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Abstract—Smart portable devices form the largest personal
computing platform so far in human history, yet the adoption

of P2P techniques has been very slow. One reason is the lack

of a detailed understanding of the dynamic patterns of network

connectivity and battery usage. For example, we know that when

a smartphone is on a charger connected to a WiFi network behind

a friendly NAT device, it can act as an unrestricted P2P node.

However, we do not know how to model these “good” intervals
and so we do not know what P2P applications are possible at

all if we restrict participation to only such intervals. This raises

a problem similar to modeling churn in classical P2P research.

We are not aware of any suitable and available measurement

data sets or models. To address this problem, we developed a

publicly available smart phone app that provides the user with

information about the current network connection such as NAT
type, public IP, and so on. The app also collects data about

network connectivity and battery status in the background. The

app has been downloaded by several hundred users from all over

the world. Based on this data we identify and model the sessions

during which a phone can participate in a P2P protocol. We also

demonstrate through the simulation of gossip protocols that it
is feasible to develop smartphone-friendly P2P applications. The

raw data is also available for research purposes in an anonymized

form upon request.
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I. INTRODUCTION

Smart portable devices represent a seemingly ideal plat-
form for P2P protocols for a wide range of applications, yet
the adoption of P2P technology has been very slow. The
most important reason is the ubiquitous availability of cloud
technology that is also very cheap or even free for small
scale deployments. At the same time, while smart devices
are capable and well connected computers, energy is a scarce
resource. As a result of these two factors, current trends point
into the direction of offloading not only storage, but also
computation and various functions [1] (more recently even P2P
communication [2]) to the cloud in order to save energy.

However, mobile platforms are still well worth considering
for P2P applications. At a large scale, cloud services do
become expensive, which prevents experimental or non-profit
applications from growing. Besides, relying on central services
raises privacy and security issues. At the same time, energy is
not a real issue when the device is connected to a charger. If
an unlimited network connection (e.g., WiFi) is also available,
the device can act as a fully capable P2P node equivalent to a
desktop computer. Indeed, some attempts have been made to
incorporate mobile nodes into P2P networks as fully functional
nodes [3].

One of the most important open problems, however, is
to understand the patterns of availability, that is, to build
models of churn which reflect the intervals when a given device
could potentially participate in a P2P protocol. Understanding
these patters could answer the question of what applications
are feasible without cloud support, and what applications are
hopeless. It would also make it possible to design specific
algorithms to maximize the utility of the available time of the
devices.

For desktop systems thorough churn studies are avail-
able [4] but, as we will show, these are not applicable for
smart devices. There are numerous data collection efforts
related to energy usage [3], [5] or data traffic [6] but these
are not sufficient to enable P2P research. There are generic
data collecting platforms, the closest to our work is Device
Analyzer [7]. However, it does not detect NAT type, which is a
crucial part of P2P communication models; it only logs locally
available data. Besides, the incentive model builds on the desire
of users to contribute to scientific projects. As opposed to this,
we wish to offer useful functionality as the main incentive for
people to download and use our client [5].

Our contributions are twofold. First, we developed and
deployed an Android app that collects data covering all aspects
that are relevant to the design of P2P protocols over networks
of smartphones, including time series of network and battery
status complete with information on NAT type, network type,
and network provider. We make this data available upon
request in an anonymized form. This allows the research
community to design and validate, for example, realistic sim-
ulation models. Second, we motivate and analyze a time-
inhomogeneous Markovian model of churn that predicts the
length of the next session based on the length of the previous
session and the time of day. We validate our model comparing
it to the trace we collected.

II. COLLECTING THE DATA

We developed an Android app1 that informs the user about
the current network environment of the phone: private and
public IP, NAT (network address translation) type, and other
details.2

We did not advertise our app actively. Most of the users
in our survey installed our app voluntarily because it provided
utility for them. About 30 users were local students recruited

1What is My IP & NAT – STUNner, http://futurict.szte.hu/mobilecloud/en/
what-is-my-ip-nat-stunner/

2The type of the NAT is detected with the help of the STUN protocol using
a public STUN server. We used the the implementation http://jstun.javawi.de.
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Fig. 1. Locations of the contributions to our data set. The coloring indicates
the number of different network providers we collected NAT data about.

for the survey. They installed the app but they received no
further instructions.

The data is collected by a background service that can
be disabled by the user at any time. This background service
listens to various events broadcast by Android that are related
to the network interface and the status of the battery. In par-
ticular, it listens to TELEPHONYMANAGER, WIFIMANAGER, and
BATTERYMANAGER. When such an event arrives, or when the
user explicitly runs the app, it collects the status of the network
and the battery and logs this information. The app also collects
information periodically every 30 minutes. The network prop-
erties we collect include network type (WiFi/cellular), carrier,
signal strength, bandwidth, public and private IP, NAT type,
etc. About the battery we store the temperature, voltage, load
percentage, health, charging status (from AC/USB/WiFi), etc.

The data is timestamped using the UTC real-time clock of
the phone, along with time zone information so that the local
time can be calculated. The data is periodically uploaded to
our server in an anonymized form. Further details can be found
in the technical documentation of our app. The raw data trace
is publicly available.3

The devices are identified by a 128-bit random number that
is generated during the installation of the application. So far
there have been 622 installations to different mobile phones.
We collected data in 91 countries about 1425 different net-
works.4 The geographic distribution is illustrated in Figure 1.

III. PATTERNS OF AVAILABILITY

We restrict our data set to those continuous measurements
that cover at least one day without interruptions. This is to
reduce the bias introduced by short measurement intervals due
the diurnal pattern in the data.

A. When is a Phone Available?

We model each phone as a series of alternating available
and unavailable sessions. Intuitively, the available sessions are

3STUNner-1 trace at http://futurict.szte.hu/mobilecloud/en/
what-is-my-ip-nat-stunner/trace/

4Based on the AS number and the city determined by the public IP address
using the service provided by Telize: http://www.telize.com/geoip/
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Fig. 2. Diurnal pattern of availability. The plot shows the proportion
(empirical probability) of different types of phones, as well as the prediction
of our churn model, as a function of the hour.

those during which the phone can participate in a P2P protocol.

As opposed to desktop systems, in the case of smartphones
the battery state is more important for determining availability
than network connectivity. P2P applications crucially rely on
bi-directional communication that costs energy, a precious
resource on mobile devices. As shown in Figure 2, phones
have network connectivity around 75% of the time. Recall
that this is a statistic over traces that are at least a day
long, which indicates excellent connectivity in general. This
is complicated somewhat by taking NAT types into account,
as described in Section V. Still, the major problem is energy,
not communication.

Based on these observations, we say that the peer is
available if it has network connectivity and if it is on a charger.
In this work we do not differentiate between network types
(WiFi or 3G) and charging types (USB or AC), although
this finer grain analysis is also possible based on our data.
Figure 2 illustrates that being on a charger is more decisive.
It is interesting to observe that being on a charger and on
a network are not independent properties. As seen in the
figure, the observed probability of the co-occurrence of these
two properties is higher than predicted by an independence
assumption. In other words, being on a charger increases the
probability of the phone being connected to the Internet.

B. Modeling Availability

We model a user j as a series of alternating available and
unavailable sessions denoted as

. . . , ai−1,j , ui,j , ai+1,j , ui+2,j, . . . (1)

where ai,j and ui,j denote the length of the ith available or
unavailable session of user j, respectively. Let ti,j denote the
starting time of the ith session of user j. Note that ti+1,j =
ti,j + xi,j (where x = a or x = u, depending on i).

We want to stochastically model this series based on our
measurement data so that we could generate traces for the
purposes of simulation. More precisely, for a given i and j, we
wish to learn the distribution of ai,j (or ui,j , respectively). In
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Fig. 3. Conditional distributions of the logarithm of available and unavailable session lengths with the hour of day and previous session length as conditions.
In the heatmaps warmer (lighter) colors indicate higher values. The original session lengths are measured in minutes.

the general case, this probability distribution can be formulated
as the conditional distribution

P (ai,j |ti,j , ui−1,j , ti−1,j , ai−2,j , ti−2,j , . . .). (2)

A similar formula for ui,j can be given.

Clearly, this expression has too many parameters to ap-
proximate so we introduce a time-inhomogeneous Markovian
model that considers only the length of the previous session
and the starting time of the session:

P (ai,j |ti,j , ui−1,j), and P (ui,j |ti,j , ai−1,j). (3)

In principle all users j will have their own specific versions
of these two distributions. However, since we have been
collecting data for only a month at the time of writing, we
do not have sufficient data for most of the users. For this
reason, in this work we assume that all the users have the
same distributions. In other words, we create a model of an
average user. Note that the data will make it possible in the
future to identify user types and thus to create more specific
models involving mixtures of users.

To motivate why we need to keep the previous ses-
sion length and the starting time as conditions, Fig-
ure 3 illustrates the distributions P (ln ai,j |ti,j), P (lnui,j |ti,j),
P (ln ai,j |ui−1,j), and P (lnui,j |ai−1,j), respectively. To be
more precise, instead of absolute time we plot the dependence
on the hour within a day as the condition, since the dependence
on time is mainly due to the diurnal pattern of phone usage
behavior. Note also that we work with the logarithm of
the session lengths. This is because we observed that the
interesting patterns of the distribution are more apparent on the
log scale. On the linear scale the distribution appears to be a
simple heavy tailed distribution without any apparent structure.
For this reason we model the distribution of the logarithm of
the lengths and then take the exponential to generate actual
session lengths during simulation.

The distributions clearly show complex patterns. For ex-
ample, it is clear that after 8pm many long available sessions
start that last approximately until the morning. Similarly, in
the morning at around 6-7am many long unavailable sessions
start. This has to do with the fact that many phones are left
on a charger during the night. Figure 2 also supports this
interpretation. Also, most of the sessions are rather short, only

a few minutes long. After inspecting the data in more detail,
we hypothesize that this behavior is mostly the result of a
weak unreliable WiFi or mobile network signal that causes
quickly alternating short sessions, as implied by the rightmost
two plots in Figure 3.

In our model, instead of introducing a parametric approx-
imation of (3), we kept the original data (session lengths
classified by starting time and previous session length) and
resampled these classes when generating the next session
length. In order to have enough data in each class, we reduced
the resolution of the time and session length parameters
that condition the distributions. As of time, we differentiate
between 8 different intervals dividing the 24 hours into 3 hour
intervals starting at midnight. As of previous session length, we
define three different intervals over the logarithm of the lengths
heuristically based on the observed distributions in Figure 3.
These three intervals are [0 : 2), [2, 5) and [5, 9]. These two
low resolution variables define 8 · 3 = 24 classes for both
available and unavailable sessions.

Figure 2 shows the observed proportion of available phones
when using the model. We modeled a network of 1000 nodes
for 1000 days and calculated the statistics based on this. Note
that the model does not control the proportion of available
nodes directly; it is an emergent property that is suitable for
validating the model. We can see that our predictions are
slightly higher than the actual observed proportion. This is due
to the fact that currently we are not always able to account for
intervals when the phone is switched off and therefore the
lengths of unavailable sessions are slightly underestimated.
By taking into account only long continuous measurement
intervals we minimize this effect, but in next versions of the
client this aspect will be improved.

IV. AN EXAMPLE APPLICATION

Here we illustrate the application of our churn model5 via
the simulation of a simple push-pull gossip broadcast protocol.
Our motivation is to shed light on the importance of a realistic
churn model in understanding the behavior of fully distributed
protocols. As we will see, in our model gossip behaves in a
radically different way than in simpler churn models.

5http://rgai.inf.u-szeged.hu/download/p2p14/src.zip
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Fig. 4. Push-pull gossip broadcast under different churn models.

The protocol we simulate is a classical push-pull gossip
broadcast protocol over a static overlay network. That is, each
node has a fixed set of neighbors throughout the simulation.
Each node i contacts one random available neighbor j (if there
is one available) in each round and if i has the update, it sends
it to j, and if j has the update, it sends it to i. The round length
is one minute. Initially, one random node has the update. We
make sure this initial node is available (online) at the start
of the broadcast. If not otherwise stated, the plots show the
average of 1000 runs and are based on a random 20-out overlay
topology (each node has 20 random out-neighbors).

In the first set of experiments, we compare three churn
models: no churn, log-normal churn (a classical model gen-
erally used in P2P simulations [4]), and our model. The
parameters of log-normal churn were set so that the average
and the variance of the available session lengths is the same
as in our model, and we also made sure that the average
proportion of available nodes (that is kept constant) matches
the daily average of our model as well. The log-normal model
works by drawing the available session lengths from the
log-normal distribution, and in addition if the proportion of
available nodes drops below the fixed threshold, unavailable
nodes are made available at random.

Figure 4 shows the results for two different network sizes.
It is striking how different the dynamics are from the more
homogeneous log-normal model. The reason will be clearer
considering our next set of experiments, where we started
the broadcast at specific hours. Figure 5 shows the results.
It is clear that the broadcast reaches the nodes that are
available at the start of the broadcast in a few rounds (see
also Figure 2). Then progress slows down since new nodes
join slowly. However, clearly, spreading speed also depends
on the distribution of session lengths in the respective time
intervals during spreading (see Figure 3).

We also include a validation experiment, during which we
simulate churn based on the exact trace we collected. That is,
we select those users for which we have at least a 3-day long
continuous measurement interval. We found 140 such users.
In our simulation we simulated the exact availability of these
users as recorded in our data. In Figure 6 we compare this
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Fig. 6. Validation experiments. Push-pull gossip broadcast under different
churn models including a trace-based simulation (N=140 for all churn models).

trace-based simulation to the churn models we examined in
Figure 4. Here we used a 10-out random topology, and the
plot shows the average of 3 days where spreading is started at
midnight. The trace-based simulation closely follows our time-
inhomogeneous Markovian model, which supports the validity
of the approach.

V. NAT TYPE DISTRIBUTION

Since one of the unique aspects of the data we collected
is that it covers NAT type as well, we present briefly some
interesting statistics about NATs here. Although in many cases
NAT devices can be dealt with via low level “hole punching”
solutions [8], they can also represent design constraints at
higher levels due to the potentially high cost of (let alone the
complete lack of) such solutions [9].

The results of our measurements show similar trends to that
of available measurements [10] in the predominantly desktop
P2P ecosystem as shown in Figure 7. The chart is based
only on successfully identified “classical” NAT types (in order
to allow comparison with earlier desktop data), 10% of the
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identification attempts were unsuccessful. We used only those
continuously measured time series that cover at least one day
for a phone without interruptions to restrict bias due to diurnal
patterns in data. The most significant difference is the very
low percentage of open access peers and a higher percentage
of the symmetric cone NAT type. That is, smartphone users
are somewhat more restricted than desktop users.

In P2P applications we are interested in the probability
of a successful connection establishment. In general we find
that if we take a random pair of nodes that have NAT types
from the distribution we observed, the probability that the pair
can communicate without a relay (but possibly needing hole
punching techniques) is at least about 60% using standard
techniques [11]. However, this figure largely depends on the
methods and utilities that are applied for hole punching,
and sophisticated state-of-the-art technology can improve this
significantly [8].

VI. CONCLUSIONS

In this paper we argued that it is important to understand
availability patterns of smartphones in order to assess the
feasibility of P2P techniques. We considered a smartphone
available when it is on a charger and connected to a network
at the same time.

In order to be able to model the availability patterns of
devices, we implemented an Android app to collect data.
We proposed a time-inhomogeneous Markovian model based
on the collected data in which the conditional probability
distributions of session lengths are captured by a set of the
actual observations in the data that we resample when creating
synthetic traces of users to model churn.

We validated this model in multiple ways (see Figures 2
and 6). We found that the model captures observed availability
as well as the behavior of push-pull gossip broadcast. The
model can be enhanced further in the future, as more data
becomes available, by explicitly modeling different user types
as well as incorporating NAT types that are also captured by
our data. This would open up the possibility for very large
scale realistic simulations.

While for many P2P applications (especially for those that
execute distributed data processing in the background) this
model of availability is sufficient, for others (especially for
highly interactive ones) the requirement of being on a charger
is too restrictive. Users typically use their devices when those
are not on chargers. Indeed, we have seen that availability
peaks in the middle of the night, when users are probably
asleep and leave their devices on the charger for the night.
However, this is not our main point. Since our data is available
upon request, it becomes possible for the community to explore
many different definitions of availability, as well as to explore
applications that can tolerate or even exploit these availability
patterns.
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