
Dimension Reduction Methods for Collaborative
Mobile Gossip Learning

Árpád Berta
University of Szeged, Hungary
Email: berta@inf.u-szeged.hu

István Hegedűs and Márk Jelasity
University of Szeged, MTA-SZTE Research Group on AI, Szeged, Hungary

Email: {ihegedus,jelasity}@inf.u-szeged.hu

Abstract—Decentralized learning algorithms are very sensitive
to the size of the raw data records due to the resulting large
communication cost. This can, in the worst case, even make
decentralized learning infeasible. Dimension reduction is a key
technique to compress data and to obtain small models. In this
paper, we propose a number of robust and efficient decentralized
approaches to dimension reduction in the system model where
each network node holds only one data record. These algorithms
build on searching for good random projections. We present a
thorough experimental comparison of the proposed algorithms
and compare them with a variant of distributed singular value
decomposition (SVD), a state-of-the-art algorithm for dimension
reduction. We base our experiments on a trace of real mobile
phone usage. We conclude that our method based on selecting
good random projections is preferable and provides good quality
results when the output is required on a very short timescale,
within tens of minutes. We also present a hybrid method that
combines the advantages of random projections and SVD. We
demonstrate that the hybrid method offers good performance
over all timescales.

Keywords—distributed data mining, gossip, dimension reduction

I. INTRODUCTION

Our research targets networked systems where each net-
worked device stores only a small amount of data (typically
collected locally), while there are possibly millions of partici-
pating devices in the network. This model covers a wide range
of applications including smart metering [1], collaborative
mobile platforms [2] and Internet of Things platforms [3].

To implement machine learning algorithms in such a
system model, we opted for gossip learning algorithms [4].
There are, of course, many ways to perform data mining in
a decentralized environment [5]. Gossip learning is attractive
because of its natural emphasis on privacy and full decen-
tralization, while being efficient enough for most data mining
tasks. Privacy is achieved in part by assuming that devices
do not share raw data either with each other or with any
external party. In addition, theoretical notions of privacy such
as differential privacy can be incorporated in this framework as
well [4], [6], [7]. In-place data processing could also provide
better scalability for certain tasks in the limit of extremely
large systems compared to cloud-based solutions by exploiting

In: Proc. PDP 2016, pp 393–397, http://dx.doi.org/10.1109/PDP.2016.20. c©
2016 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

local resources and networks, as proposed e.g. by Cisco in its
ongoing fog computing initiative [8].

However, one key concern in the above scenario is com-
munication complexity that is often proportional to the size
of the raw data. Raw data might be very high dimensional,
such as images from a surveillance camera, or text documents
containing private communication. It is essential to compress
this data locally using a shared method. Algorithms that
compress raw data wile preserving its information content
are called dimension reduction methods [9]. Our goal in this
study is to propose practical distributed dimension reduction
algorithms for gossip learning that are efficient yet perform
well in learning tasks.

Most known methods for distributed dimension reduction
are unsuitable for gossip learning. Often it is assumed that
there is an aggregator node that processes and aggregates out-
put from all the networked nodes [10]. It is also often assumed
that all the nodes have sufficient data to produce meaningful
partial results to be aggregated. These assumptions violate
both our system model (in which there is only very little data
at each node) and our objective of decentralization. Methods
in this class include several feature selection methods that
have been implemented in the MapReduce framework [11].
Landmark-based methods also have distributed variants [12].
Here, extremal points are selected from the raw data that
are used to encode a lower dimensional distance-preserving
representation. Many methods seek to find an optimal linear
mapping based on spectral properties of the data such as
principal component analysis (PCA) [13].

Known algorithms that are suitable for gossip learning
include singular value decomposition (SVD), which is a pow-
erful method that has a distributed implementation compatible
with our system model [14].

Our contributions are threefold: (1) we propose a method
for dimension reduction based on selecting good random
projections using an algorithm compatible with the gossip
learning framework, (2) we propose a hybrid algorithm based
on SVD and random projections that combines the advantages
of both pure algorithms, and (3) we perform an extensive
empirical analysis of these algorithms using real smartphone
traces over several learning tasks.

II. BACKGROUND

A. System Model and Data Distribution

We consider a network of a potentially large number
of computational units (personal computers, smart sensors,

wearable devices, phones, tablets, etc.), called nodes. These
nodes can communicate with their neighbors via messaging.
The neighbors are provided by the peer sampling service [15],
[16]. Nodes can leave the network and join again without any
prior notice. The only assumption is that the node state is
unchanged when it is offline. In our experiments we will base
our simulated model on a real smartphone trace. Every node
is assumed to have only one complete data record, which is
also called a training example.

B. Dimension Reduction

In machine learning we are given a set of training exam-
ples from an unknown distribution. Here we assume that an
example is of the form (x, y), where x is a d dimensional real
feature vector (x ∈ R

d) and y is the class of the example. In the
classification task, we look for a function f(x;w) : Rd → C
that categorizes any feature vector x into a finite number of
classes, where C is the set of classes and w is a parameter
vector that we wish to learn. The function f(x;w) is often
called the model of the data. Parameter w is typically found
through some local gradient method that optimizes a loss (or
error) function, which characterizes the accuracy of the model
over a set of classified training examples.

If the number of features d is high, we might experience
the curse of dimensionality, which means that classification
algorithms will perform poorly [17]. Formally, the dimension
reduction methods are functions that transform the data into
a lower dimensional space R

k, where k ≪ d. Here, we focus
on linear projection methods where we wish to find a matrix
P ∈ R

k×d with k rows and d columns. Thus the projection of
a training example x is a simple vector-matrix multiplication
Px. Here we consider two feature extraction methods: Random
Projection [18] and Principal Component Analysis (PCA) [13].

The simpler method is random projection, where the data
is transformed by a random matrix to a lower dimension.
The Johnson-Lindenstrauss lemma gives a lower and upper
bound on the error of the projection, and the random pro-
jection technique exploits this result [18], [19]. PCA is a
method to find those k directions in the d dimensional space
that span a subspace where the covariance of the data is
maximized. As a side effect, PCA optimally preserves the
distances between data points. Now, let us define matrix
X = [x1, . . . , xN] ∈ R

d×N that has the training examples in
its columns. The projection matrix here is given by the matrix
of the eigenvectors that correspond to the first k eigenvalues
of the covariance matrix of the training examples XXT .

In this paper we will calculate the singular value decom-
position (SVD) of XT using the algorithm in [14] to get the
projection matrix of PCA. We first assume that the database
is such that all the dimensions (features) have zero mean.
When using PCA, one first computes the covariance matrix
of the data XXT ∈ R

d×d, which is a symmetric, posi-
tive semidefinite matrix. Diagonalizing the covariance matrix
XXT = PDPT gives the matrix P . The projection matrix
of PCA is given by keeping the first k rows of PT . Matrix
P can be calculated using the SVD of XT , where XT =
UΣV T . By substituting this into the covariance matrix we get
XXT = (UΣV T)T (UΣV T). Since U is orthonormalized, we
have XXT = V Σ2V T . Letting D = Σ2 we have P = V .

Algorithm 1 Gossip Learning Framework
1: (x, y)← local training example
2: currentModel ← initModel()
3: loop

4: wait(∆)
5: p← selectPeer()
6: send currentModel to p

7: end loop

8: procedure ONRECEIVEMODEL(m)
9: m.updateModel(x, y)

10: currentModel ← m
11: end procedure

C. Gossip Learning

To learn models over a large fully distributed database we
are motivated by Gossip Learning [4]. This framework works
as follows. Every node, when joining the network, initializes
the parameters of a model and sets it as its local model.
Recall that by model we mean the function f(x;w) with
parameter w, which categorizes a given feature vector x. All
the participating nodes send their local model periodically to
a randomly selected node in the network. The address of the
destination node is provided by a peer sampling service [15],
[16]. When a node receives a model it updates it by its local
data. This learning step is typically implemented by applying a
stochastic gradient step on the model using the local example.
The node then stores the updated model as its new local model.
In effect, the models perform random walks in the network
and are updated when they visit a node. The skeleton of the
framework can be seen in Algorithm 1.

III. ALGORITHMS

Here, we present two algorithms for decentralized dimen-
sion reduction. The first one is based on the idea of generating
random projections, evaluating them through quickly training
a model using only a few updates, and selecting the projection
that results in the best preliminary model. The second one is a
hybrid algorithm that combines SVD and random projections.
The hybrid algorithm inherits the quick convergence of the
random projection method and the high quality of SVD.

A. Random Projection Selection

Random projections are very cheap to generate, and a
random matrix can be communicated through sending only the
corresponding random seed. Due to this, it is cheap to evaluate
a lot of different random matrices searching for the best one for
the problem at hand. Given a fixed machine learning problem
(data and a learning algorithm), our idea is to evaluate a
random projection based on the accuracy of the outcome of the
learning algorithm, provided that the given random projection
is used as the dimension reduction algorithm. To evaluate a
random projection, a naive approach would be to train a model
based on the given random projection and then evaluate this
model on a test set. Instead of this, we train the model using
gossip learning and before each update step we evaluate it on
the local training example (using it as a test example). We
then use the running average of these evaluations as a rough
approximation of the true performance of the model.

The skeleton of our algorithm to be run on each node is
shown in Algorithm 2. The algorithm resembles the periodic
gossip learning algorithm (Algorithm 1) but there is an im-
portant difference. Instead of being periodic, the algorithm
implements the random walks in a “hot potato” style. We now
describe the algorithm in more detail.

Algorithm 2 Random projection selection at node i
1: procedure INITNODE

2: (x, y)← local training example
3: initModel(currentModel)
4: initModel(bestModel)
5: if selectedAtRandom(π) then
6: p← selectPeer()
7: send currentModel and bestModel to p

8: end if
9: end procedure

10: procedure ONRECEIVEMODELS(mc, mb)
11: currentModel ← mc

12: update(currentModel)
13: bestModel ← getBetter(bestModel,mb)
14: update(bestModel)
15: if currentModel.age ≥ minAge then

16: bestModel ← getBetter(bestModel,currentModel)
17: initModel(currentModel)
18: end if

19: p← selectPeer()
20: send currentModel and bestModel to p

21: end procedure

22: procedure UPDATE(m)
23: R← createSparseRandomMatrix(k, d,m.seed)
24: xred ← Rx

25: ŷ ← predict(m.model, xred)
26: m.error ← (1− λ)m.error + λ|y − ŷ|
27: m.model← updateSGD(m.model, xred, y)
28: m.age← m.age + 1
29: end procedure

30: procedure INITMODEL(m)
31: m.age← 0
32: m.error ← 0
33: m.seed← getNextRandomSeed()
34: m.model← initSGD()
35: end procedure

Each node is initialized when joining the network. This
consists of setting up the local variables and potentially starting
a random walk of a new model to initiate gossip learning.
The local data includes the training example (x, y) and models
under training. Since we would like to find the best possible
projection (that is, the one that results in the best model) and
we also want to keep exploring new projections, every node
needs to keep track of two different models: BESTMODEL (the
best model known by the node) and CURRENTMODEL (the
model currently under evaluation, as in gossip learning).

Each model stores the random seed that is used to generate
the random projection that in turn is used to compress the local
data x. In addition, the model stores the machine learning
model itself, which is being trained via gossip learning. We
also keep track of the number of updates (age) and the
accumulating error that is used to assess the performance of
the model, and thus the performance of the random projection.

Every node initially picks a random seed for a new projec-
tion matrix.Based on the seed, the projection matrix R ∈ R

k×d

is always generated in line 23 by randomly setting rij = 1, 0,
or −1 with a probability of 1/6, 2/3, and 1/6, respectively.
With this choice, the matrices are sparse but still satisfy the
Johnson-Lindenstrauss lemma [18], [19]. Obviously, the same
pseudo random generator should be used at each node so that
the same projection matrix is generated for the same seed.

Finally, with probability π the node initiates a random
walk. The probability defines the number of overall random
walks in the network, which is πN in expectation. This defines,

among other properties, the overall bandwidth utilization.

In method UPDATE, first dimension reduction is performed
on the local example that creates vector xred of length k.
Next, before performing the model update step, we update the
running average of the prediction error using the local example.
This is used to approximate the prediction performance of the
model (and thus the random projection). The running average
has a parameter λ that determines the balance of old and
new information. If λ is too large then only the most recent
examples will count and the measure will contain too much
noise. If it is too low then the old examples will count too
much, and the improvement in time is not reflected sufficiently.

We then perform the model update according to gossip
learning; that is, we apply a stochastic gradient descent (SGD)
update step using the local data. The implementation of the
SGD update depends on the learning algorithm of choice; in
our experimental evaluation, we will use logistic regression.

Models arrive in pairs. Model mb is the sending node’s
approximation of the best model. This model participates in
a gossip-based minimum search; that is, we compare it with
the local approximation of the best model and keep the better
one of the two. Method GETBETTER selects the model with
the smaller error, or with the higher age in case at least one
of the models is younger than MINAGE steps. Model mc

participates only in the gossip learning algorithm. When it
reaches the age (number of updates) of MINAGE (a parameter),
it becomes eligible for competing for the title of best model
in the network. Since CURRENTMODEL is now participating
in the global minimum search, we start a new model to test.
This is our exploration strategy: new random projections are
tested continuously while the mature ones contribute to the
global minimum search. The role of parameter MINAGE is
to define the number of updates needed to get a reliable
error approximation. Note that our goal is to have an error
approximation that is suitable for ordering different candidates
as opposed to approximating the exact error, which allows for
a relatively small MINAGE value.

B. Communication complexity

As of the size of a single message, the nodes send two
models in a message that contains only the seed of the
random projection matrix, and the model parameters, which—
as we will see—have the size of O(k) in the case of linear
learning algorithms. To be more precise, assuming an 8 byte
representation of both the floating point and integer parameters,
we have a message size of 2 · (8 · k + 3 · 8). This leads to a
very small, by today’s standards practically negligible, message
size since k is typically small. In contrast to this, in the SVD
protocol the whole projection matrix of size O(k · d) needs to
be sent in each message [14]. This can be very large since d
is potentially in the order of millions.

In both protocols the overall communication complexity
can be controlled by the number of random walks πN in the
network that determines the overall bandwidth consumption.
Thus, given any bandwidth quota, these protocols can be
executed within that quota via setting the number of random
walks. Note that, due to the extremely different message sizes,
this means that with the same bandwidth quota, the two
algorithms will have a very different iteration speed.

C. A hybrid algorithm

As mentioned before, in our evaluation we will consider
the distributed SVD implementation described in [14] that also
outputs a projection matrix P ∈ R

k×d. We cannot describe the
SVD algorithm in detail here, but a few details are important
to understand our hybrid approach.

The motivation is that—although the SVD algorithm is
also based on a variant of gossip learning—it operates with
messages of size O(k · d) that can be very large for a large d.
Thus, with a fixed bandwidth, the SVD algorithm converges
much slower than random projection selection. At the same
time, SVD provides a very high quality projection that is
expected to outperform random projections. Our goal is to
combine the advantages of the two algorithms, that is, with
a fixed bandwidth we would like to get a good projection at
any point in time that eventually converges to the SVD output.

Now, let Rt be the best random projection at time t and
Pt be the projection calculated by the SVD algorithm at the
same time. Another detail of the SVD algorithm is that the
rows of the projection matrix converge in a sequential order,
and in the converged state the rows are pairwise orthogonal.
Our basic idea is that we run the two algorithms in parallel
and define a projection P̂t(Rt, Pt) that will use the converged
rows from Pt and fills in the rest of the rows from Rt.

Thus, all we need is a method to determine the row index
up to which Pt is considered to have converged. We first
introduce a measure of orthogonality oi for a given row pTi :

oi =
1

k − 1

∑

j 6=i

pTi · pTj
‖pTi ‖‖p

T
j ‖

,

which is the average cosine distance of pTi from the rest of
the rows. We include in P̂t the first i rows of Pt where i is
such that oi ≤ MINORT but oi+1 > MINORT (or i = k). Here,
MINORT is a threshold parameter that defines how aggressively
we include SVD vectors. A value close to zero is conservative,
while a smaller value is more aggressive.

Although we propose to run the two algorithms in parallel,
we do not assign the same bandwidth quota to each. Instead,
we allow the SVD algorithm to consume almost all the band-
width quota, and assign only 1% of it to random projection
selection.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

Here, our goal is to demonstrate that the proposed methods
can be applied over real-world datasets under realistic network
conditions. The key parameter in dimension reduction is k, that
is, the reduced dimensionality. Our motivation is to demon-
strate empirically how our distributed algorithms perform with
different values of k, so here k is our main free parameter.

We simulate node churn based on a real trace of smart-
phone user behavior. We also ensure that we use the phone
only when it is connected to a charger, so as to save the battery.
The trace we used was collected by our smartphone app called
STUNner, as described previously [20]. In a nutshell, the

TABLE I. THE KEY PROPERTIES OF THE DATA SETS

MNIST Farm ads HAR

Training set size 60 000 3 314 7 352

Test set size 10 000 829 2947

Number of features 784 54 877 561

Original number of classes 10 2 6

Positive examples 10% 53% 17%

TABLE II. PARAMETER SETTINGS

Alg. MNIST Farm ads HAR

RPSVD MINORT 0.5 0.5 0.5

RP λ 0.05 0.05 0.05

MINAGE 200 200 200

message size (Mbit, k = 1) 0.0003 0.0003 0.0003

message size (Mbit, k = 64) 0.0084 0.0084 0.0084

SVD α 10
−4

10
−2

10
−2

message size (Mbit, k = 1) 0.05 3.51 0.03

message size (Mbit, k = 64) 3.21 224.77 2.29

Log. Reg. α 10
−2

10
−2

10
−2

app monitors and collects information about charging status,
battery level, bandwidth, and NAT type.

We have traces of varying lengths taken from 1191 different
users. We divided these traces into 2-day segments (with a one-
day overlap), resulting in 40,658 segments altogether. With the
help of these segments, we were able to simulate a virtual 2-
day period by assigning a different segment to each simulated
node. When we needed more users than segments, we re-
sampled the segments to artificially inflate the number of users.

To ensure our algorithm is phone and user friendly, we
defined a user to be online (available) when the user has a
network connection and the phone is connected to a charger,
thus we never use battery power at all. In addition, we also
treated those users as offline who had a bandwidth of less than
1 Mbit/s, and we filtered out the online sessions that lasted less
than a minute as well.

In our experiments we used data sets taken from various
machine learning domains with different properties. Our first
data set, called MNIST [21], contains gray level images of size
28×28 of handwritten digits (from 0 to 9).

The remaining two data sets are part of the UCI machine
learning repository [22]. The second data set we chose was
the Farm ads data set. This is a text classification data set
that has a large number of features. These features include
those extracted by the well-known bag-of-words technique
from websites as well as higher level features. The task is
to decide whether the owner of a Web content approves an ad.

Finally, we used the Human Activity Recognition (HAR)
data set as well. Here the features were preprocessed by
the owner of the data. The goal is to discriminate different
activities based on the data of smart phone sensors (e.g.,
accelerometer and gyroscope).

We performed binary classification so we had to transform
the MNIST and HAR data sets to binary classification prob-
lems. To achieve this, we selected the classes “number 7” and
“walking” as positive classes from the MNIST and HAR data
sets, respectively, and the examples in the remaining classes
were treated as negative examples. The key properties of these
three data sets are summarized in Table I.

The algorithm parameters are summarized in Table II. From
now on, the name RPSVD will denote the hybrid algorithm

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 1 2 4 8 16 32 64

A
cc

u
ra

cy

k

Effect of k on Farm database

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 1 2 4 8 16 32 64

k

Effect of k on MNIST database

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1 2 4 8 16 32 64

k

Effect of k on UCI-HAR database

offline SVD
SVD

RPSVD
offline RP

RP
offline all features

Fig. 1. Accuracy after two days of simulated time as a function of k.

and RP will denote random projection selection. Logistic
regression is used inside RP as the gossip learning component.

The communication cost of each protocol was limited so
that a node consumes 1 Mbit/s on average. This was achieved
by limiting bandwidth in the simulation. In the case of RPSVD
we set π = 0.01 in the RP component and everywhere else
we set π = 1.

Recall that we use only those nodes that are on a charger,
and that we include only those nodes that have a larger band-
width than 1 Mbit/s. As a result, a node typically experiences
much less load when averaged over the simulation period
unless it is on a charger as well as online all the time. That
is, based on the real trace we use, this is a practical setting.

Apart from bandwidth, message latency also limits the
speed of the random walks. When the message size is very
small (as in the case of RP), this can be the main limiting
factor, so the RP algorithms will use much less bandwidth
than allowed. We simulated a 100 ms latency. This means that
in RP algorithms it takes as little as 20 seconds to evaluate a
random projection candidate (assuming MINAGE=200), as the
computation time is practically negligible.

The peer sampling service is assumed to be based on a
static network, in which every node has 50 random neighbors
from the whole population. This is a realistic setup on the
real Internet, since in the case of stable connections one
needs to perform NAT traversal only once, potentially with
the assistance of a server in the connection phase [16].

B. Discussion

Figure 1 illustrates the prediction accuracy of our three
distributed algorithms at the end of the simulated two days.
Accuracy is defined as the fraction of correctly classified
instances. To evaluate our distributed protocols, we chose a
uniform random online node from the network and calculated
its current dimension reduction offline. This was done by tak-
ing the dimension reduction matrix, transforming the training
set and then training using R (the OPTIM gradient solver),
and calculating the accuracy on the test set. We opted for this
methodology because it was not computationally feasible for
us to report statistics at every measurement point. However,
variance is illustrated by the smoothness of the curves. The
algorithms are compared to offline (centralized) variants. The
offline SVD was calculated using R (the SVD function) and the
offline RP is the best of 10,000 random projections, where the
evaluation during the selection process is identical to that of
the distributed version. We also include the accuracy based on
training a logistic regression model that uses all the features.

We may conclude that the distributed algorithms approx-
imate the offline variants very well at the end of the second
day. As we increase k, we can approximate the performance of
the full feature set, except in the highest dimensional data set.
It is also clear that SVD outperforms random projections for
larger k-s. Clearly, the hybrid method, by design, is identical
to the SVD algorithm in its converged state.

Figure 2 shows our results as a function of time. Now, we
plot the accuracy of the distributed methods for each minute,
following the same evaluation methodology as before.

It is clear that, for SVD, the most important parameter is d,
the original number of features. In the Farm Ads data set we
have the largest number of features and thus SVD converges
rather late (note the logarithmic scale of the plots). This is
because the message size (hence the number of iterations)
depends on d. However, RP converges almost instantly inde-
pendently of d. This is not surprising as the communication
complexity of RP is independent of d and the message size
is very small, allowing for a large number of iterations in a
very short time. However, the best performance of RP remains
below that of SVD, especially for larger values of k.

The hybrid approach SVDRP combines the advantages of
the two methods, and provides a good dimension reduction
transformation at all timescales, at the same cost as any of the
individual algorithms. The significance of this finding is that
SVDRP is a method that is more robust than either SVD or RP
alone and it can be applied with minimal knowledge about the
problem at hand without parameter tuning for a certain wall-
clock-time budget. The only exceptions are the smallest values
of k where RP is better on its own. However, in practice, one
rarely uses such extreme dimension reduction.

V. CONCLUSIONS

In this study we presented a decentralized algorithm for
selecting a good random projection to be used to reduce the
dimensionality of a machine learning problem. We also pro-
posed a hybrid approach which combines random projection
selection with a decentralized SVD solver from related work.
We evaluated these algorithms over a real smartphone trace
over three machine learning data sets. The simulations assumed
that we use only phones that are on a charger and that have a
bandwidth of at least 1 Mbit/s, thus we took into account the
energy problem in mobile computing.

We conclude that the proposed random projection selection
algorithm is very fast and efficient, but the quality of the
dimension reduction is somewhat lower than that of SVD.
However, the SVD algorithm converges in a time proportional
to the original dimensionality of the problem, which can be
quite slow. Our hybrid approach combines the advantages of
the two approaches and (assuming the same communication
cost) it can provide a good quality dimension reduction,
independently of the time available for convergence.

REFERENCES

[1] A. Rial and G. Danezis, “Privacy-preserving smart metering,” in Proc.

10th annual ACM workshop on Privacy in the electronic society

(WPES’11). ACM, 2011, pp. 49–60.

[2] A. S. Pentland, “Society’s nervous system: Building effective govern-
ment, energy, and public health systems,” Computer, vol. 45, no. 1, pp.
31–38, 2012.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

A
cc

ur
ac

y
(F

ar
m

)
Dimensions (k) 8

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

Dimensions (k) 16

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

Dimensions (k) 32

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

Dimensions (k) 64

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

A
cc

ur
ac

y
(M

N
IS

T)

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0.04 0.2 1 5 25

A
cc

ur
ac

y
(U

C
I-

H
A

R
)

time (hours)

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0.04 0.2 1 5 25

time (hours)

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0.04 0.2 1 5 25

time (hours)

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0.04 0.2 1 5 25

time (hours)

offline SVD
SVD

RPSVD
offline RP

RP

Fig. 2. Experimental results showing prediction accuracy as it evolves in time (time is on a logarithmic scale).

[3] C.-W. Tsai, C.-F. Lai, M.-C. Chiang, and L. Yang, “Data mining for
internet of things: A survey,” Communications Surveys Tutorials, IEEE,
vol. 16, no. 1, pp. 77–97, 2014.

[4] R. Ormándi, I. Hegedűs, and M. Jelasity, “Gossip learning with linear
models on fully distributed data,” Concurrency and Computation:

Practice and Experience, vol. 25, no. 4, pp. 556–571, 2013.

[5] A. Sayed, “Adaptation, learning, and optimization over networks,”
Found. Trends Mach. Learn., vol. 7, no. 4-5, pp. 311–801, 2014.

[6] C. Dwork, “A firm foundation for private data analysis,” Commun. ACM,
vol. 54, no. 1, pp. 86–95, 2011.

[7] S. Song, K. Chaudhuri, and A. D. Sarwate, “Stochastic gradient descent
with differentially private updates,” in IEEE Global Conf. on Signal and

Information Processing (GlobalSIP), 2013, pp. 245–248.

[8] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proc. 1st MCC Workshop on Mobile

Cloud Computing, ser. MCC ’12. ACM, 2012, pp. 13–16.

[9] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” J. Mach. Learn. Res., vol. 3, pp. 1157–1182, 2003.

[10] P. Magdalinos, “Linear and non linear dimensionality reduction for
distributed knowledge discovery,” Ph.D. dissertation, Athens University
of Economics and Business, Greece, 2010.

[11] J. Kubica, S. Singh, and D. Sorokina, “Parallel large-scale feature selec-
tion,” in Scaling up Machine Learning: Parallel and Distr. Approaches,
R. Bekkerman, M. Bilenko, and J. Langford, Eds. CUP, 2011.

[12] P. Magdalinos, C. Doulkeridis, and M. Vazirgiannis, “Enhancing clus-
tering quality through landmark-based dimensionality reduction,” ACM

Trans. Knowl. Discov. Data, vol. 5, no. 2, pp. 11:1–11:44, 2011.

[13] I. T. Jolliffe, Principal Component Analysis, 2nd ed., ser. Springer Series
in Statistics. Springer-Verlag, 2002.

[14] I. Hegedűs, M. Jelasity, L. Kocsis, and A. A. Benczúr, “Fully distributed
robust singular value decomposition,” in Proc. 14th IEEE Intl. Conf. on

Peer-to-Peer Comp. (P2P 2014). IEEE, 2014.

[15] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van
Steen, “Gossip-based peer sampling,” ACM Transactions on Computer

Systems, vol. 25, no. 3, p. 8, 2007.

[16] R. Roverso, J. Dowling, and M. Jelasity, “Through the wormhole: Low
cost, fresh peer sampling for the internet,” in Proc. 13th IEEE Intl.

Conf. on Peer-to-Peer Comp. (P2P 2013). IEEE, 2013.

[17] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

[18] E. Bingham and H. Mannila, “Random projection in dimensionality
reduction: Applications to image and text data,” in Proc. 7th ACM

SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, ser.
KDD ’01. ACM, 2001, pp. 245–250.

[19] D. Achlioptas, “Database-friendly random projections: Johnson-
lindenstrauss with binary coins,” J. Comput. Syst. Sci., vol. 66, no. 4,
pp. 671–687, 2003.

[20] Á. Berta, V. Bilicki, and M. Jelasity, “Defining and understanding
smartphone churn over the internet: a measurement study,” in Proc. 14th

IEEE Intl. Conf. on Peer-to-Peer Comp. (P2P 2014). IEEE, 2014.

[21] Y. Lecun, C. Cortes, and B. Christopher, J.C., “The
MNIST database of handwritten digits.” [Online]. Available:
http://yann.lecun.com/exdb/mnist/

[22] K. Bache and M. Lichman, “UCI machine learning repository,” 2013.
[Online]. Available: http://archive.ics.uci.edu/ml

http://yann.lecun.com/exdb/mnist/
http://archive.ics.uci.edu/ml

	Introduction
	Background
	System Model and Data Distribution
	Dimension Reduction
	Gossip Learning

	Algorithms
	Random Projection Selection
	Communication complexity
	A hybrid algorithm

	Experimental Results
	Experimental Setup
	Discussion

	Conclusions
	References

