
Toolset and Program Repository for Code Coverage-
Based Test Suite Analysis and Manipulation

Dávid Tengeri, Árpád Beszédes, Dávid Havas and Tibor Gyimóthy
Department of Software Engineering

University of Szeged, Szeged, Hungary
{dtengeri,beszedes,havasd,gyimothy}@inf.u-szeged.hu

Abstract—Code coverage is often used in academic and
industrial practice of white-box software testing. Various test
optimization methods, e.g. test selection and prioritization, rely on
code coverage information, but other related fields benefit from it
as well, such as fault localization. These methods require access
to the fine details of coverage information and efficient ways
of processing this data. The purpose of the (free) SoDA library
and toolset is to provide an efficient set of data structures and
algorithms which can be used to prepare, store and analyze in
various ways data related to code coverage. The focus of SoDA is
not on the calculation of coverage data (such as instrumentation
and test execution) but on the analysis and manipulation of test
suites based on such information. An important design goal of
the library was to be usable on industrial-size programs and
test suites. Furthermore, there is no limitation on programming
language, analysis granularity and coverage criteria. In this
paper, we demonstrate the purpose and benefits of the library,
the associated toolset, which also includes a graphical user
interface, as well as possible usage scenarios. SoDA also includes
a repository of prepared programs, which are from small to large
sizes and can be used for experimentation and as a benchmark
for code coverage related research.

Keywords—Regression testing, test suite analysis, test suite
optimization, code coverage, program repository.

I. INTRODUCTION

Using code coverage in software testing is based on simple
concepts, but it often involves technical difficulties. For code
coverage, one records which parts of the program code have
been executed and which not, by observing the runtime be-
havior of the (dynamic) test cases. This concept is generally
used in test case design, test progress monitoring and as test
exit criteria, and is a basis for white-box testing approaches in
industrial [1] as well as academic [2] practice. More advanced
methods benefit from code coverage information as well, such
as selective retesting, test case prioritization, automated test
case generation and fault localization. There exists a large
body of methods, algorithms and tools for code coverage
measurement including various coverage criteria (statement,
decision, condition, etc.) and support for different languages
and platforms (both commercial and open source).

Working with code coverage in practice involves several
technical difficulties, however. A notable one is the storage and
analysis of the coverage information itself (in this study, we do
not deal with other issues such as the calculation of coverage,
instrumentation, test executions, etc). For systems consisting
of millions of lines of code and maybe hundred thousand test
cases, the amount of coverage data will be huge. Also, various
coverage calculator tools produce data in different formats.

This makes the application of code coverage approaches dif-
ficult for most resarchers and practitioners, especially for the
implementation of more advanced methods. Finally, research
prototypes and available benchmark programs typically focus
only on small to medium size systems.

The aim of the SoDA (Software Development Analysis
framework) library, toolset and program repository is to pro-
vide researchers and practitioners a framework with which
various code coverage-based analyses can be performed in
a unified environment, and which can be applied to large
programs and test suites efficiently, and without limitations
on programming language, granularity and coverage criteria.

We used this framework in some experiments in our testing
research, and currently it includes support for some common
algorithms such as test prioritization, reduction, fault local-
ization and general test suite assessment by using coverage-
related metrics. SoDA includes a set of efficient data structures
implemented in C++, as well as various algorithm implemen-
tations for the mentioned tasks. We are also working on a
graphical user interface, called TAM (Test-suite Analysis and
Manipulation) which provides an easy to use access to most
of the features. Furthermore, we included a carefully selected
set of subject programs with associated test suites that have
been prepared to serve as a benchmark in coverage-related
research. It includes small, medium and large programs with
appropriate measurement scripts, and we also provide some
key measurement data for these programs.

Our long term goal with SoDA is to provide a general,
extensible test suite analysis and manipulation framework to be
used in industrial context, as well as a useful environment for
coverage-based experimentation for researchers. Specifically,
researchers could benefit from it thanks to the instantly avail-
able data from the program repository, the set of implemented
algorithms, easy extensibility and the supporting GUI-based
tool. On the other hand, developers and testers could find
it useful for regression test suite maintenance including their
assessment and optimizaton.

The paper is organized as follows. In Section II, we
overview the main architecture and features of the SoDA
framework, while more detailed description of the library and
toolset will be given in Section III. The program repository
with some measurements will be introduced in Section IV.
We overview related work in Section V, and conclude in
Section VI. Appendices at the end of the article provide
information about the availability of SoDA and our planned
tool demonstration session at the conference.

2014 14th IEEE International Working Conference on Source Code Analysis and Manipulation

978-0-7695-5304-7/14 $31.00 © 2014 IEEE

DOI 10.1109/SCAM.2014.38

83

2014 14th IEEE International Working Conference on Source Code Analysis and Manipulation

978-1-4799-6148-1/14 $31.00 © 2014 IEEE

DOI 10.1109/SCAM.2014.38

47

II. OVERVIEW

With the SoDA framework, we offer the following:

1) An efficient library for code coverage-related analy-
ses with fundamental data structures and algorithms.

2) Appropriate adapters for accessing various coverage-
related data produced by other tools. In GNU envi-
ronment, most usual tools are already supported (e.g.
parsing gcov coverage results, processing DejaGnu
test reports), but the plugin architecture enables easy
extension as well.

3) A set of algorithms for various applications including
test selection, test prioritization and fault localization.

4) An implementation of a set of various metrics com-
putable from the coverage data, which can be used
for the assessment of test suites from quality aspects.

5) A graphical user interface based on the features of
the library, whose overall goal is to analyse and
manipulate test suites (the TAM application).

6) A subject program repository with tests and prepared
analysis scripts.

7) Ready measurements on the programs from the repos-
itory, which can be used for research purposes.

The basic architecture of SoDA with the above-mentioned
components is shown in Figure 1.

Fig. 1. Basic operation of the SoDA framework

A more detailed description of the library and the toolset
will be given in the next section, together with a list of possible
usage scenarios. We designed SoDA so that it would be useful
for a broad range of users including researchers, professional
developers and testers, QA assurance staff and (test) managers.

III. THE SODA LIBRARY AND TOOLSET

The library and toolset parts of the SoDA framework can
be further divided to data structures, algorithms, command-
line tools and TAM, the graphical user interface, which will
be separately introduced in the following. The library is
implemented in C++ and contains the basic data structures for
storing the coverage information, results of test executions and
other aspects such as revision and program change information.
The actual analysis algorithms are implemented also in the
library in a plugin-oriented fashion, so that it can be easily
extended with additional algorithms. Finally, the toolset part
is where the actual user applications are located, which have
two basic forms: command-line programs and the graphical
user interface, TAM.

A. Data structures

SoDA stores the code coverage information in a special
binary format. The format is designed so that it is able to store

large amounts of data for large programs and test suites both in
memory and on the disk. The library contains three main data
structures: the coverage matrix, the results matrix and change
information. The basic data structures are suitable for storing
information of any kind of granularity of the source code and
written in any kind of programming language, because we only
define very general concepts such as code elements and test
cases.

The coverage matrix is essentially a bit-matrix representing
which test cases cover which code elements. Various matrix
implementations are available for effectively working with
sparse matrices, e.g [3]. However, in the case of code cov-
erage matrices we cannot rely on any assumption about their
sparsity (see the coverage densities of our subject programs
in Table III), hence we designed general data structures for
storing boolean values corresponding to the coverage. The
library provides useful functions for easy access of coverage
information of a test case or code element by using their
names. There is also a possiblity for filtering the list of test
cases or code elements, as well as some other utility functions.

The results matrices are used to store test execution results
for the different revisions of the program. Each revision consist
of one or more changes in the program, so a results matrix
stores which test case was executed for each revision and
what was the outcome of the test. Various utility functions
are available for the results matrix as well.

SoDA includes a separate data structure to store change
information about the subject programs, which is typically
collected from version control systems such as SVN and Git.
This information is useful for various test suite analysis tasks,
e.g. test selection and test prioritization. The data structure for
change sets is also based on a matrix representation, and is able
to store the change information for multiple program elements
and revisions.

B. Algorithms

The library includes algorithms usable in different test-
ing activities, which can utilize code coverage information,
such as test prioritization and selection, fault localization,
etc. The plugin-structure of SoDA enables easy addition of
new algorithms; either from the existing categories (like new
prioritization strategies) or for completely new analyses.

The following are the main categories of algorithms cur-
rently implemented:

1) Test suite metrics: SoDA implements several metrics
which can be computed for test suites to characterize them
from different aspects, similarly to the traditional code metrics
used for program code. We will present some of the availble
metrics in the library, and for illustration, we will use an
example coverage matrix from Figure 2.

The code coverage metric tells the percentage of how well
the code elements are covered by the test cases, which is often
used to guide test selection and test suite reduction activities.
The value of this metric can be easily calculated based on the
coverage matrix. Let T be the set of test cases and C be the
set of code elements. Then,

COV(T,C) =
|{c ∈ C | c covered by T}|

|C|
.

8448

C =

c1 c2 c3 c4 c5 c6

t1 1 0 0 0 0 0
t2 0 1 0 0 0 0
t3 1 1 1 1 1 1
t4 1 1 1 1 0 1
t5 1 1 0 0 0 0
t6 1 1 1 0 0 0
t7 1 1 0 0 1 1
t8 1 1 1 1 0 0

Fig. 2. An example coverage matrix (also called program spectrum). Rows
represent the test cases and columns represent the code elements.

Another SoDA metric we used in some previous studies is
the partition metric. We experimented with it in the context of
fault localization [4]. It expresses the average portion of the
program elements which are distinguishable from any given
program element in terms of coverage. Code elements covered
by the same test cases belong to the same partition. The
partition metric of a particular program and its test cases is
then derived using the structure of the partitions. Specifically,
for a set T of test cases and a set C of code elements such a
partitioning can be denoted with Π ⊆ P(P). We define πc ∈ Π
for every c ∈ C, where

πc = {c′ ∈ C | c′ is covered by and only by the same
test cases from T as c}.

Having fault localization application in mind, |πc| − 1 will be
the number of code elements “similar” to c in the program,
hence to localize c in πc we would need at most |πc| − 1 ex-
aminations [4]. Based on this observation, PART is formalized
as follows:

PART(T,C) = 1−
∑

c∈C(|πc| − 1)

|P | · (|P | − 1)
.

This metric takes a value from [0, 1] similarly to the
coverage metric, bigger meaning better.

SoDA includes derived metrics based on the former two as
well, for example, to express the optimality of test suites. In
this context, optimality deals with the number of test cases
compared to some other attribute such as the number of
program elements or another test suite metric. TPCE is the
tests to code element ratio and it indicates how much test
cases are written to test a code element on average:

TPCE(T,C) =
|T |
|C|

.

Next, efficiency metrics show what is the average contribution
of one test case to some other test suite metric. For the
coverage (EFFCOV) and partition metrics (EFFPART), efficiency
is the following:

EFFCOV(T,C) =
|{c ∈ C | c covered by T}|

|T |
,

EFFPART(T,C) =
PART(T,C) |C|

|T |

Some example test suites with the corresponding partitions
and the different test suite metric values of the example
coverage matrix can be seen in tables II and I.

TABLE I. PARTITIONS OF THE EXAMPLE COVERAGE MATRIX

Test suite Partitions

{t1, t2} {{p1}, {p2}, {p3, p4, p5, p6}}

{t3, t4} {{p1, p2, p3, p4, p6}, {p5}}

{t5, t6} {{p1, p2}, {p3}, {p4, p5, p6}}

{t7, t8} {{p1, p2}, {p3, p4}, {p5, p6}}

{t1 . . . t8} {{p1}, {p2}, {p3}, {p4}, {p5}, {p6}}

TABLE II. METRICS OF THE EXAMPLE COVERAGE MATRIX

Test suite COV PART TPCE EFFCOV EFFPART

{t1, t2} 0.33 0.60 0.33 1.00 1.80
{t3, t4} 1.00 0.33 0.33 3.00 1.00
{t5, t6} 0.50 0.73 0.33 1.50 2.19
{t7, t8} 1.00 0.80 0.33 3.00 2.40

{t1 . . . t8} 1.00 1.00 1.00 0.75 0.75

2) Test prioritization and selection: These methods enable
selective and ranked retesting of regression tests to reduce
the cost of test execution. In the SoDA library, we imple-
mented several popular prioritization algorithms working on
code coverage: general coverage and additional coverage [5],
for instance, as well as some utility metholds like random
prioritization.

3) Fault localization: Fault localization is a technique to
help testers and developers in the process of testing, debugging
and correcting a bug in the program by searching for the
location of the fault in the system. A widely employed fault lo-
calization technique is the Spectrum-Based Fault Localization
(SBFL) approach [6]. SBFL is based on the program spectrum,
which is a signature of program behaviour and indicates
which parts of the program were executed during a run [7].
The program spectrum is essentially the coverage matrix in
our terminology. The technique observes the differences in
execution profiles of the program for passed and failed test case
executions and tries to find those code elements that may cause
the tests to fail. SBFL uses a risk value to predict the relative
risk of each code element containing the fault. The risk values
can be computed in different ways by risk formulae. Several
different methods defined such formulae in the literature, e.g.
Tarantula, Ochiai and Jaccard [6]. In the SoDA library, the
Tarantula and Ochiai SBFL methods have been implemented.

4) Test suite reduction: The goal of test suite reduction is to
find a minimal subset of test cases that satisfy a requirement.
Such a requirement can be to maximize the fault detection
capability of the selected tests (often associated with code
coverage). Another possible aspect is the fault localization
capability, where the goal is to select test cases that help to
localize a bug (this can be associated to the partition metric
of test suites [4]). The problems are instances of the minimal
hitting set problem which is NP-complete, so the reduction
algorithms use some kind of heuristics to achieve the given
requirements. Many reduction algorithms are based on test case
prioritization by selecting the desired amount of test cases in
the given order.

The SoDA library implements three test suite reduction
algorithms. Two of them are fault detection driven-methods,
namely the Naive coverage-based and Additional coverage-
based methods [4]. They use the corresponding prioritization
technique to determine the set of test cases that need to be
included. The third algorithm is a fault localization-driven

8549

method, whose goal is to keep the fault localization capability
of the test suite as high as possible with a fewer number of
test cases, and is called the Partition-based method [4].

C. Toolset

There are two types of user applications implemented on
top of the SoDA library: command-line tools and a graphi-
cal user interface. Command-line tools provide access to all
the implemented features of the library through a unified
command-line interface. This way, the tools can be easily in-
tegrated into more complex analysis scripts and environments.

TAM (Test-suite Analysis and Manipulation) is a GUI
application on top of the SoDA library that is designed to
help researchers and developers investigating and manipulating
test suites or creating assessment reports in an easy way. It
uses the data structures and algorithms of the SoDA library
and provides graphical interfaces for most of the functions.
In addition, it includes various useful features such as con-
figuration options for different measurements and support for
investigating subparts of test suites graphically. Users can load
multiple versions of a program into TAM and save their work
into a workspace. To aid re-executing the measurements and
performing various analyses on the same data, TAM saves the
results into a database for later reuse. Figure 3 shows some
examples of the TAM user interface.

Currently, TAM offers test suite analysis features but it is
among our plans to implement automatic test suite manipula-
tion functions as well.

Fig. 3. TAM user interface.

D. Possible usage scenarios

The target users of SoDA (including TAM) are both
researchers and professional developers and testers. Figure 4
shows the possible use cases of our system. Most features
are accessible both from command line tools and TAM.
Researchers can easily extend the library with new algorithms
and compare the new methods with the available techniques
implemented in SoDA. Developers can use test prioritization
techniques to speed up their regression testing by selecting
the relevant test cases that have to be executed. The list of
possibly faulty elements provided by the fault localization
methods could also be useful for developers. TAM provides an
interface to easily find these elements and connects them with
the source code. Test suite manipulation functions of TAM
can make the testing process more efficient, which include
investigating the functional units of the test suite separately
and aiding the removal of duplicated test cases (in terms of
coverage).

Fig. 4. Use cases of SoDA and TAM

1) Usage in previous studies: In a previous study [4],
we used SoDA to empirically evaluate test suite reduction
methods in terms of fault detection and localization. We
investigated the effect of different test reduction methods on
the performance of fault localization and detection techniques.
We also provided new combined methods that incorporate both
localization and detection aspects. In [8], we experimentally
applied test selection methods to WebKit, a member of the
SoDA program repository, to find out the technical difficulties
and the expected benefits if this method is to be introduced
into the actual build process. We presented results about the
selection capabilities for a selected set of revisions of WebKit,
and applied different test case prioritization strategies to further
reduce the number of tests to execute. A preliminary version
of SoDA was used in this study as well.

IV. THE SODA PROGRAM REPOSITORY

An important part of the SoDA framework is the program
repository, a set of experimental programs with test suites
and the corresponding measurement data produced by the
library which can be used in code coverage-related research.
The SoDA binary data files of the subject programs and the
results of all measurements can be downloaded from the SoDA
website [9]. Note that since SoDA is not tied to any specific
analysis granularity, measurements on the subject programs
can be performed on various levels such as statements and
procedures. The readily available coverage data have been
prepared at procedure level granularity. Also note that the
SoDA binaries can be produced for programs written in any
programming language by providing an input file in the re-
quired format or by extending the framework through plugins.

The repository includes various programs from small to
large sizes in three groups (see Table III): programs from
the SIR repository [10], three medium-size programs and two
industrial-size open source systems, the GCC compiler and
the WebKit web browser engine. All programs have associated
test suites with pass/fail information, and we included several
revisions with source code changes. In the first four columns of
the table, we summarize the subject programs’ basic statistics,
while the 5th column presents coverage density, which is the
percentage of the covered elements in the coverage matrix
(ratio of positions where the value was 1).

The next five columns of Table III present metric values
calculated by SoDA for these programs (see the definitions
in Section III). The basic coverage and partition metrics were
used in our previous research in relation to test reduction [4],

8650

TABLE III. STATISTICS, TEST SUITE METRICS AND RESOURCE CONSUMPTION OF CALCULATION FOR THE SUBJECT PROGRAMS (* SEE TEXT)

Statistics Test suite metrics Resource consumption
Program Lines Tests Functions Revs. Cov. density TPCE COV PART EFFCOV EFFPART Time (s) Mem. (MB)

printtokens 726 4 113 18 5 0.79 228.50 1.00 0.856 0.004 0.0037 0.03 2.51
printtokens2 570 4 098 19 10 0.89 215.68 1.00 0.608 0.004 0.0028 0.03 2.57

schedule 412 3 735 18 9 0.62 207.50 1.00 0.960 0.004 0.0046 0.03 2.30
schedule2 374 3 780 16 10 0.64 236.25 1.00 0.958 0.004 0.0041 0.03 2.47

space 6.2K 13 570 125 38 0.52 108.56 1.00 0.988 0.009 0.0091 0.33 8.22
tcas 173 2 239 9 37 0.45 248.78 1.00 0.889 0.004 0.0036 0.02 1.57

totinfo 576 1 036 7 20 0.70 148.00 1.00 0.952 0.006 0.0064 0.01 0.76
augeas 86.1K 273 784 278 0.40 0.35 1.00 0.913 2.872 2.6218 0.04 0.88
bison 34.3K 597 625 827 0.45 0.96 1.00 0.883 1.047 0.9239 0.06 1.29

dateutils 18.4K 522 349 883 0.18 1.50 1.00 0.990 0.669 0.6617 0.06 1.07
GCC 6.2M 128 230 20 372 2553 0.20 6.29 1.00 0.999 0.159 0.1587 575.35* 836.97

WebKit 4.5M 27 013 72 504 1907 0.08 0.37 0.65 0.869 1.758 2.3326 480.94* 784.06

while the others are part of our current research in the field of
test suite quality. In particular, TpCE and the two efficiency
metrics can reveal important information about the efficiency
of test suites in terms of the number of tests required to achieve
other attributes of the test suite.

Finally, we present data about runtime performance of
SoDA for computing the above statistics in terms of execution
time and RAM consumption (the measurements were run on
Intel Core i5 CPU, 8GB of RAM with Ubuntu 14.04). The
performance is clearly the function of the size of coverage
information, which is in turn determined by the number of
elements in the coverage matrix, in our case the product of the
number of tests and procedures (functions and methods). The
statistics are notable for the two big programs. The memory
consumption is acceptable for these systems too, so we believe
that it will be usable for other real size systems as well.

The execution time seems to be a bit long, however; but let
us not forget that this includes the whole process starting from
reading the coverage data from file, building up the internal
data structures and performing the analyses. The average
analysis times for GCC and WebKit were composed as follows:
11% was spent on loading the data from disk, 85% went to
compute the partition metric and 4% to perform all the rest of
the analyses. Computing the partition metric is computationally
complex but it is not required in many applications, so we
believe that the remaining computation times are accaptable;
loading takes about a minute and computing most of the
metrics is performed in seconds even for these large programs.

V. RELATED WORK

There are other frameworks and repositories related to
testing activities as well. Yang et al. [11] prepared a survey of
coverage-based testing tools. They compared the capabilities
of 17 different tools including their own software, called
eXVantage, and provided guidelines for developers to select
the appropriate coverage testing tool. Sahid et al. [12] provided
a study of the current test coverage research by investigating
47 papers between 2000-2010. Three of these studies proposed
frameworks for test coverage measurement and analysis, but
all of them have a different focus than that of SoDA, as we
overview below.

Misurda et al. [13] provided a tool, called Jazz, that can be
used to dynamically instrument code based on the requirements
of coverage. They focused on the instrumentation process
and defined their own language to guide the instrumentation.

Bording et al. [14] proposed a framework called Couverture,
which can produce the coverage of cross-compiled applications
running in a virtualized environment. They focused on the
creation of the coverage information, too. Sakamoto et al. [15]
presented a framework that helps developing test coverage
measurement tools, called Open Code Coverage Framework
(OCCF). Their framework supports eight programming lan-
guages (C, C++, C#, Java, Javascript, Python, Ruby and Lua),
and provides instrumentation support based on Abstract Syntax
Trees to produce the coverage information. OCCF has been ap-
plied on fault localization and test minimization to demonstrate
its capabilities. The main focus of these frameworks is on the
creation of the coverage information, while with the SoDA
library, we concentrate on the unified storage and processing
of coverage data.

Campos et al. [16] developed an automated testing and
fault localization tool to support testing and debugging, called
GZOLTAR which is integrated into the Eclipse development
environment as a plugin, and provides automatic instrumenta-
tion of Java code and calculation of coverage information. The
main feature of the tool is spectrum-based fault localization
based on the Ochiai algorithm. The SoDA library implements
this algorithm as well, but it is more general and is not specific
to any language or programming environment.

An infrastructure to support experimentations related to
various regression testing techniques has been designed and
constructed by Do et al. [10], who also made available their
repository to other researchers. This repository, called Software
Infrastructure Repository (SIR), has become very popular in
the fields of regression testing and fault localization research
because it includes the subject programs, the corresponding
test suites and fault information as well. The drawback of
this repository is that the included programs are typically very
small, many test cases are artificial and most of the faults are
seeded. In the SoDA framework, we included several programs
from the SIR repository.

Another software repository was introduced by Shirabad et
al. [17], namely the PROMISE Software Engineering Reposi-
tory, whose purpose is to provide datasets that can be used
in the area of predictive software models. Building such
models is an important subfield of data mining and machine
learning research. These datasets are publicly available to other
researchers to support repeatable verifiable research in this
area. We also provide the data publicly available that can be
used as a benchmark for code coverage related research.

8751

VI. CONCLUSIONS

SoDA, the framework presented in this article aims at
providing useful features for researchers and practitioner de-
velopers and testers working with regression test suites of large
applications. As the name suggests, however, SoDA is planned
with a broader scope in mind; to include other features for the
analysis of various software development artifacts, not only
regression test suites and code coverage.

The current version of the framework provides solid foun-
dations that proved in research projects. But, our experience
is that even in research context one must pay attention to
use efficient data structures and algorithms if the tool is to
be applied to non-trivial programs. On the other hand, to
reach the full potential of the framework in industrial practice,
more development is needed. Therefore, we invite fellow
researchers and practitioners to take part in the development
of the framework.

We have a number of plans with SoDA, some of which are
already listed on the website as topics for community contri-
bution. Most notably, we envision the following extensions:

• additional metrics for the assessment of test suites,

• additional algorithms, e.g. test prioritization methods,

• more support for test suite manipulation,

• additional useful features in TAM.

In addition, we plan to establish a continuous measurement
server for code coverage measurement and automatic test
suite assesment of some open source projects’ latest revisions,
specifically for WebKit on a short term.

APPENDIX I

The current version of the SoDA library and
toolset can be downloaded through the project’s
website [9] (the source code is hosted by Github at
https://github.com/sed-szeged). All components
of SoDA are released under the LGPL v3 license.

The SoDA homepage provides access to the program repos-
itory from Table III as well, including all related measurement
data, which have been prepared by SoDA tools. This data is
ready to be used in other research in connection with code
coverage and regression test suite assessment, however the
packages contain not just the results but the configuration files
and scripts required to repeat the measurements as well.

APPENDIX II

We plan to demonstrate the features of the SoDA library
and the TAM tool on the conference by performing the analysis
of a small open source program. In addition, we will shortly
overview the data we obtained for all the other programs from
our repository including the large ones, GCC and WebKit.

The demonstration will include the following steps:

1) The code coverage information will be produced by
executing some test cases with the example program.

2) The test results will be collected and the correspond-
ing SoDA binaries will be created.

3) Some analyses (metric calculation and other algo-
rithms) will be executed using command line tools.

4) The coverage and other results will be loaded into
TAM to demonstrate them on the graphical user
interface and perform additional analyses and identify
suggestions for test suite optimization.

5) To emphasize the benefits of using the SoDA library,
the analyzed program code and test cases will be
investigated in parallel.

REFERENCES

[1] L. Copeland, A Practitioner’s Guide to Software Test Design. Artech
House, 2004.

[2] A. Bertolino, “Software testing research: Achievements, challenges,
dreams,” in 2007 Future of Software Engineering. IEEE Computer
Society, 2007, pp. 85–103.

[3] “Blaze, an open-source, high-performance c++ math library,”
https://code.google.com/p/blaze-lib/, last visited: 2014-07-04.

[4] L. Vidács, Á. Beszédes, D. Tengeri, I. Siket, and T. Gyimóthy, “Test
suite reduction for fault detection and localization: A combined ap-
proach,” in Software Maintenance, Reengineering and Reverse Engi-
neering (CSMR-WCRE), 2014 Software Evolution Week-IEEE Confer-
ence on. IEEE, 2014, pp. 204–213.

[5] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing test
cases for regression testing,” Software Engineering, IEEE Transactions
on, vol. 27, no. 10, pp. 929–948, 2001.

[6] S. Yoo, “Evolving human competitive spectra-based fault localisation
techniques,” in Search Based Software Engineering. Springer, 2012,
pp. 244–258.

[7] M. J. Harrold, G. Rothermel, R. Wu, and L. Yi, “An empirical
investigation of program spectra,” in ACM SIGPLAN Notices, vol. 33,
no. 7. ACM, 1998, pp. 83–90.

[8] Á. Beszédes, T. Gergely, L. Schrettner, J. Jász, L. Langó, and
T. Gyimóthy, “Code coverage-based regression test selection and prior-
itization in webkit,” in Software Maintenance (ICSM), 2012 28th IEEE
International Conference on. IEEE, 2012, pp. 46–55.

[9] “Soda framework and repository,” http://www.sed.inf.u-szeged.hu/soda,
last visited: 2014-08-20.

[10] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled experi-
mentation with testing techniques: An infrastructure and its potential
impact,” Empirical Software Engineering, vol. 10, no. 4, pp. 405–435,
2005.

[11] Q. Yang, J. J. Li, and D. M. Weiss, “A survey of coverage-based testing
tools,” The Computer Journal, 2007.

[12] M. Shahid, S. Ibrahim, and M. N. Mahrin, “A study on test coverage
in software testing,” Advanced Informatics School (AIS), Universiti
Teknologi Malaysia, International Campus, Jalan Semarak, Kuala
Lumpur, Malaysia, 2011.

[13] J. Misurda, J. A. Clause, J. L. Reed, B. R. Childers, and M. L. Soffa,
“Demand-driven structural testing with dynamic instrumentation,” in
Software Engineering, 2005. ICSE 2005. Proceedings. 27th Interna-
tional Conference on. IEEE, 2005, pp. 156–165.

[14] M. Bordin, C. Comar, T. Gingold, J. Guitton, O. Hainque, T. Quinot,
J. Delange, J. Hugues, and L. Pautet, “Couverture: an innovative open
framework for coverage analysis of safety critical applications,” Ada
User Journal, vol. 30, no. 4, pp. 248–255, 2009.

[15] K. Sakamoto, K. Shimojo, R. Takasawa, H. Washizaki, and
Y. Fukazawa, “Occf: A framework for developing test coverage mea-
surement tools supporting multiple programming languages,” in Soft-
ware Testing, Verification and Validation (ICST), 2013 IEEE Sixth
International Conference on. IEEE, 2013, pp. 422–430.

[16] J. Campos, A. Riboira, A. Perez, and R. Abreu, “Gzoltar: an eclipse
plug-in for testing and debugging,” in Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineer-
ing. ACM, 2012, pp. 378–381.

[17] J. S. Shirabad, S. Matwin, and T. C. Lethbridge, “Predictive software
models,” in Software Technology and Engineering Practice, 2004. STEP
2004. The 12th International Workshop on. IEEE, 2005, pp. 10–pp.

8852

