swadesh list. Setting λ to 0.1, 0.3 and 0.5 resulted in approximately
20, 5 and 2 non-zero coefficients per word on average. Performances in the ’No
mapping’ columns are extremely low. This is not surprising, however, since when

1 https://sites.google.com/site/rmyeid/projects/polyglot
2 https://hu.wikipedia.org/wiki/Swadesh-lista



no mapping between the source and target language embeddings is performed,
overlap between the sparse representation can happen only due to chance.

Table 1 further reveals that the overlap in the sparse representation of the
semantically equivalent word forms substantially increase due to any kind of
mapping between the languages. The largest improvement can be observed in the
case when the mapping matrixM is constrained to be orthonormal and the input
word embeddings are made unit length and centered prior to the decomposition
phase. As illustrated by the results, the orthogonality constraint mostly help
to improve the recall of the mapped sparse word representations. Interestingly,
when input word embeddings are left intact (i.e. no preprocessing is performed
over them), requiring M to be orthonormal can slightly hurt performance.

No mapping performed Unconstrained M Orthonormal M
λ = 0.1 0.043/0.036/0.039 0.139/0.112/0.124 0.114/0.112/0.113
λ = 0.3 0.023/0.012/0.016 0.169/0.122/0.141 0.117/0.109/0.113
λ = 0.5 0.008/0.004/0.006 0.179/0.135/0.154 0.138/0.127/0.132

(a) No preprocessing step performed on the input embeddings.

No mapping performed Unconstrained M Orthonormal M
λ = 0.1 0.023/0.024/0.024 0.170/0.117/0.139 0.098/0.137/0.114
λ = 0.3 0.001/0.001/0.001 0.345/0.118/0.176 0.167/0.208/0.185
λ = 0.5 0.000/0.000/0.000 0.600/0.009/0.018 0.271/0.202/0.232

(b) Input embeddings made unit long and centered as a preprocessing step.
Table 1: The amount of overlap between source and target non-zero coefficients
expressed in terms of Precision/Recall/F-score values for the elements of the
Swadesh word lists induced dictionary.

3.2 Evaluation related to POS tagging

It has been shown previously that sparse word representations derived from
the coefficient matrix can be beneficially utilized in various sequence tagging
tasks such as POS tagging [5]. That paper evaluated sparse representations in
the monolingual setting, however, here we investigate their applicability in the
cross-lingual regime.

For comparability with prior work, we used the very same settings for training
the sequence labeler, i.e. we generated features for the word forms by simply
relying on their sparse features induced by the feature function φ. The linear-
chain CRF models [15] we use are also trained using the crfsuite library [16]
without modifying any of its default hyperparameter settings. Finally, evaluation
was performed on the v1.2 Universal Dependencies treebank in terms of accuracy
over the 17 element coarse-grained POS tag inventory it introduces.

The CRF models are trained on the English training data and evaluated on
the Hungarian test set of the Universal Dependencies dataset without altering



any of the learned weights of the English model. The various CRF models trained
on English data alone and evaluated on the English test have accuracies slightly
below 0.9.

When judging the quality of applying the cross-lingually comparable sparse
word representation, we can compare the evaluation scores achieved on the Hun-
garian test set to this mono-lingual setting. We should add, however, that per-
formance drop during testing on the Hungarian test set not only originates from
the insufficiencies of the cross-lingual representation, but also from the fact that
we utilize the state transition features that are optimized to fit English texts.
By defining the cross-lingual sparse representations, we are only able to adapt
our test data in terms of the state features to the trained model.

Table 2 illustrates that applying the orthonormality constraint for the map-
ping matrix M improves POS tagging accuracies on the target language inde-
pendent of the preprocessing step. This is a difference compared to the results of
Section 3.1 where the orthonormality constraint only helped for the case when
input embeddings were preprocessed prior to performing their decomposition.

No mapping performed Unconstrained M Orthonormal M
λ = 0.1 0.111 0.300 0.315
λ = 0.3 0.034 0.283 0.395
λ = 0.5 0.096 0.204 0.384

(a) No preprocessing step performed on the input embeddings.

No mapping performed Unconstrained M Orthonormal M
λ = 0.1 0.169 0.191 0.295
λ = 0.3 0.097 0.048 0.428
λ = 0.5 0.138 0.011 0.446

(b) Input embeddings made unit long and centered as a preprocessing
step.

Table 2: Cross-lingual POS tagging accuracy with the pseudo-dictionary used to
learn mapping M between languages.

Since this time we are not evaluating the quality of the cross-lingual sparse
embeddings relative to the Swadesh lists, it is now possible to use them as a
replacement for the noisy pseudo-dictionary for the calculation of the mapping
matrix M . For that reason, we repeated our experiments on cross-lingual POS
tagging such that the dictionary to construct M gets determined based on the
161-element dictionary induced from the English and Hungarian Swadesh lists.
The results of this experiment can be seen in Table 3.

The most important observation to take when comparing Table 2 and Table 3
is that there is no substantial difference in the results whether the noisy or the
more reliable word alignment is used to determine the inter-lingual mapping
matrixM provided that the orhtonormality constraint is enforced forM . In fact,



there is a slight decrease of performance noticeable for using the more reliable
word alignments when preprocessing of the word embeddings is also performed.

No mapping performed Unconstrained M Orthonormal M
λ = 0.1 0.111 0.413 0.414
λ = 0.3 0.034 0.327 0.431
λ = 0.5 0.096 0.322 0.430

(a) No preprocessing step performed on the input embeddings.

No mapping performed Unconstrained M Orthonormal M
λ = 0.1 0.169 0.372 0.338
λ = 0.3 0.097 0.310 0.407
λ = 0.5 0.138 0.310 0.356

(b) Input embeddings made unit long and centered as a preprocessing
step.

Table 3: Cross-lingual POS tagging accuracy with the Swadesh-lists induced
dictionary used to learn mapping M between languages.

For comparative purposes, we trained such CRF-models that make use of
dense word embeddings. These results are included in Table 4. Comparing POS
accuracies of the models which rely on sparse and dense word representations we
can conclude that models relying on sparse features are dominantly better (but
at least comparable) to those models which rely on dense word representation.
Furthermore, the relative gain observed for mapping dense word embeddings
in any way is less pronounced compared to those in the case of sparse word
representations.

No mapping performed Unconstrained M Orthonormal M
Pseudo-dictionary 0.156 0.039 0.144

Swadesh-based dictionary 0.156 0.346 0.264

(a) No preprocessing step performed on the input embeddings.

No mapping performed Unconstrained M Orthonormal M
Pseudo-dictionary 0.201 0.010 0.328

Swadesh-based dictionary 0.201 0.294 0.368

(b) Input embeddings made unit long and centered as a preprocessing step.
Table 4: Cross-lingual POS tagging accuracy when relying on dense word repre-
sentations.



4 Related work

The comprehensive survey in [4] enumerates a variety of approaches to map mul-
tiple independently trained (dense) word embeddings into the same embedding
space. The approaches in the survey differ significantly in the amount of super-
vision they assume to have access to. In our work, we aimed at the utilization
of as minimal external resources as possible by not relying on any parallel (or
comparable) text resources between languages.

To this end, we created a highly noisy pseudo-dictionary similar to [12]. It
has been showed that mapping noisily aligned signals close to each other is often
worth to be performed by applying an orthonormal mapping [12,9,17,10].

The kind of decomposition we employ in this work differs both from [5] and
[6] as here we not only require D to be a member of the convex set of matrices
comprising of unit norm column vectors, but also enforce the coefficients in α to
be non-negative.

5 Conclusions

In this paper, we introduced our approach for determining sparse word repre-
sentations which are comparable across languages. We have shown that these
cross-lingual sparse word representations can provide a substantially overlap-
ping representation for word pairs with similar meaning of different languages.
Our experiments demonstrated that such well behaving sparse cross-lingual rep-
resentations can be obtained in the absence of parallel data across the languages,
i.e. applying an automatically derived noisy dictionary performed on par to the
scenario when a more reliable (but smaller) parallel dictionary was used for
mapping word representations to the same embedding space.
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