
Method Calls Frequency-Based Tie-Breaking
Strategy For Software Fault Localization
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Abstract—In Spectrum-Based Fault Localization (SBFL), a
suspiciousness score is assigned to each code element based on
test coverage and test outcomes. The scores are then used to
rank the code elements relative to each other in order to aid
the programmer during the debugging process when seeking
the source of a fault. However, probably none of the known
SBFL formulae are guaranteed to produce different scores for
all the program elements, hence ties emerge between the code
elements. Based on our experiments, ties in SBFL are prevalent:
in Defects4J, 54–56% of buggy methods are members of ties,
i.e., there is at least one other method with the same score in
these cases (but typically much more, on average 6), and this
inevitably reduces the effectiveness of any SBFL approach. In
this work, we present a technique to break ties in such cases
based on the so-called method calls frequencies. This counts the
number of different contexts of method calls (both as callees
and as callers) in failing test cases. The intuition is that if
a method appears in many different calling contexts during a
failing test case, it will be more suspicious and get a higher rank
position compared to other methods with the same scores. This
method can be applied to any underlying SBFL formula, and
can favourably break the occurring ranks in the ties in many
cases. The experimental results show that our novel tie-breaking
strategy achieved a significant reduction in both size and number
of critical ties in our benchmark. In 72-73% of the cases, the
ties were completely eliminated and the average reduction rate
was more than 80%.

Index Terms—Spectrum-Based Fault Localization, Rank Tie
Breaking, Call Frequency-Based Fault Localization

I. INTRODUCTION

During debugging, fault localization is one of the most
difficult and time-consuming tasks, particularly for large-scale
software systems. Therefore, there is a high demand for
automatic fault localization techniques that can help software
engineers effectively find the locations of faults with minimal
human intervention [1]. This has led to propose and im-
plement different types of such techniques. Spectrum Based
Fault Localization (SBFL) is considered amongst the most
prominent techniques in this respect due to its efficiency and
effectiveness [2]. In SBFL, the probability of each program
entity (e.g., statements, blocks, or methods) of being faulty
is calculated based on test cases, their results, and their
corresponding code coverage information.

Unfortunately, SBFL techniques are not yet widely adopted
in the industry [3]–[5] because they pose a number of issues
and their performance is affected by several influencing fac-

tors. One of these factors is the following. In SBFL, program
statements are ranked in order of their suspiciousness from
most suspicious to least. To decide whether a statement is
faulty or not, programmers examine each statement starting
from the top of the ranking. In order to help developers dis-
cover the faulty statement early in the examination process and
with minimal effort, the faulty statement should be put near
to the highest place in the ranking. However, ranking based
only on suspiciousness scores inevitably involves a problem
called rank ties [6]. When different code elements (such as
statements or methods) are tied this means that they have the
same suspiciousness scores, so they are indistinguishable from
each other in this respect. If the fauly element falls within a
tie (this is called a critical tie) then the overall performance
of the SBFL method will be reduced.

Probably none of the known SBFL formulae are guaranteed
to produce different scores for all the program elements, hence
ties inevitably emerge between the code elements. In fact, as
we shall see in this paper, ties in SBFL are prevalent regardless
of the underlying formula. In this paper, we propose a tie-
breaking strategy to improve the performance of SBFL by
utilizing contextual information extracted from method call
chains (our strategy is at method-level granularity, meaning
that the basic program element considered for fault localization
is a method). Method call chains are the call sequences of
methods in the call stack during their executions. Both call
chains and call stack traces can provide valuable context to the
fault being traced. For example, a method may fail if called
from one place and performs successfully when called from
another.

The proposed strategy is based on how often a method
has been called, directly or indirectly, during the execution of
failed test cases in different contexts. However, here we do not
count all occurrences of a method call but only those that occur
in unique call contexts. Thus, repeating sequences of method
calls due to, e.g., loops are not considered. The intuition is
that if a method is present in many different calling contexts
during a failing test case, it will be more suspicious and get
a higher rank position compared to other methods with the
same scores. The strategy can be applied to any underlying
SBFL formula, and, as we will see, it can favourably break
the occurring ranks in the ties in many cases.

We empirically evaluated the approach using 411 real faults



from the Defects4J dataset and five well-known spectra for-
mulae. The obtained results indicate that for all the selected
formulae, the call frequency chain based tie-breaking strategy
can improve the localization effectiveness in many ways. For
example, it completely eliminated 72–73% of the critical ties
over the full dataset. In other cases, it reduced their sizes
significantly. Ranks of buggy elements improved by two po-
sitions on average, the approach achieved positive movement
of bug ranks in most Top-3/Top-5/Top-10 rank categories, and
in particular, the number of cases where the faulty method
became the top ranked element increased by 23–30%.

The main contributions in the paper can be summarized as
follows:

1) Analysis of rank tie prevalence in the benchmark pro-
grams.

2) A new tie-breaking algorithm that successfully breaks
critical ties in many cases.

3) The analysis of the impact of tie-breaking on the overall
SBFL effectiveness.

In terms of the concrete research goals, we defined the
following Research Questions (RQs) for this paper:

RQ1 How prevalent are rank ties when applying a selection of
different SBFL formulae? In particular:
How common are rank ties in the Defects4J benchmark
and what are their sizes?
What would be the theoretically achievable maximum
improvement if all critical ties were broken?

RQ2 What level of tie-breaking can we achieve using the call-
frequency based strategy?

RQ3 What is the overall effect of the proposed tie-breaking on
SBFL effectiveness in terms of global rank improvement?

The remainder of the paper is organized as follows. Sec-
tion II presents an overview of the related work. Section III
describes the tie problem in software fault localization. Sec-
tion IV deals with RQ1, while Section V introduces our novel
tie-breaking approach and answers RQ2. Section VI presents
the description of our empirical evaluation of RQ3. Section VII
reports the potential threats to validity, finally we provide our
conclusions in Section VIII.

II. RELATED WORK

Software fault localization is a significant research topic in
software engineering. Despite having started in the late 1950s,
software fault localization research has gained more attention
in the last couple decades. This is reflected in the increase in
the number of techniques, tools, and publications. The main
reason for the increased attention is the dramatic increase in
software systems size due to the newly added functionalities
and features they provide. This also has led to an increase in
the complexity of these systems. As a result, more faults have
also been reported. Here, software fault localization is a good
approach to reduce the number of faults and to ensure software
quality. Many fault localization techniques, in addition to the
ones used in this paper, have been proposed and discussed
in the literature. There have been several surveys written [5],

[7], [8] and various empirical studies [9], [10] performed to
compare the effectiveness of various techniques. However, a
systematic research work on the problem of addressing ties
in the context of fault localization is still modest. The most
related publications are presented here.

Yu et al. [11] proposed a tie-breaking strategy that firstly
sorts program statements based on their suspiciousness and
then breaks ties by sorting statements based on applying a
confidence metric. The metric is intended to assess the degree
of certainty in a given suspiciousness value. For example,
when two or more statements are assigned the same level of
suspicion, the suspiciousness assigned to the statements with
a higher level of certainty is more reliable. As a result, the
corresponding statements are more likely to be faulty.

Xu et al. [12] have presented the most systematic analysis
of the problem associated with critical ties (ties with faulty
statements) where four tie-breaking strategies were considered
and evaluated via experimental case studies. Their results
indicated that some of the strategies can reduce ties without
having an adverse impact on fault localization effectiveness.
Besides, they proposed some other tie-breaking techniques to
be studied and evaluated in the future such as slicing-based
approach to breaking ties.

Debroy et al. [6] proposed a grouping-based strategy that
employs another influential factor alongside statements’ suspi-
ciousness. This strategy groups program statements based on
the number of failed tests that execute each statement and then
sorts the groups that contain statements that have been exe-
cuted by more failed tests. Afterwards, it ranks the statements
within each group by their suspiciousness to generate the final
ranking list. Thus, the statements are examined firstly based on
their group order and secondly based on their suspiciousness.
Their results show that ranking based on several factors can
improve the SBFL effectiveness. Thus, the grouping-based
strategy could be effective in tie-breaking as well.

Laghari et al. [13] employed the idea of utilizing method
calls to improve the performance of SBFL. In their proposed
approach, they combined method calls and their sequences
with program slicing to extract spectra patterns from different
contexts that can be used to effectively locate faults compared
to only using the standard SBFL formulae.

It can be noted that utilizing method calls to improve the
performance of SBFL is not new. However, using method calls
frequency for tie-breaking is a novel approach which has not
been investigated by other researchers previously.

III. SPECTRUM-BASED FAULT LOCALIZATION AND TIES

In this section, we present how SBFL techniques are used
to locate faults by ranking program elements based on their
suspiciousness of being faulty and what are the steps to do
so. Also, we introduce the problem of ties among program
elements in the rankings that these techniques produce. This
is achieved by a simple code example that illustrate the
aforementioned concepts.



A. Fault Localization Formulae

SBFL is a dynamic program analysis technique which is
performed through program execution. In SBFL, code cover-
age information (also called spectra) obtained from executing
a set of test cases and test results are used to calculate the
probability of each program entity (e.g., statements, blocks,
or methods) of being faulty [14]. Code coverage provides
information on which program entity has been executed and
which one has not during the execution of each test case;
while tests results are classified as passed or failed test cases.
Passed test cases are executions of a program that output as
expected, whereas failed test cases are executions of a program
that output as unexpected [15].

To illustrate the work of SBFL, assume a simple Java
program, which is adopted from Vancsics et al. [16], that
comprises of four main methods (a, b, f , and g), and its four
test cases (t1, t2, t3, and t4) as shown in Figure 1.

Suppose that the tests have been executed on the program
and the program spectra (the execution information of the four
program methods in passed and failed test cases) have been
recorded. Table I presents this information. An entry of 1 in
the cell corresponding to the method a and the test case t1
means that the method a has been executed by the test case t1,
and 0 otherwise. This is also known as the hit-based SBFL.
An entry of 1 in the row labeled “results” means that the
corresponding test case resulted in failure, and 0 otherwise.
For example: t2 test case calls the methods a, b and g and it
failed because its expected value is 3 and not 4.

Fig. 1: Running example – program code and test cases

The program spectra are then used by a spectra formula
to compute the suspiciousness of each program element of
being faulty. Often, a spectra formula is expressed in terms of
four counters that are calculated from the program spectra as
follows:

a) mef : set of failed test cases that executed m.
b) mep: set of passed test cases that executed m.
c) mnf : set of failed test cases that not executed m.
d) mnp: set of passed test cases that not executed m.

The last four columns of Table I represent these values. For
example, ef of a contains two tests because failed tests t1 and
t2 are executed by a, and np of f includes only one test (t3)
because it is not run by f .

TABLE I: Coverage hit spectrum (with four basic statistics)

t1 t2 t3 t4 ef ep nf np

a 1 1 1 1 2 2 0 0
b 1 1 1 1 2 2 0 0
f 1 0 0 1 1 1 1 1
g 1 1 1 1 2 2 0 0

Results 1 1 0 0

Most formulae use these four values to determine the loca-
tion of the bugs as accurately as possible. In this paper, we use
five popular formulae for quantitative evaluation as presented
in Table II. The DStar [17], Ochiai [18] and Tarantula [19] can
be seen as the most popular ones. While the Confidence [12]
was used to give importance to suspicious program elements
especially for tie-breaking purposes. Finally, the GP13 [20] is
a “generated” formula by genetic algorithm which is one of
the best performing formulae of this kind.

TABLE II: SBFL formulae used in the study
Name Formula

Confidence (Conf )
|mef |

|mef |+ |mnf |
−

|mep|
|mep|+ |mnp|

DStar (DSt)
|mef |2

|mep|+ |mnf |

GP13 |mef | ·
(
1 +

1

2 · |mep|+ |mef |

)

Ochiai (Och)
|mef |√

(|mef |+ |mnf |) · (|mef |+ |mep|)

Tarantula (Tar )

|mef |
|mef |+|mnf |

|mef |
|mef |+|mnf | +

|mep|
|mep|+|mnp|

By applying these formulae on the coverage hit spectra
of our Java program example in Table I, we can obtain
the suspiciousness scores of each method as presented in
Table III. It can be noted that in this example, each SBFL
formula produces the same suspiciousness score for more
than one method. In other words, SBFL formulae in this case
cannot distinguish the methods from each other based on their
pure scores. Hence, the tie problem among program elements
affects the SBFL effectiveness in this case.



TABLE III: Program example scores

Method Conf DSt GP13 Och Tar

a 0.00 2.00 2.33 0.71 0.50
b 0.00 2.00 2.33 0.71 0.50
f 0.00 0.50 1.33 0.50 0.50
g 0.00 2.00 2.33 0.71 0.50

B. Rank Calculations and Ties

When different elements are assigned the same suspicious-
ness score, we treat these elements score tied to each other,
and we call any such set of code elements rank ties. Clearly,
rank ties have at least two elements. Since the output of
SBFL algorithms should be a (weakly) monotone list of
ranked code elements according to their suspciousness scores,
there are various strategies for dealing with rank ties. This is
especially important when evaluating the effectiveness of an
SBFL method in terms of the location of the actually faulty
element in the rank list. In this situation all elements in a rank
tie are assigned the same rank value, based on one of these
approaches [21]:
• minimum (MIN): it refers to the top most position of

the elements sharing the same suspiciousness value (op-
timistic or the best case),

• maximum (MAX): it refers to the bottom most position
(pessimistic or the worst case), or

• average (MID): it refers to the medium position of the
elements sharing the same suspiciousness value (average
case).

As a general way of assessing SBFL effectiveness, we will
use the average rank approach (Equation 1), but we will use
the other two options as well to examine tie properties in the
sections that follow. If there are multiple bugs for a program
version, the highest rank of faulty elements is used.

MID = S +

(
E - 1

2

)
(1)

Where S is the tie starting position and E is the tie size.

Table IV presents the average ranks of the example program
based on several fault localization algorithms. Ranks that
belong to a tie are marked in gray. It can be stated that two
algorithms (Conf and Tar ) cannot distinguish the methods
from each other at all based on ranks, and the other three
approaches result a tie-group that contain 3 methods.

TABLE IV: Average ranks of program example

Method Conf DSt GP13 Och Tar

a 2.5 2 2 2 2.5
b 2.5 2 2 2 2.5
f 2.5 4 4 4 2.5
g 2.5 2 2 2 2.5

Thus, such methods get tied in the ranking and cannot
be differentiated from each other in terms of which one
has to be examined first. Therefore, tie-breaking strategies
are required to break these ties. Tie-breaking strategies are

not only important to measure the effectiveness of a fault
localization formula, they are also important for designing an
efficient algorithm. For example, with an effective strategy, the
buggy method can be moved up (i.e. to a better position) in
the suspicious list.

SBFL formulae that do not deal with the issue of rank ties
do not take into account other suspiciousness factors derived
from the context in the ranking. It is quite frequent that ties
include faulty elements and it is not limited to any particular
localization technique or target program. As a result, such
elements are tied to the same position in the ranking. Also, it
gives an indication that the used technique cannot distinguish
between the tied elements in terms of their likelihood of being
faulty. Thus, no guidance is provided to developers on what to
examine first [12]. In addition, the greater the number of ties
involving faulty elements, the more difficult it is to predict at
what point the fault will be found during the examination.

Rank ties can be divided into two important types: non-
critical and critical. Non-critical ties refer to the case where
only non-faulty elements are tied together for the same score
in the ranking. Here, if the tied elements have a higher
suspiciousness than the actual faulty element, then every
element will be examined before finding the fault, regardless
of the ties. On the other hand, if the tied elements have a lower
suspiciousness than the actual faulty element, then the faulty
element will be examined before the tied ones. Thus, there
is no need to continue examining the ranking. In either case,
the internal order in which the non-critical tied elements are
examined does not affect the performance of fault localization
in terms of the number of elements that must be examined
before finding the fault.

Critical ties, on the other hand, refer to the case when a
faulty element is tied with other non-faulty elements [12].
In this type, the internal order of examination affects the
performance. In the case of tie-breaking approaches, critical
ties are the main target as it can bring improvement to the
efficiency of the SBFL algorithm. But, unfortunately, we do
not know which code element is faulty, so all ties have to be
dealt with by the tie-breaking strategy.

IV. TIE STATISTICS

In this section, we analyze the existence of rank ties in a set
of benchmark programs. We present the subject programs that
were used in our experimental results alongside their proper-
ties and the granularity of data collection that was employed as
a program spectra for our selected SBFL formulae. Then, we
present the properties of ties we obtained before applying our
tie-breaking strategy and to which extent they can be reduced.

A. Subject Programs

An appropriate dataset is required to examine fault local-
ization. One of the most popular bug dataset is Defects4J.
It is a database of non-trivial real faults which is used to
enable reproducible studies in software fault localization for
Java programs [22]. Besides, it is the most frequently used
benchmark in the fault localization literature [23] as it provides



a high-level framework interface to easily access faulty and
fixed program versions and their corresponding test suites. The
version we used in this study is v1.5.0 and consists of 6 open-
source Java programs and 438 real faults which were identified
and extracted from the projects’ repositories1. However, a
few faults were excluded in this study due to instrumentation
errors or unreliable test results. Thus, a total of 411 faults
were included in the final used dataset. Table V presents each
program and its main properties.

TABLE V: Subject programs

Project Number
of bugs

Size
(KLOC)

Number
of tests

Number
of methods

Chart 25 96 2.2k 5.2k
Closure 168 91 7.9k 8.4k

Lang 61 22 2.3k 2.4k
Math 104 84 4.4k 6.4k

Mockito 27 11 1.3k 1.4k
Time 26 28 4.0k 3.6k
All 411 332 22.1k 27.4k

B. Granularity of Data Collection

In this paper, method-level granularity was employed as a
program spectra or coverage type. Compared to statement-
level granularity, the widely used level, it has several ad-
vantages [24]: (a) it provides more comprehensive contextual
information about the program entity under investigation, (b) it
can handle (i.e., scales well to) large programs and executions,
(c) some studies report that it is a better granularity-level for
the users too [10], [25]. Nevertheless, there is no theoretical
obstacle to investigate lower levels of granularity as well in
terms of rank ties in the future.

C. Evaluation Baselines

In this paper, five standard SBFL formulae, which are
presented in Table II, were used as the baselines to evaluate
and compare our proposed method against. The reasons behind
this are: (a) there is no other proposed tie-breaking approach
that works on the method-level granularity as our method does;
(b) our goal was to use contextual information from program
executions only to break ties, and not as the underlying SBFL
formula for all program elements (this was done by Vancsics
et al. [16]). The authors in [12] used two confidence formulae
to break ties and data-dependency among program statements
as well, but these approaches are not directly comparable to
ours.

D. Basic Statistical Analysis

As mentioned earlier, there is no guarantee that SBFL
formulae produce unique suspiciousness scores for all the
elements of a program under test. As a result, many elements
may share the same scores and get tied with each other. Here,
we present brief yet informative statistics on the number of ties
that the selected five SBFL formulae produce when applied on
the Defects4J dataset (see Table VI). It can be noted that all
the selected SBFL formulae produce ties across all the target
programs. This may indicate different things: (a) ties are not

1https://github.com/rjust/defects4j/tree/v1.5.0

rare in fault localization, (b) ties can be formed regardless
of which subject program is under consideration, c) different
SBFL formulae are affected.

Table VII presents the number of critical ties. An interesting
observation is that the number of ties is not related to program
size. For example, smaller programs may have more critical
ties than larger programs as in the case of the Lang (22
KLOC) program having more critical ties compared to the
Chart (96 KLOC) program. The average number of critical
ties per bug is an important indicator, as it means in essence
the probability that a buggy element will be tied (assuming a
single-bug scenario).

TABLE VI: Number of ties: total and average per bug

Project Conf DSt GP13 Och Tar
# avg # avg # avg # avg # avg

Chart 3656 146.24 508 20.32 512 20.48 506 20.24 490 19.60
Closure 86181 512.98 19069 113.51 19017 113.2 19043 113.35 19109 113.74

Lang 3430 56.23 185 3.03 188 3.08 187 3.07 187 3.07
Math 12856 123.62 844 8.12 846 8.13 854 8.21 851 8.18

Mockito 3381 125.22 779 28.85 780 28.89 779 28.85 789 29.22
Time 5776 222.15 589 22.65 571 21.96 597 22.96 609 23.42
All 115280 280.49 21974 53.46 21914 53.32 21966 53.45 22035 53.61

TABLE VII: Number of critical ties: total and average per bug

Project Conf DSt GP13 Och Tar
# avg # avg # avg # avg # avg

Chart 14 0.56 17 0.68 14 0.56 15 0.6 16 0.64
Closure 102 0.61 101 0.60 102 0.61 101 0.60 100 0.60

Lang 20 0.33 22 0.36 20 0.33 21 0.34 22 0.36
Math 65 0.62 69 0.66 65 0.62 65 0.62 65 0.62

Mockito 13 0.48 13 0.48 13 0.48 13 0.48 13 0.48
Time 9 0.35 9 0.35 9 0.35 10 0.38 10 0.38
All 223 0.54 231 0.56 223 0.54 225 0.55 226 0.55

We can conclude that more than half of the bugs (54-56%)
are within critical ties, i.e. in most cases there is at least one
method whose suspiciousness score is the same as the score
of the faulty method.

The sizes of ties is another important factor when consid-
ering the potential improvements by tie-breaking. This can be
investigated by looking at the differences between the MIN
(best case) and the MID (average case) approaches described
in the previous section. Consider Table VIII which shows the
number of critical ties for which MIN and MID values are dif-
ferent in columns 2 and 3 (essentially, the critical tie numbers
as shown above), and also the sum of the corresponding rank
differences (column 4), and its average per critical tie (column
5). Put it differently, the double of the average difference is
the average critical tie size in the benchmark, which is around
7 methods. The difference between the different formulae is
not notable.

It also follows that, ideally, the best improvement we could
achieve using a tie-breaking technique is these averages. From
Table VIII, we can see in how many cases there is any
improvement possible, so we can use these numbers as a base-
line for evaluating our tie-breaking approach in subsequent
sections.



TABLE VIII: Improvement possibilities based on critical tie
numbers and average tie sizes

MIN != MID
(count)

MIN != MID
(%) Diff. Avg. diff.

Conf 223 54.3 758.5 3.40
DSt 231 56.2 795.0 3.44

GP13 223 54.3 799.5 3.59
Och 225 54.7 784.0 3.48
Tar 226 55.0 831.0 3.68

We examined the distribution of the critical tie sizes as well,
which is shown in Figure 2. The X-axis represents the number
of methods involved in critical ties and the Y-axis represents
the percentage of method groups that have the same tie size. As
expected, most ties are relatively small (2–4 elements), 67%
of the critical ties contain 5 or less methods, and sizes above
15 are rare (the average is 7.8, the median 3 and the maximum
128). Interestingly, there are some outlier cases where the tie
sizes are very big, which is the explanation of the relatively
large average number.

Fig. 2: Distribution of size of critical ties

RQ1: Overall, it can be said that the ties and critical ties are
very common (for the bugs in our benchmark). Each of the
examined SBFL algorithms created critical ties for more than
half of bugs, and on average, the ranks could potentially be
improved by around 3.5 positions by eliminating the ties.

V. CALL FREQUENCY-BASED TIE-BREAKING

In this section, we present the concepts of our proposed
tie-breaking strategy and how it works. Then, we present its
effectiveness in reducing critical ties when applied on our bug
benchmark.

A. Frequency-based Tie Reduction

In Section III, we introduced the basic concept of hit-based
SBFL. One disadvantage of this approach is that it does not
take into account the frequency of executing the program
elements, in our case methods (also known as the count-based
SBFL). There have been studies that used counts [26], [27],
but recent results [28] have shown that these are unable to
improve efficiency of the algorithms.

Vancsics et al. [16] proposed a technique to replace the
simple count-based approach that proved to enhance hit-based
spectra while eliminating the problems of the naive counts. It
is based on replacing the value of ef in the SBFL formulae
with the frequency of different call contexts in the call stack for

failing tests. The basic intuition is that if a method participates
in many different calling contexts (both as a caller and as
a callee), it will be more suspicious. In other words, the
frequency of methods occurring in the unique call stacks
belonging to failing test cases can effectively indicate the
location of the bugs. In the present research, we will employ
this concept for the purpose of tie-breaking.

To illustrate the basic concept of frequency-based tie re-
duction, first we define the frequency-based SBFL matrix
that replaces the traditional hit-based one. In it, each element
will get an integer instead of {0, 1} indicating the number
of occurrences of the particular code element in the unique
call stacks (effectively, the different contexts) when executing
the given test cases [16]. Table IX shows the frequency-based
matrix for the example. For instance, the call stacks of t1 are
(a, f), (a, g) and (b, g), so the frequency of g will be 2 for
test t1.

TABLE IX: Example frequency-matrix

a b f g Results

t1 2 1 1 2 Failed
t2 1 1 0 2 Failed
t3 1 1 0 1 Passed
t4 3 1 1 2 Passed
φ 3 2 1 4

In the next step, we define our metric to be used as a
discriminating factor for tie-breaking. The φ corresponds to
the “frequency-based ef ” and is calculated by summarizing
the corresponding frequency-based values in the matrix for the
failing test cases (see Equation 2). The values for our example
are shown in the last row of Table IX.

φ(m) =
∑

t∈failed test

cm,t

m ∈ methods, cm,t ∈ frequency-matrix

(2)

Figure 3 shows our tie-breaking process which can be seen
as a two-stage process. In the first stage, we compute the
suspiciousness scores of program methods and their ranks via
applying different SBFL formulae on the program spectra (test
coverage and test results). The output of this stage is an initial
ranking list of program methods including critical and non-
critical ties. In the second stage, we trace the execution of
program methods to obtain the φ, i.e. frequency-based ef . This
will then be used as a tie-breaker after re-arranging the order
of the critical tied methods in the initial ranking list based on
the value of φ for each method. The output of this stage is
a final ranking list, where many critical ties either eliminated
completely or their sizes were reduced.

Our proposed tie-breaking method uses the obtained φ call
frequency values to break the methods sharing the same score,
by putting the methods with higher φ upper in the rank.
Thus, the most suspicious one will be the method that was
called in more different call stacks from failing test cases.



Fig. 3: The proposed tie-breaking process

The rationale behind using the φ rather than other contexts
(such as the context of method calls in passing test cases) is
the intuition that a method is more suspicious to contain a
fault when executed by more failing test cases than passing
ones, while non-suspicious when mostly executed by passing
tests. However, other different contexts could be considered in
the future and investigate their impacts on breaking ties.

The ranks without (columns B) and with tie-breaking
(columns A) with our approach for the example are presented
in Table X. Ties marked in gray were eliminated with the use
of call frequency. As a result, we were able to differentiate
between the faulty method (g) and the other suspicious ones
using all of the SBFL formulae (the faulty method got the
highest rank in all cases).

TABLE X: Ranks Before and After using the tie-breaking
strategy

Method φ
Conf DSt GP13 Och Tar

B A B A B A B A B A

a 3 2.5 2 2 2 2 2 2 2 2.5 2
b 2 2.5 3 2 3 2 3 2 3 2.5 3
f 1 2.5 4 4 4 4 4 4 4 2.5 4
g 4 2.5 1 2 1 2 1 2 1 2.5 1

B. Reduction of the Critical Ties

The metric called Tie-reduction was defined by Xu et al.
to measure how much a critical tie has been reduced/broken
in terms of size [12]. Here, size simply means the number of
code elements sharing the same score value, and obviously, the
minimum tie size is 2. The goal of any tie-breaking strategy is
to reduce the size of the tie or completely eliminate it (when
the resulting size is 1). We modified the original definition of
this metric to better reflect the actual gain in terms of what
portion of the “superfluous” elements in a tie can be eliminated
(see Equation 3).

Tie-Reduction =

(
1− sizeafter − 1

sizebefore − 1

)
· 100% (3)

Here, sizeafter is the size of a critical tie after applying a tie-
breaking strategy and sizebefore is the size of a critical tie before
applying a tie-breaking strategy. In an ideal case, the critical
tie is completely eliminated, in which case the value of the tie-
reduction is 100%. If no reduction can be obtained, this metric
will be 0%, and in all other cases it will show the percentage
of the removed elements that share the same score value as
the faulty element.

In Figure 4, we visualized the amount of critical tie-
reduction on our benchmark using the Tie-Reduction metric.
Each dot represents one bug in the dataset and the violin plot
offers a more general picture about the distribution of the data
points. It can be seen from the shape of the plots that in several
cases, reduction was not possible but the majority of the ties
was completely eliminated. Similar to the number and size of
critical ties, there was no significant difference in this aspect
depending on what SBFL formula was used, we obtained very
similar results.

Fig. 4: Tie-reduction distribution of critical ties

Table XI shows some important statistical values for this
dataset: mean, median and quartile 1 (the value in the middle
between the smallest and the median points). Since the median
is 100%, we can state that the critical ties are eliminated by our
method in more than half of the cases (72–73%, as detailed
below), and the reduction is between 83.9–91.5% for three-
quarters of the bugs, while the average rate of reduction is
greater than 80% in all cases.

TABLE XI: Statistics of tie-reduction (in percentage)

Conf DSt GP13 Och Tar

Mean 81.8 80.5 81.8 81.5 81.8
Median 100.0 100.0 100.0 100.0 100.0

Q1 91.5 83.9 91.5 90.4 88.9

Table XII presents the number of remaining critical ties
for each program and SBLF formula after applying the tie-
reduction algorithm. The difference to the previous values
(shown in Table VII) is also included. For example, 15 bugs
of Chart were in critical ties with the Ochiai formula, but
after applying the call frequency-based tie-reduction 11 critical
ties are eliminated, which is 73.3% of the initial ties. Overall,
we achieved 72-73% improvement in the number of critical
ties over the full dataset, the best case being Mockito with
over 84.6% and the worst result was 54.5% on Lang using
Tarantula and DStar .



TABLE XII: Changes in the number of critical ties after
reduction

Chart Closure Lang Math Mockito Time All

Conf
after 4 24 9 18 2 2 59

diff. (#) 10 78 11 47 11 7 164
diff. (%) 71.4 76.5 55.0 72.3 84.6 77.8 73.5

DSt
after 6 24 10 21 2 2 65

diff. (#) 11 77 12 48 11 7 166
diff. (%) 64.7 76.2 54.5 69.6 84.6 77.8 71.9

GP13
after 4 25 9 18 2 2 60

diff. (#) 10 77 11 47 11 7 163
diff. (%) 71.4 75.5 55.0 72.3 84.6 77.8 73.1

Och
after 4 24 9 19 2 2 60

diff. (#) 11 77 12 46 11 8 165
diff. (%) 73.3 76.2 57.1 70.8 84.6 80.0 73.3

Tar
after 5 24 10 19 2 2 62

diff. (#) 11 76 12 46 11 8 164
diff. (%) 68.8 76.0 54.5 70.8 84.6 80.0 72.6

The sizes of the critical ties determine the level of achiev-
able improvement after applying a tie-breaking approach.
However, it is also important in which direction in the new
ranking the faulty element moved after tie-breaking. Using the
terminology from the previous section, moving from the MID
position towards MIN means improvement. In the previous
section, in Table VIII; we presented the maximum potential
improvement that sets a theoretical constraint on SBFL ef-
fectiveness after tie-reduction. Table XIII presents what we
actually achieved using our proposed algorithm (the meaning
of the data is the same as in Table VIII).

TABLE XIII: Achieving the minimum ranks

MIN != MID
(count)

MIN != MID
(%) Diff. Avg. diff.

Conf 59 14.4 53.5 0.9
DSt 65 15.8 61.5 0.9

GP13 60 14.6 54.0 0.9
Och 60 14.6 55.5 0.9
Tar 62 15.1 94.0 1.5

We examined whether our method was able to reduce the
number of cases where the MIN (best case) and the MID
(average case) approaches give different results. If there were
no such cases that would mean that the obtained new ranking
after tie-break would always be the best possible, MIN case.
Table XIII shows that, after our approach, only around 15%
of the bugs contained critical ties (column 3), compared to
around 55% before tie-breaking.

Comparing this with the result of Table VIII, we find that in
more than 160 cases we managed to achieve the ideal result
with our method where the original algorithm was not able
to do so. It means that for nearly three quarters of bugs in
critical ties (72–73%), the non-optimal result was improved to
optimal.

If we compare the sum of the rank differences (column
4) and their averages (column 5) in Tables VIII and XIII, it
can be seen that our approach was able to reduce the sum
significantly (by 89–93%), and the average by 59–74%. Put
it differently, the overall rank positions from the ideal case
improved from around 3.5 to 1 in the cases when we achieved
optimal result, which essentially means rank improvement
between 2.2 and 2.5.

RQ2: Using the call-frequency based tie-breaking strategy, we
achieved a significant reduction in both size and number of
critical ties in our benchmark. In 72-73% of the cases the ties
were completely eliminated, the average reduction rate being
more than 80%. In nearly three quarters of the cases (72–73%),
the faulty element got the highest rank among the tie-broken
code elements, and here it improved its position by 59–74%
on average.

VI. EFFECT OF TIE-BREAKING ON SBFL PERFORMANCE

In this section, we analyze what is the overall effect of the
proposed tie-breaking strategy on SBFL effectiveness in terms
of global ranks. For that purpose we use several evaluation
metrics that were employed in the literature [12], [29], [30].

A. Achieved improvements and the average ranks

Average rank is used to rank the program elements that
share the same suspiciousness value by considering the av-
erage of their positions after they get sorted, in a descending
order, by the level of their suspiciousness. And, it is calculated
using Equation 1. Table XIV presents the average ranks before
(column 2) and after (column 3) applying our tie-breaking
strategy and it shows the difference between the average ranks
before and after tie-reduction (column 4). If the difference is
negative then this means that we could achieve improvement
with our proposed strategy.

TABLE XIV: Average rank of faulty elements before and after
tie-breaking

Before After Diff.

Conf 55.16 53.11 -2.05
DSt 46.86 44.79 -2.07

GP13 68.79 66.68 -2.11
Och 46.95 44.81 -2.14
Tar 50.39 48.33 -2.06

We can see that our strategy achieved improvements with all
the selected SBFL formulae: the average rank reduced by more
than 2 in all cases, which corresponds to 3.1–4.1% with respect
to the total number of elements. Note, that this average is
similar to what we got for RQ2, but it is not the same because
for RQ2 we examined only the cases when we achieved the
optimal result, while in this section we are interested in the
global results.

We also examined how many times our tie-breaking strategy
changed the rank of bugs (in positive and negative directions)
and what was the impact of the changes. Table XV presents
the possible changes in several categories, as follows (B means
before, A means after applying tie-breaking):

1) the faulty method moved to the top of the critical tie
(column: best), when BMIN = AMID (this is the case that
we discussed using Tables VIII and XIII)

2) it has moved up in the rankings (column: better), when
BMID > AMID and BMIN < AMID

3) it remained in the same position (column: same), when
BMID = AMID

4) we worsened the result (column: worse), when
BMID < AMID and BMAX > AMID



5) it slipped back to the worst place (column: worst), when
BMAX = AMID

In addition, column “improve” represents improvements in
rank modifications (i.e., best+better), while “deteriorate” is
worse+worst. The table also includes the average differences
in rank positions for the given categories.

The results indicate that in about 3–4 times more cases we
achieved improvement than deterioration of the ranking re-
sults. Moreover, the improvement differences are much higher
than the deterioration differences (compare, for example, the
better cases of around -7 to worse cases of around 2). Other
interesting insight is that in the case of best, the difference is
relatively small as the size of the ties broken in this category
were small as well (they contained 3-4 methods). Looking at
the overall result, the average rate of improvement ranged from
-3.73 to -3.86, while the deterioration was only between 1.34
and 1.54 rank positions on average.

TABLE XV: Comparison of average ranks before and after
tie-breaking

Best Better Same Worse Worst Improve Deteriorate

Conf
count 85 51 50 17 20 136 37

avg. diff. -1.71 -7.13 0 2.32 0.55 -3.74 1.36

DSt
count 85 53 53 18 22 138 40

avg. diff. -1.71 -7.32 0 2.31 0.55 -3.86 1.34

GP13
count 85 51 50 17 20 136 37

avg. diff. -1.71 -7.39 0 2.32 0.55 -3.84 1.36

Och
count 86 52 50 16 21 138 37

avg. diff. -1.70 -7.42 0 2.38 0.62 -3.86 1.38

Tar
count 83 58 47 17 21 141 38

avg. diff. -1.46 -6.97 0 2.68 0.62 -3.73 1.54

The overall rank position improvement might seem modest,
but we must consider the fact that the improvement can be
achieved only by rearranging the positions in the critical ties.
Thus, the sizes of the critical ties serve as a hard constraint (as
discussed in the previous section). However, there is a class
of improvements which are probably more important than the
general case: improvements in the Top-N rank positions, and
here the benefits are more pronounced, as presented below.

B. Top-N categories

Several studies [31], [32] report that developers think that
inspecting the first 5 program elements in the ranks list
produced by a fault localization technique is acceptable and
that the first 10 elements are the upper bound for inspection
before ignoring the ranks list. Hence, we verified the results
by focusing on these rank positions only (collectivelly called
Top-N). We will use five cases: where a fault is ranked first
(Top-1), it is less or equal to three (Top-3), less or equal to
five (Top-5), less or equal to ten (Top-10), and when it is more
than ten (Other).

We also used a special non-accumulating variant of Top-N
categories, in which case we counted cases where the bug fell
into a non-overlapping intervals of [1], (1, 3], (3, 5], (5, 10] or
(10, ...]. The goal of the evaluation in this part was to see in
how many cases our approach “moves” a bug into a better (for
example, from (5, 10] to (1, 3]) or a worse (for example, from
[1] to (1, 3]) group. In other words, in how many cases do the

bugs get into a higher-rank group (this kind of improvement is
also known as enabling improvement [30]) and in how many
cases do we downgrade the category.

Table XVI presents the number of bugs belonging to the
corresponding Top-N categories (cumulative) with their per-
centages, for the whole dataset, before and after applying our
tie-breaking strategy, as well as the differences between them.
A decrease in the number of cases of the Other category and
increase in any Top-N means improvement.

TABLE XVI: Top-N categories
Top-1 Top-3 Top-5 Top-10 Other

# % # % # % # % # %

Conf 75 18.2 169 41.1 203 49.4 246 59.9 165 40.1
After tie-breaking 92 22.4 180 43.8 214 52.1 252 61.3 159 38.7

Diff. 17 22.7 11 6.5 11 5.4 6 2.4 -6 -3.6
DSt 65 15.8 172 41.8 210 51.1 249 60.6 162 39.4

After tie-breaking 84 20.5 186 45.4 222 54.1 257 62.7 153 37.3
Diff. 19 29.2 14 8.1 12 5.7 8 3.2 -8 -4.9

GP13 75 18.2 169 41.1 203 49.4 245 59.6 166 40.4
After tie-breaking 92 22.4 179 43.6 212 51.6 250 60.8 161 39.2

Diff. 17 22.7 10 5.9 9 4.4 5 2.0 -5 -3.0
Och 68 16.5 173 42.1 210 51.1 250 60.8 161 39.2

After tie-breaking 87 21.2 186 45.3 222 54.0 257 62.5 154 37.5
Diff. 19 27.9 13 7.5 12 5.7 7 2.8 -7 -4.3
Tar 65 15.8 166 40.4 203 49.4 244 59.4 167 40.6

After tie-breaking 83 20.2 177 43.1 212 51.6 251 61.1 160 38.9
Diff. 18 27.7 11 6.6 9 4.4 7 2.9 -7 -4.2

It can be clearly seen that our proposed tie-breaking strategy
achieves improvements in all categories by moving many bugs
to higher ranked categories. On the lower end of the scale
(Other category with rank > 10), 5–8 bugs were moved into
one of the Top-N categories. This is important as it brings
a “new hope” that a bug could be found by the user with
the proposed strategy while it was not very probable without
it. We can see a quite large number of improvements in
higher categories as well, around 18 bugs moved to Top-1, for
instance. Note that the percentages of bugs in each category
before and after applying the strategy were calculated with
respect to the total number of bugs in the dataset. While
the difference percentage was calculated with respect to the
number of bugs before applying the strategy.

To better understand the actual changes between the dif-
ferent Top-N categories we should use the non-accumulating
variant of these categories. This shows whether there has been
a beneficial change in the rank category. These moves between
the Top-N categories are presented by Table XVII. The sign
7 indicates the number of changes in the negative direction
(worsening result), and 3 marks improvement. For example,
there were a total of 2 bugs with a rank greater than 1 but
less than or equal to 3 before reduction by Tarantula , but
our method resulted in a rank value greater than 3 (this is a
negative result). In contrast, our method gave a rank of 1 for
the faulty method 15 times which was previously greater than
1 but smaller than 3 (using Tarantula).

These numbers clearly show that improvement was dom-
inant: degradation by the proposed method was observable
only for 2–3 bugs in the dataset, while we observed positive
changes for 36–44 bugs.



TABLE XVII: Top-N moves
[1] (1, 3] (1, 3] (3, 5] (3, 5] (5, 10] (5, 10] Other 7 3
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
7 7 3 7 3 7 3 3

Conf 0 1 13 1 8 0 11 6 2 38
DSt 0 1 15 1 10 0 11 8 2 44

GP13 0 1 13 1 8 0 10 5 2 36
Och 0 1 15 1 9 1 11 8 3 43
Tar 0 2 15 1 11 0 8 7 3 41

RQ3: The efficiency of all investigated SBFL formulae could
be improved by using the proposed tie-breaking strategy: the
average improvement of rank values in the benchmark was
about two positions, and about 3-4 times more frequenty we
observed improvement than detoriation, such improvements
being much higher as well. Considering the Top-N categories,
notable improvements could be observed: all Top-N categories
showed positive results (improvements in 36–44 cases), and
at the same time, in only a few (2–3) cases Top-N categories
worsened. We were able to increase the number of cases where
the faulty method became the top ranked element by 23–30%.

VII. THREATS TO VALIDITY

Various threats may affect the validity of experimental
studies in software engineering. In our work, we considered
the following actions to avoid or minimize such threats:

• Selection of evaluation metrics: to ensure that our results
and corresponding conclusions are valid, we selected
several evaluation metrics that are also used by previ-
ous research to ensure multiple-dimension comparisons.
Besides, all the evaluation metrics employed in this study
were reported and described in detail.

• Correctness of implementation: to ensure that our experi-
ment implementation is correct and accurate, code review
was conducted by the authors. Furthermore, we have run
our proposed approach several times to ensure that it is
implemented correctly.

• Selection of subject programs: in our experiment, we
evaluated the effectiveness of the proposed tie-breaking
strategy on fault localization using only six Java subject
programs. Thus, we cannot generalize our findings to
other programs in general. However, we believe that the
selected subject programs are representative to others as
they have real faults, varying in size and complexity,
and the benchmark containing them, Defects4J, is used
commonly in other studies on software fault localization.

• Exclusion of faults: in our experiment, 27 faults (about
6% of the total faults) of the Defects4J dataset were
excluded because we could not compute their call stack
information due to technical limitations. The issue here
is whether other researchers using the same dataset will
be able to replicate our findings. This exclusion was in
no ways influenced by the results of the used metrics
and the excluded faults are distributed in the dataset
approximately evenly, so we believe that this risk can
be considered minimal.

• Selection of SBFL formulae: to evaluate the effectiveness
of our proposed tie-breaking strategy on fault localization,

we selected a set of five SBFL formulae in our experi-
ment, which is just a fraction of the proposed techniques
in literature. The obtained results show improvements
with all of them. However, we cannot guarantee that the
same improvements can be obtained by using other SBFL
formulae. To mitigate the effect of this issue, we selected
three SBFL formulae that are commonly used in other
studies on software fault localization, which we extended
with two special kinds, one of which was especially
designed with tie-breaking in mind.

VIII. CONCLUSION

Rank ties in SBFL are very common regardless of the
formula employed, and by breaking these ties, improvements
to the localization effectiveness can be expected. This paper
proposes the use of method call contexts for breaking critical
ties in SBFL. We rely on instances of call stack traces, which
are useful software artifacts during run-time and can often
help developers in debugging. The frequency of the occurrence
of methods in different call stack instances determines the
position of the code elements within the set of other methods
tied together by the same suspiciousness score.

Experimental results show that the proposed tie-breaking
strategy, using the Defects4J benchmark, (a) completely elim-
inated many critical ties with significant reduction of others,
and (b) achieved improvements in average rank positions for
all investigated SBFL formulae with moving many bugs to
the highest Top-N rank positions. However, there are limits
to how much improvement one can expect from tie-breaking
alone (we analyzed this limit in the paper and compared to the
results achieved). This means that no matter how clever a tie-
breaking method is, it cannot rearrange code elements outside
of the tied ranking positions. Since ties seem to be prevalent,
it could be an interesting further research to devise specific
tie-aware approaches or modified formulae that minimize ties
in the scores and/or break them automatically.

As other future work, we would like to measure the effec-
tiveness of the proposed tie-breaking strategy on other levels
of granularity such as statement, branch, etc. Employing other
SBFL formulae across a much broader range of programs
in terms of numbers, types, sizes, and used programming
languages, to capture the ties problem characteristics and
identify what factors affect them would be interesting for
further investigation. We also would like to tackle the ties
problem by employing other contextual factors beyond method
calls and to measure their impacts on the SBFL.

The results of our experimental study can be found at
”https://bit.ly/3qFQmof”.
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