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Abstract. In this paper, we illustrate the power of distributed word
representations for the part-of-speech tagging of Hungarian texts. We
trained CRF models for POS-tagging that made use of features derived
from the sparse coding of the word embeddings of Hungarian words as
signals. We show that relying on such a representation, it is possible to
avoid the creation of language specific features for achieving reliable per-
formance. We evaluated our models on all the subsections of the Szeged
Treebank both using MSD and universal morphology tag sets. Further-
more, we also report results for inter-subcorpora experiments.

1 Introduction

Designing hand-crafted features for various natural language processing tasks,
such as part-of-speech (POS) tagging or named entity recognition (NER) has a
long going history [5,13]. Systems that build upon such (highly) language/task-
specific features can often perform accurately, however, at the cost of losing their
ability to work well across different languages and tasks. A further drawback of
such approaches is that the human-powered design of features can be a time
consuming and expensive task without any guarantees that the features work
well under multiple circumstances or at all.

There is now a recent line of research gaining increasing popularity, which
aims at building more general models that require no feature engineering at all
but relying on large collections of (unlabeled) texts alone [2,3,4,9]. For the above
reason these models can be regarded language independent, making them more
likely to be applicable across languages.

Sparse coding aims at expressing observations as a sparse linear combination
of ‘basis vectors‘1 [7]. The goal of our work is to combine two popular approaches,
i.e. sparse coding and distributed word representations.

In our work we propose a POS tagging architecture which was evaluated on
the Szeged Treebank using MSD and universal morphology tag sets. We report

1 The term basis vectors is used intuitively throughout the paper, as they need not be
linearly independent
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our POS tagging results on the levels of the six subcorpora the Szeged Treebank
comprises of. Also, we evaluated our trained models in a cross-genre setting.

2 Related work

The line of research introduced in this paper relies on distributed word repre-
sentations [1] and dictionary learning for sparse coding [7], both area having a
substantial literature. This section introduces the most important previous work
along these topics.

2.1 Distributed word representations

Distributed word representations provided by approaches such as word2vec [9]
and GloVe [12], enjoy great popularity these days as they have been shown
to accurately model the semantics of words [10]. This property makes them
available to perform successfully in semantic and syntactic word analogy tasks.
There exist previous results claiming that distributed word representations are
also useful in the word analogy task in Hungarian (and other lower-resourced
Central European languages) [8]. There exist a variety of approaches on how
continuous word embeddings can be determined, e.g. [1,2,3,9,12].

The Polyglot [1] neural net architecture is one such possible alternative to
determine word embeddings. In their proposed model, word embeddings were
trained on the passages of Wikipedia, while preprocessing of texts was kept at
a minimal level by not performing lowercasing or lemmatization. Applying such
a generic approach for preprocessing not favoring any specific language makes
this neural network architecture applicable for a variety of languages without
any serious modifications. Indeed, the authors also made their pre-trained word
embeddings for over 130 languages publicly available2 providing basis for cross-,
and multi-lingual experimentation. Since we wanted to give an approach that is
not sensitive to the hyperparameters of the word embedding model, we applied
those Polyglot word embedding vectors trained for Hungarian that are available
for download at the Polyglot project website.

2.2 Sparse coding

Sparse coding has it roots in the computer vision community, and its usage is
perhaps no so common in natural language processing literature. The general
purpose of sparse coding is to express signals in the form of a sparse linear
combinations of basis vectors, while the task of finding an appropriate set of
basis vectors is referred to as dictionary learning problem [7]. Generally, given a
data matrix X ∈ Rk×n with its ith column xi representing the ith k-dimensional
signal, the task is to find D ∈ Rk×m and α ∈ Rm×n, such that the product of

2 https://sites.google.com/site/rmyeid/projects/polyglot
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matrices D and α approximates X. Mairal et al. [7] formalized this problem as
an `1-regularized linear least-squares minimization of the form

min
D∈C,α

1

n

n∑
i=1

1

2

(
‖xi −Dαi‖22 + λ‖αi‖1

)
,

with C being the convex set of matrices that comprise of column vectors having
an `2 norm at most one, matrix D acts as the shared dictionary across the signals,
and the columns of the sparse matrix α contains the coefficients for the linear
combinations of each of the n observed signals. [7] describes an efficient algorithm
for solving the above optimization that we also applied in our experiments3.

3 Sequence labeling framework

This section introduces the sequence labeling framework we employed for POS
tagging. During our experiments the main source of features for the tokens in a
sentence was the dictionary learning based sparse coding of their word embedding
vector. Once the dictionary matrix D is given αi, the sparse linear combination
coefficients for a word embedding vector wi, can be determined efficiently by
solving the kind of minimization problem described in Section 2.2. The way we
turned these sparse coefficients into features was that we regarded those indices
of αi as features that had a non-zero value, i.e. f(wi) = {j : αi[j] 6= 0}, αi[j]
denoting jth coefficient stored in the sparse vector αi. It can be illustrative if
we check out the kind of features that got determined for semantically related
words. Table 1 includes such a set of words and their corresponding features. In
Table 1 any feature ID appearing more than got boldfaced.

The only language dependent feature we made use of was the identity of
words. For the calculation of this feature we performed no preprocessing, i.e. the
words were not lemmatized and even their capitalization was left unchanged.

Word Sparse features induced

kéz (hand) {144, 218, 309, 472, 713, 870, 916}
láb (leg) {138, 186, 250, 309, 324, 583, 626, 796, 948}

fej (head) {101, 250, 271, 309, 516, 783, 916, 948}
törzs (trunk) {81, 309, 783, 867, 948}

csukló (wrist) {84, 194, 309, 607, 815, 957}
Table 1: Example words all being body parts and the sparse features induced
for them. Features with multiple occurrences across words are in bold typeface.
Within parenthesis are the English equivalent of the Hungarian example words.

When assigning features to a target word at some position within a sentence,
we determined the same set of feature functions for the target word itself and its

3 http://spams-devel.gforge.inria.fr/

http://spams-devel.gforge.inria.fr/
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neighboring words of window size 1. We then used the previously described set of
features in a linear chain CRF [6], using the CRFsuite implementation [11]. The
coefficients for `1 and `2 regularization were set to 1.0 and 0.001, respectively.

4 Results and discussion

We evaluated our proposed POS tagging framework on the Szeged Treebank
[14] which has six subcorpora, namely text related to computers, law, literature,
short news (referenced as newsml), newspaper articles and student writing. The
performance of our POS tagger models are expressed as the fraction of correctly
tagged tokens (per-token) evaluation and as a fraction of the correctly tagged
sentences (per-sentence) evaluation when a sentence is regarded as correct if all
the tokens it comprises are tagged correctly. Evaluation was performed according
to the reduced tag set of the MSD v2.5 and the universal morphologies as well. In
the two distinct tag sets, we faced a 93-class and a 17-class sequence classification
problem, respectively. The dictionary learning approach we made use of relied on
two parameters, the dimensionality of the basis vectors and the regularization
parameter effecting the sparsity of the coefficients in α. We chose the former
parameter to be 1024 and the latter to be 0.4, nevertheless we should also add the
general tendencies remained the same when we chose other pairs of parameters.

The first factor that could influence the performance of our approach is the
coverage of the word embedding vectors employed, i.e. what extent of the train-
ing/test tokens/word forms do we have a distributed representation determined
for. Table 2 includes these information. We can see that due to the morphologi-
cal richness of Hungarian, the word form coverage of the roughly 150,000 word
embedding vectors we had access to is relatively low (around 60%) for all the
domains in the treebank. Due to the Zipfian distribution of word frequencies,
however, we could experience a much higher (almost 90%) coverage for all the
domains in the treebank on the level of tokens. It is interesting to see that stu-
dent writings has one of the lowest word form coverage, while it is among the
genres with the highest token coverage. It might indicate that student writing is
not as elaborate and standardized as news writing for instance.

Training Test Average
Domain Tokens Word forms Tokens Word forms Tokens

computer 88.54% (4) 60.13% (3) 88.76% (4) 69.42% (3) 88.59% (4)
law 86.04% (6) 58.80% (4) 86.10% (6) 65.15% (5) 86.06% (6)

literature 90.12% (1) 58.56% (5) 89.97% (1) 68.58% (4) 90.09% (1)
newsml 87.67% (5) 63.15% (2) 87.72% (5) 69.85% (2) 87.68% (5)

newspaper 89.22% (3) 63.69% (1) 89.25% (3) 72.48% (1) 89.22% (3)
student 89.68% (2) 54.32% (6) 89.70% (2) 63.04% (6) 89.69% (2)
Total 88.59% — 88.61% — 88.60%

Table 2: The token and word form coverages of the Polyglot word embeddings
on the Szeged Treebank. In parenthesis are the ranks for a given domain.
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Regarding our POS tagging results, in all our subsequent tables, we report
three numbers per each cross-domain evaluation. The three numbers refer to the
three kinds of experiments below:

1. only word identity features are utilized,
2. both word identity and sparse coding-derived features are utilized,
3. only sparse coding-derived features are utilized.

Next, we present our evaluation across the six distinct categories of Szeged Tree-
bank according to the reduced MSD v2.5 tag set consisting of 93 labels. Table 3
and Table 4 contains our results depending on whether accuracies were calculated
on the per-token or per-sentence level, respectively.

Train Test computer law literature newsml newspaper student

88.47% 80.00% 74.11% 81.37% 79.70% 76.55%
computer 92.57% 88.19% 83.86% 88.75% 89.28% 82.84%

90.07% 85.91% 80.73% 86.66% 86.49% 80.34%

76.35% 93.52% 64.89% 70.61% 72.87% 67.70%
law 86.24% 95.47% 75.65% 83.32% 85.41% 76.83%

83.95% 92.69% 73.06% 80.90% 82.84% 74.48%

73.63% 68.01% 88.17% 64.16% 75.21% 84.71%
literature 85.81% 82.51% 91.65% 81.40% 86.97% 88.66%

83.34% 80.79% 89.15% 79.03% 84.65% 85.81%

77.91% 76.64% 67.57% 93.28% 77.94% 70.88%
newsml 86.73% 86.02% 76.72% 95.79% 87.20% 77.73%

84.57% 84.37% 75.27% 93.79% 85.11% 75.43%

82.21% 80.90% 79.68% 86.61% 85.78% 81.00%
newspaper 89.26% 88.75% 86.48% 91.48% 91.32% 85.69%

87.04% 86.44% 84.02% 88.77% 88.94% 82.70%

75.27% 70.65% 82.74% 72.71% 77.80% 91.53%
student 85.15% 82.50% 88.18% 83.45% 87.23% 93.21%

82.24% 79.32% 85.42% 80.12% 84.11% 89.80%

Table 3: Per-token cross-evaluation accuracies across the subcorpora of Szeged
Treebank using a reduced tag set of MSD version 2.5 consisting of 93 labels.

Subsequently, we evaluated our models according to all the possible com-
binations of the subcorpora relying on the coarser-level universal morphologies
tag set which includes 17 POS tags. Results for the per-token and sentence-level
evaluations are present in Table 5 and Table 6, respectively.

Comparing the results when evaluating according to the MSD tagset and the
universal morphologies, we can observe that better results were achieved when
evaluation took place according to the universal morphologies. This is not so
surprising, however, as the task was simpler in the latter case, i.e. we faced a
17-class sequence classification problem, opposed to the 93-class problem for the
MSD case.



64 XII. Magyar Számı́tógépes Nyelvészeti Konferencia

Train Test computer law literature newml newspaper student

21.21% 3.79% 8.31% 2.92% 6.16% 6.39%
computer 30.93% 12.71% 18.88% 11.35% 18.20% 12.79%

21.26% 9.54% 13.87% 8.42% 12.32% 9.54%

4.64% 31.17% 3.28% 0.81% 3.22% 3.01%
law 13.37% 41.08% 6.68% 4.74% 10.90% 7.25%

9.57% 24.38% 5.25% 3.68% 7.44% 5.50%

3.70% 1.50% 36.43% 0.40% 6.26% 19.76%
literature 11.00% 5.08% 43.86% 2.62% 14.60% 26.49%

8.24% 3.79% 34.91% 2.12% 10.09% 18.64%

4.64% 2.23% 3.22% 42.56% 4.79% 3.35%
newsml 13.37% 8.97% 7.27% 50.68% 12.42% 7.23%

9.92% 6.85% 6.68% 35.30% 8.58% 6.01%

8.68% 4.62% 14.38% 6.61% 12.27% 11.75%
newspaper 19.14% 12.24% 25.03% 14.52% 23.36% 17.59%

12.97% 9.08% 19.76% 10.14% 16.97% 13.07%

3.55% 0.99% 22.08% 0.76% 6.21% 40.09%
student 10.71% 5.50% 31.58% 5.14% 14.41% 45.79%

7.70% 3.37% 24.05% 3.23% 9.43% 31.49%

Table 4: Per-sentence cross-evaluation accuracies across the subcorpora of Szeged
Treebank using a reduced tag set of MSD version 2.5 consisting of 93 labels.

Train Test computer law literature newsml newspaper student

90.66% 84.05% 78.54% 83.62% 81.84% 83.28%
computer 94.56% 91.63% 88.38% 91.63% 91.59% 90.52%

92.35% 89.32% 86.29% 90.21% 89.30% 88.35%

78.18% 96.07% 70.07% 72.91% 75.94% 73.81%
law 88.18% 97.67% 82.38% 86.90% 87.00% 84.38%

86.43% 95.65% 80.35% 85.76% 85.51% 82.21%

76.70% 75.64% 91.54% 66.17% 78.19% 88.90%
literature 87.54% 87.87% 95.16% 82.38% 90.05% 93.36%

85.70% 85.69% 92.92% 80.49% 88.11% 91.23%

79.83% 81.36% 69.71% 94.50% 79.62% 75.02%
newsml 89.51% 90.42% 85.19% 97.07% 90.70% 85.62%

87.88% 88.96% 83.30% 95.58% 88.53% 83.33%

84.08% 85.89% 83.48% 88.29% 88.38% 86.51%
newspaper 91.43% 91.93% 91.23% 93.59% 94.01% 91.96%

89.89% 90.28% 89.55% 91.32% 91.85% 89.61%

77.49% 75.77% 85.41% 69.89% 79.61% 93.88%
student 88.73% 87.97% 92.08% 85.74% 90.56% 96.04%

85.83% 84.45% 90.28% 82.69% 88.22% 94.04%

Table 5: Per-token cross-evaluation accuracies across the subcorpora of Szeged
Treebank using the universal morphology tag set.
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Applying either kind of evaluation, the domain of newspapers seems to be
the hardest one in the intra-domain evaluation, as the lowest accuracies are
reported here. Also, we can notice that the literature and student domains are
the most different from the others, as training on these corpora and evaluating
against some other yields the biggest performance drops. Although literature and
student writing being substantially different from all the other genres, they seem
to be similar to each other, as the performance gap when training on one of these
domains and evaluating on the other has milder performance gaps compared to
other scenarios.

It can be clearly seen that models using features for both the word identities
and sparse coding has the best results often by a large margin. It is not surprising
as this model had access to the most information. When comparing the results of
the models which either solely relied on word identity or sparse coding features,
it is interesting to note that the model not relying on the identity of words ar all,
but the sparse coding features alone, tends to perform better. A final important
observation to take is that when sparse coding features are employed, domain
differences seem to be expressed less, i.e. the performance drops in cross-domain
evaluation settings tend to lessen.

Train Test computer law literature newml newspaper student

26.64% 8.25% 13.85% 5.24% 10.66% 16.69%
computer 41.54% 23.91% 28.63% 20.42% 26.49% 31.89%

29.26% 17.12% 22.88% 13.77% 19.62% 24.64%

5.97% 47.93% 5.49% 1.31% 4.50% 6.13%
law 18.55% 63.28% 14.35% 7.87% 14.69% 15.59%

13.37% 42.48% 11.96% 5.95% 12.23% 12.11%

5.33% 3.53% 48.34% 0.61% 9.10% 31.23%
literature 17.56% 14.11% 60.51% 5.40% 22.70% 45.29%

12.93% 9.75% 48.87% 3.53% 17.58% 35.07%

6.36% 5.29% 5.17% 48.41% 7.58% 6.79%
newml 19.39% 17.84% 19.63% 59.51% 20.76% 17.73%

13.32% 13.74% 16.14% 44.13% 14.88% 14.04%

10.71% 8.82% 21.44% 12.15% 19.95% 23.16%
newspaper 27.97% 23.55% 39.52% 25.67% 36.35% 36.92%

19.68% 17.43% 32.89% 17.35% 27.01% 27.84%

6.22% 2.75% 29.03% 1.01% 9.67% 50.89%
student 17.07% 14.06% 44.82% 7.56% 24.08% 62.46%

12.33% 9.60% 36.99% 4.74% 18.63% 48.76%

Table 6: Per-sentence cross-evaluation accuracies across the subcorpora of Szeged
Treebank using the universal morphology tag set.
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5 Conclusion

In this paper, we described our CRF-based POS-tagging model relying on the
sparse coding of distributed word representations. We evaluated our proposed
method on the subsections of the Szeged Treebank and found that the sparse
coding derived features help to lessen the domain differences in cross-genre eval-
uation settings. We also found that relying on sparse coding features alone, it
is possible to obtain better tagging accuracies than using word identity features
and that combining the two sources of information can yield the best accuracies.
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