
Analysing the semantic content of static
Hungarian embedding spaces

Tamás Ficsor1, Gábor Berend1,2

1 Institute of Informatics, University of Szeged, Hungary
2 MTA-SZTE Research Group on Artificial Intelligence

{ficsort,berendg}@inf.u-szeged.hu

Abstract. Word embeddings can encode semantic features and have
achieved many recent successes in solving NLP tasks. Although word
embeddings have high success on several downstream tasks, there is no
trivial approach to extract lexical information from them. We propose a
transformation that amplifies desired semantic features in the basis of the
embedding space. We generate these semantic features by a distant super-
vised approach, to make them applicable for Hungarian embedding spaces.
We propose the Hellinger distance in order to perform a transformation to
an interpretable embedding space. Furthermore, we extend our research
to sparse word representations as well, since sparse representations are
considered to be highly interpretable.
Keywords: Interpretability, Semantic Transformation, Word Embed-
dings

1 Introduction

Continuous vectorial word representations are routinely employed as the inputs
of various NLP models such as named entity recognition (Seok et al., 2016),
part of speech tagging (Abka, 2016), question answering (Shen et al., 2015), text
summarization (Mohd et al., 2020), dialog systems (Forgues et al., 2014) and
machine translation (Zou et al., 2013).

Static word representations acquire their lexical knowledge from local or global
contexts. GloVe (Pennington et al., 2014a) uses global co-occurrence statistics
to determine a word’s representation in the continuous space, whereas Mikolov
et al. (2013) proposed a predictive model for predicting target words from their
contexts. Furthermore, Bojanowski et al. (2017) presented a training technique
of word representations where sub-word information is in the form of character
n−grams are also considered. The outputs of these word embedding algorithms
are able to encode semantic relations between words (Pennington et al., 2014a;
Nugaliyadde et al., 2019). This can be present on word-level – such as similarity
in meaning, word analogy, antonymic relation – or word embeddings can be
utilized to produce sentence-level embeddings, which shows that word vectors
still carry intra-sentence information (Kenter and de Rijke, 2015).

Despite the successes of word embeddings on semantics related tasks, we have
no direct knowledge of the human-interpretable information contents of dense



dimensions. Utilizing human-interpretable features as prior information could
lead to performance gain in various NLP tasks. Identifying and understanding
the dense representation in each dimension can be cumbersome for humans. To
alleviate this problem, we propose a transformation where we map existing word
representations into a more interpretable space, where each dimension is supposed
to be responsible for encoding semantic information from a predefined set of
semantic inventory. There are various ways to form groups of semantic classes
by forming semantically coherent groups of words. In this work, we shall rely on
ConceptNet (Speer et al., 2016) to do so.

We measure the information contents of each dimension in the original em-
bedding space towards a predefined set of human interpretable concepts. Our
approach is inspired by Şenel et al. (2018) which utilized the Bhattacharyya
distance for the aforementioned purpose. In this work, we also evaluate a close
variant of the Bhattacharyya distance, the Hellinger distance for transform-
ing word representations in a way that the individual dimensions have a more
transparent interpretation.

Feature norming studies have revealed that humans usually tend to describe
the properties of objects and concepts with a limited number of sparse features
(McRae et al., 2005). This kind of sparse representation became a major part of
natural language processing since we can see the resemblance between sparse fea-
tures and human feature descriptions. Hence, we additionally explore the effects
of applying sparse word representations as an input to our algorithm which makes
the semantic information stored along the individual dimensions more explicit. We
published our work on GitHub for interpretable word vector generation: https://
github.com/ficstamas/word_embedding_interpretability, and shared the
code for semantic category generation as well, alongside with the used se-
mantic categories: https://github.com/ficstamas/multilingual_semantic_
categories.

2 Related Work

Turian et al. (2010) was one of the first providing a comparison of several word
embedding methods and showed that incorporating them into established NLP
pipelines can also boost their performance. word2vec (Mikolov et al., 2013), GloVe
(Pennington et al., 2014b) and Fasttext (Bojanowski et al., 2017) methods are well
known models for obtaining context-insensitive (or static) word representations.
These methods generate static word vectors, i.e. every word form gets assigned a
single vector that applies to all of its occurrences and senses.

The intuition behind sparse vectors is related to the way humans interpret
features, which was shown in various feature norming studies (Garrard et al., 2001;
McRae et al., 2005). Additionally, generating sparse features (Kazama and Tsujii,
2003; Friedman et al., 2008; Mairal et al., 2009) has proved to be useful in several
areas of NLP, including POS tagging (Ganchev et al., 2010), text classification
(Yogatama and Smith, 2014) and dependency parsing (Martins et al., 2011).
Berend (2017) also showed that sparse representations can outperform their



Ours SemCat HyperLex

Number of Categories 91 110 1399
Number of Unique Words 2760 6559 1752

Average Word Count per Category 68 91 2
Standard Deviation of Word Counts 52 56 3

Table 1. Basic statistics about the semantic categories.

dense counterparts in certain NLP tasks, such as NER, or POS tagging. Murphy
et al. (2012) proposed Non-Negative Sparse Embedding to learn interpretable
sparse word vectors, Park et al. (2017) showed a rotation based method and
Subramanian et al. (2017) suggested an approach using a denoising k-sparse
auto-encoder to generate interpretable sparse word representations. Balogh et al.
(2019) made prior research about the semantic overlap of the generated vectors
with a human commonsense knowledgebase and found that substantial semantic
content is captured by the bases of sparse embedding space.

Şenel et al. (2018) showed a method where they measured the interpretability
of the dense GloVe embedding space, and later showed a method to manipulate
and improve the interpretability of a given static word representation (Şenel
et al., 2020).

Our proposed approach also relates to the application of the Hellinger distance,
which has been used in NLP for constructing word embeddings Lebret and
Collobert (2014). Note that the way we apply the Hellinger distance differs from
prior work in that we use it for amplifying the interpretability of contextual
word representations, whereas the Hellinger distance served as the basis for
constructing (static) embeddings in earlier work.

3 Data

3.1 Semantic Categories

Amplifying and understanding the semantic contents from word embedding spaces
is the main objective of this study. To provide meaningful interpretation to each
dimension, we rely on the base concept of distributional semantics (Harris, 1954;
Boleda, 2020). In order to investigate the underlying semantic properties of word
embeddings, we have to define some kind of semantic categories that represent
the semantic properties of words. These semantic properties can represent any
arbitrary relation which makes sense from a human perspective, for example,
words such as "red", "green", and "yellow" can be grouped under the "color"
semantic category which represents a hypernym-hyponym relation, but they
can be found among "traffic" related terms as well. Another example is "car"
semantic category which is in meronymy relation with words such as "engine",
"wheels" and "crankcase".

Previous similar linguistic resources that contain semantic categorization of
words include HyperLex (Véronis, 2004) and SemCat (Şenel et al., 2018). A
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Fig. 1. Generation of semantic categories with the help of allowed relations from
ConceptNet, where the Query represents the root concept, and w denotes the
weight of the relation.

major problem with them from the standpoint of applicability is that these
datasets are restricted to English, so they can not be utilized in multilingual
scenarios. From an informational standpoint, HyperLex with a low average and
standard deviation category sizes also raises concerns. In order to extend it to the
Hungarian language as well, we used the semantic category names from SemCat
and defined relations on a category-by-category base manually. We relied on a
subset of relations from ConceptNet (Speer et al., 2016). To obtain higher quality
semantic categories, we introduced an intermediate language that works as a
validation to reduce undesired translations. The whole process can be followed in
Figure 1.

First, we generate the semantic categories from the source language by the
allowed relations and restricted the inclusion of words by the weight of the relation.
Semantic category names from SemCat were used as the input (Query) and the
weight of each relation is originated from ConceptNet. Then we translate the
semantic categories to the target language directly and through the intermediate
language to the target language, where we kept the intersection of the two results.
It is recommended to rely on one of the core languages defined in ConceptNet as
Source and Intermediate language. Using ConceptNet for inducing the semantic
categories for our experiments makes it easy to extend our experiments later for
additional languages beyond Hungarian. We present some basic statistics about
the mentioned semantic categories in Table 1. This kind of distant supervised
generation (Mintz et al., 2009) can produce large number of data easily but it
carries the possibility that the generated data is noisy.

3.2 Word Embeddings

We conducted our experiments on 3 embedding spaces trained using the Fast-
text algorithm (Bojanowski et al., 2017). The 3 embedding spaces that we
relied on were the Hungarian Fasttext (Fasttext HU) embeddings pre-trained on



Wikipedia3, its aligned variant4 (Fasttext Aligned) that was created using the
RCSLS criteria (Joulin et al., 2018) with the objective to bring Hungarian em-
beddings closer to semantically similar English embeddings and the Szeged Word
Vectors (Szeged WV) (Szántó et al., 2017) which is based on the concatenation
of multiple Hungarian corpora.

We limited the word embeddings to their 50,000 most frequent tokens and
evaluated every experiment with this subset of all vectors. The vocabulary of
the Fasttext HU and Fasttext Aligned embeddings are identical, however, it
is important to emphasize that the Szeged WV overlap with the vocabulary
of these embedding spaces on less than half of the word forms, i.e. 22,112
words. Furthermore, Szeged WV uses a cased vocabulary, unlike the Fasttext
embeddings. In the case of Fasttext, the vocabulary of the embedding and our
semantic categories overlaps in 1848 unique words. For the Szeged WV, it only
overlaps with 1595 unique words.

Our approach can evaluate other embedding types as well. So due to the
fact that sparse embeddings are deemed to be more interpretable compared to
their dense counterparts, we also produced sparse static word representations by
applying dictionary learning for sparse coding (Mairal et al., 2009) (DLSC) on
the dense representation. For obtaining the sparse word representations of dense
static embedding space E , we solved the optimization problem

min
α,D

1

2
‖E − αD‖2F + λ ‖α‖1 ,

that is, our goal is to decompose E ∈ Rv×d into the product of a dictionary matrix
D ∈ Rk×d and a matrix of sparse coefficients α ∈ Rv×k with a sparsity-inducing
`1 penalty on the elements of α. Furthermore, v denotes the size of the vocabulary,
d represents the dimensionality of the original embedding space, and k is the
number of basis vectors.

We obtained different sparse embedding space by modifying the hyperparam-
eters of the algorithm. So we evaluated it with λ ∈ {0.05, 0.1, 0.2} regularization
and k ∈ {1000, 1500, 2000} basis vectors.

4 Our Approach

4.1 Semantic Decomposition

The foundation of our approach is to measure the encoding of semantic information
in the basis of pre-trained static word embeddings. In order to quantify the
semantic information, we have to observe the joint behavior of similarities in
semantic distributions. This approach is feasible due to distributional semantics
(Boleda, 2020), which states that similarity in meaning results in similarity in
linguistic distribution (Harris, 1954). This behavior can be observed from the

3 https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.hu.vec
4 https://dl.fbaipublicfiles.com/fasttext/vectors-aligned/wiki.hu.align.vec



fact that static word representations are trained on co-occurrence information of
word tokens. So if we are able to measure the dissimilarity between a distribution
that represents a semantic information and the distribution of space (which is
the complementary distribution of semantic information) then we can give a
transformation that is going to explicitly express the semantic categories in each
dimension.

In other words, the coefficients of a dimension form a distribution R ∈ Rv.
The desired semantic information we try to express is denoted as P ⊆ R. For
example, P describes the "wave" semantic information, then words related to
that term should occur in a similar context, such as "rising", "golden", or
"lacy" in "_ waves". So by expressing how far this distribution is from the
distribution of a dimension, then we can see how significant is the dimension
about the semantic information. The certainty of such a dimension about the
desired semantic information can be formulated as D(P,P). If this distance is
low then it means that the information gain would be really low because the two
distributions are nearly homogeneous. Analogously, if the distance is high then
we can rely on that dimension with higher certainty. So the distance expresses
the certainty we have in each dimension about the semantic information.

In order to express the certainty in a dimension, first, we have to separate the
coefficients in a dimension to represent the previously defined distributions. As a
reminder, we denoted the embedding space with E , then we denote the defined
semantic categories as S. So we can define function f : x→ E which returns the
representation of word token x, and function S : x→ S which maps word token
x to its corresponding semantic category. Then we can separate the coefficients
along the ith dimension and jth semantic category as

Pij =
{
f(x)(i) | f(x) ∈ E , S(x) ∈ S(j)

}
and similarly

Qij =
{
f(x)(i) | f(x) ∈ E , S(x) /∈ S(j)

}
,

where Pij represents the distribution of a particular semantic category in a
dimension (in-category words) and Qij (= Pij) represents the distribution of the
rest of the dimension (out-of-category words).

4.2 Measuring dissimilarity

To measure the dissimilarity, hence observe the certainty of semantic categories
in each dimension we define two distances. We apply Bhattacharyya distance
as a baseline from Şenel et al. (2018) and Hellinger distance as an alternative
improvement. Both distances can be expressed by Bhattacharrya coefficient (or
fidelity coefficient) as

DB(p, q) = − ln
∞∫
−∞

√
p(x)q(x) dx DH(p, q) =

√
1−

∞∫
−∞

√
p(x)q(x) dx,

where the integrand expresses the fidelity coefficient.The important differences
between the two types of distances are that



– Hellinger distance is a bounded metric that eases the interpretation of values
when the fidelity is close to 0,

– Hellinger distance accumulates small distributional differences better which
means if the fidelity is close to 1, it can still enhance potentially significant
information.

To maintain consistency, comparability and a baseline, we define Bhat-
tacharyya distance as Şenel et al. (2018), and Hellinger distance by their closed
forms which assumes normality of the investigated distributions. Under the
normality assumption, the Bhattacharyya distance can be expressed as

DB(Pi,j , Qi,j) =
1

4
ln

(
1

4

(
σ2
p

σ2
q

+
σ2
q

σ2
p

+ 2

))
+

1

4

(
(µp − µq)2

σ2
p + σ2

q

)
, (1)

and Hellinger distance can be formulated as

DH(Pi,j , Qi,j) =

√√√√1−
√

2σpσq
σ2
p + σ2

q

e
− 1

4 ·
(µp−µq)2

σ2p+σ
2
q , (2)

where σ denotes the standard deviation and µ denotes the mean of Pi,j and
Qi,j respectively, assuming that Pi,j ∼ N (σp, µp) and Qi,j ∼ N (σq, µq). We then
define WD ∈ Rd×|S| that contains the distances of semantic category-dimension
pairs, i.e. WD(i, j) = D(Pij , Qij), with D denoting either of the Bhattacharyya
or Hellinger distances.

4.3 Interpretable Word Vector Generation

In order to obtain interpretable word vectors, we have to first refine the quality
of transformation. It is highly possible that our semantic category dataset is
imbalanced and/or during the pre-training process we do not have enough
information about a word token. So we should reduce the bias of dominant
semantic categories which can be obtained by performing `1 normalization on
WD in such a manner that the values corresponding to each semantic category
sum up to 1. We shall denote the transformation matrix that we derive in such a
manner as WND.

Another problem which occurs in embedding spaces is that semantic infor-
mation can be encoded in both positive and negative direction relative to the
mean, hence we should adjust the orientation of these vectors in certain bases in
order to couple semantic categories in their corresponding bases and segregate
them from others in other bases. We determine the directions from the sign of
difference between the mean of the original distributions, thus we can obtain
WNSD as

WNSD(i, j) = sign(∆ij) · WND(i, j),
where ∆ij = µpij − µqij and sign is the signum function.

We also standardize E in order to avoid multicollinear issues, thus we can
yield higher quality word vectors. We denote the standardized embedding space



by ES . As a final step, we obtain our interpretable representations I ∈ Rv×|S| as
the product of ES and WNSD.

5 Evaluation methods

5.1 Word Retrieval Test

We are concerned about the accuracy of our model, to know how well it behaves
on unknown data. In WD we can see the semantic distribution of the dimensions
and in I each column should represent a semantic category. So each dimension
in I should ideally represent a semantic category from the semantic categories.

In order to measure the semantic quality of I, we used 60% of the words
from each semantic category for training and 40% for evaluation. By relying
on the training set, we calculate the distance matrix WD from the embedding
space, using any arbitrary distance we defined earlier. We also experiment with a
pruned version of WD by keeping the highest K coefficients for each semantic
category and setting the rest to 0, and denoting it as WSD. We do that, so we can
inspect the importance of the strongest encoding dimensions. Then by employing
WSD instead of WD, we do everything in the same way as we defined earlier.

We use the validation set and see whether the words of a semantic category
are seen among the top n, 3n or 5n words in the corresponding dimension in
IS , where n is the number of the words in the validation set varying across the
semantic categories. The final accuracy is calculated as the weighted mean of the
accuracy of the dimensions, where the weight is the number of words in each
category for the corresponding dimension.

5.2 Interpretability

In order to measure the interpretability of the semantic space, we use a functionally-
grounded evaluation method (Doshi-Velez and Kim, 2017), which means it does
not involve humans in the process of quantification. Furthermore, we use contin-
uous values to express the level of interpretability (Murdoch et al., 2019).

The metric we rely on is an adaptation of the one proposed in (Şenel et al.,
2018). We ought to have a metric that is independent from the dimensionality
of the embedding space, so models with different number of dimensions can be
compared more meaningfully.

IS+
i,j =

|Sj ∩ V +
i (β × nj)|
nj

(3) IS−i,j =
|Sj ∩ V −i (β × nj)|

nj
(4)

Eqn. (3) and (4) define the interpretability score for the positive and nega-
tive directions, respectively. In both equation i represents the dimension (i ∈
{1, 2, 3, . . . , d}, where d is the number of dimensions of the embedding space)
and j the semantic categories (j ∈ {1, 2, 3, . . . , c}, where c is the number of the
semantic categories). Sj represents the set of words belonging to the jth semantic
category, nj the number of words in that semantic category. V +

i and V −i gives
us the top and bottom words selected by the magnitude of their coordinates



Hellinger Bhattacharyya
β 1 5 10 1 5 10

Fasttext HU 22.00 38.43 46.87 21.29 38.80 47.01
Fasttext Aligned 26.81 43.71 51.26 25.92 43.45 51.22

Szeged WV 16.34 31.71 40.04 15.69 31.50 39.91

Table 2. Interpretability of Hungarian Fasttext, Aligned Fasttext and Szeged
WV with different β relaxation and applied distance.

respectively along the ith dimension. β × nj is the number of words selected
from the top and bottom words, hence β ∈ N+ is the relaxation coefficient, as
it controls how strict we measure the interpretability. As the interpretability of
a dimension-category pair, we take the maximum of the positive and negative
direction according to

ISi,j = max
{
IS+

i,j , IS
−
i,j

}
. (5)

Once we have the overall interpretability (ISi,j), we calculate the categorical
interpretability according to Eqn. (6). Şenel et al. (2018) took a different approach
of taking the average of the maximum values over all the categories, however,
this could easily overestimate the true interpretability of the embedding space.

In order to avoid the overestimation of the interpretability of the embedding
space, we calculate Eqn. (6), where we have a condition on the selected i dimension
which is defined by Eqn. (7). It chooses the highest encoding dimension according
to WD (distance matrix of the examined space) which ensures that we obtain
the interpretability score from the most likely encoding dimension. This method
is more suitable to obtain the interpretability scores, because it relies on the
distribution of the semantic categories, instead of the interpretability score equally
sampled from each dimension.

ISj = ISi∗j ,j × 100 (6) i∗j = argmax
i′

WD(i
′
, j) (7)

Finally, we define the overall interpretability of the embedding space by
taking the average of the interpretability scores across the semantic categories,
IS = 1

c

∑c
j=1 ISj , where c is the number of categories.

6 Results

6.1 Dense Representations

We transformed all 3 embedding spaces to their interpretable representations and
measured the effectiveness of the encoding by the interpretability score which
can be seen in Table 2. Furthermore, we measured the generalisability of the
transformation with word retrieval test which is presented in Figure 2. These
types of evaluations are better observed jointly because they represent a different
aspect of the embedding space but we can not make any conclusion without each
other.



50 100 150 200 250 300
Dimensions

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Ac
cu

ra
cy

 (%
)

Fasttext HU
Hellinger
Bhattacharyya

50 100 150 200 250 300
Dimensions

Fasttext Aligned

Hellinger
Bhattacharyya

20 40 60 80 100
Dimensions

Szeged
Hellinger
Bhattacharyya

Fig. 2. The results of word retrieval tests with a relaxed size of retrieved words,
where the dimensions represent the K kept coefficient from WD.

Fasttext HU Fasttext Aligned Szeged WV
λ 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2

Hellinger distance
k = 1000 58.11 43.21 19.33 60.13 47.58 24.25 58.88 53.85 33.82
k = 1500 64.49 49.24 23.82 65.50 52.20 28.44 65.03 60.94 38.14
k = 2000 68.29 52.53 26.98 68.79 57.05 30.63 67.65 64.08 42.22

Bhattacharyya distance
k = 1000 53.20 33.98 18.72 55.54 37.88 22.08 56.13 45.52 27.79
k = 1500 57.77 36.33 21.59 59.91 39.54 24.61 62.85 50.53 30.77
k = 2000 60.82 39.03 24.43 62.99 42.26 26.43 64.45 52.18 33.12

Table 3. The effects of relying on sparse static word representation with different
hyperparameters for regularization coefficient (λ) and number of basis vectors
(k). Interpretability scores represented at β = 1 relaxation.

We can immediately spot the dominant performance on both evaluation
methods by the aligned Fasttext word vectors. It can indicate that either the
alignment could carry extra semantic knowledge or the English Wikipedia corpus
is a higher quality. Szeged WV seems to be the worst-performing model according
to interpretability, but it is not necessarily the case because it has a third of the
number of dimensions than the Fasttext models, and differ in overlap of words in
the vocabulary. In Figure 2 we can also see that it has just enough dimensions
(maybe it could utilize a little bit more). This can be seen by observing the
accuracy of the embedding spaces. The accuracy has not peaked before relying on
all 100 of the dimensions, unlike Fasttext HU which peaks between 150 and 250
dimensions. Furthermore, it does not have a plateau-like effect where we yield
little to no improvement. But these observations only apply from the standpoint
of our semantic categories, not in a general manner.
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Fig. 3. The results of word retrieval tests on sparse representations (λ = 0.05
and k = 2000), where the dimensions represent the K kept coefficient from WD.

6.2 Sparse Representations

If we closely inspect Eqn. (1) and (2), we can see that division errors occur when
σp or σq equals 0. When the standard deviation for P or Q would be 0, we replace
it by

√
10−5 instead.

We evaluated our experiments with different hyperparameters for sparse vector
generation as we can see in Table 3 when using the β = 1 relaxation. We can
conclude that increasing the level of sparsity does not benefit the interpretability.
On the other hand, changing the number of basis vectors has a beneficial impact.
We can see that sparse representation amplifies the semantic information on each
basis, since the interpretability of these embedding spaces improved by 2-3 times.

Figure 3 demonstrates the results of the word retrieval test when using sparse
representations obtained when setting λ = 0.05 and k = 2000. We can see that
the generalisability of the model is decreased overall, and we should rely on more
K none zero coefficients to extract the semantic information. This could be the
cause of high level of noise is present in our semantic categories.

6.3 Semantic Decomposition

We can see the semantic decomposition of the word "ember" on Figure 4. In
the first row, we represent the dense and in the second we represent the sparse
embedding spaces. We expect that in this case for the "ember" word, semantic
categories that contain this word are among the highest coefficients. We can see
that, after we obtained the sparse representations for Fasttext, and transformed
them the semantic decomposition shows an identical representation even though
their scores are different.

7 Conclusion

We evaluated the transformation of non-contextual embedding spaces into a more
interpretable one, which can be used to analyze the semantic distribution which
can have a potential application in knowledge base completion. We investigated
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Fig. 4. Semantic decomposition of the word "ember". First row shows the de-
composition of dense embedding spaces and the second represents the sparse
embedding spaces (k = 2000, λ = 0.05). On the y axis we represent the semantic
categories and on the x axis we show the corresponding weights of the word. Red
bars represents that if the word is in the semantic category.

the interpretability of the Hungarian Fasttext, Hungarian Aligned Fasttext, and
Szeged WV models as source embeddings, where we concluded that all of them
are capable to express the anticipated semantic information contents and that the
aligned word vectors performed above all. Furthermore, we proposed a modified
version of the interpretability score, which let us compare the interpretability
of embedding spaces with different dimensionality and consider errors from the
transformation.

We also considered the utilization of the Hellinger distance instead of Bhat-
tacharyya distance which improved the interpretability scores. Furthermore, we
explored the behavior of sparse representations. As for the hyperparameter se-
lection, we can conclude that we want to increase the number of the basis, and
decrease the sparsity level in order to improve the performance.

However, if we consider sparse representations the generalisability of the
embedding may decrease, but it might be a joint factor of the distant supervised
generation of Hungarian semantic categories and random selection of validation
test sets. If our semantic categories contain too much noise then it could ac-
cumulate that noise during the transformation which is indicated by the high
interpretability score, and a lower score on the word retrieval test (which can
represent a distinct distribution from the original distribution of the semantic
category).
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