
Using the City Metaphor for Visualizing
Test-Related Metrics

Gergő Balogh
University of Szeged, Hungary

Software Engineering Department
geryxyz@inf.u-szeged.hu

Tamás Gergely
University of Szeged, Hungary

Software Engineering Department
gertom@inf.u-szeged.hu

Árpád Beszédes
University of Szeged, Hungary

Software Engineering Department
beszedes@inf.u-szeged.hu

Tibor Gyimóthy
University of Szeged, Hungary

Software Engineering Department
gyimothy@inf.u-szeged.hu

Abstract—Software visualization techniques and tools play
an important role in system comprehension efforts of software
developers in the era of increasing code size and complexity.
They enable the developer to have a global perception on
various software attributes with the aid of different visualization
metaphors and tools. One such tool is CodeMetropolis which is
built on top of the game engine Minecraft and which uses the
city metaphor to show the structure of the source code as a
virtual city. In it, different physical properties of the city and
the buildings are related to various code metrics. Up to now,
it was limited to represent only code related artifacts. In this
work, we extend the metaphor to include properties of the tests
related to the program code using a novel concept. The test suite
and the test cases are also associated with a set of metrics that
characterize their quality (such as coverage and specialization),
but also reveal new properties of the system itself. In a new
version of CodeMetropolis, gardens representing code elements
will give rise to outposts that characterize properties of the tests
and show how they contribute to the quality of the code.

I. INTRODUCTION

Visualization of software artifacts has been the focus of
researchers for a long time. However, its use in the daily
work of software developers is still limited. Many research
prototypes deal with a limited set of artifacts, for example only
structural code information, programmer activity, or perhaps
some process data is visualized. Although there have been
countless, very creative approaches proposed, they are not
always easily adoptable by software developers due to the sub-
optimal metaphor employed by the approach, or cumbersome
application of the visualization tool within the developer’s
well-established workflow.

The present work is a step towards reducing this gap because
we introduce an approach to jointly visualize attributes of two
related software artifacts side by side, namely code and tests,
thus enabling their common investigation. There are numerous
approaches in which various properties of the source code
are visualized, however visualizing attributes of the associated
tests (test cases or test suites) is rarely a concern of researchers.

In this work we employ the city metaphor [1]. It uses
the concept of a landscape of buildings and related physical
objects, where their physical attributes correspond to the
software attributes. This enables the user navigating through
software artifacts in a virtual 3D space, which is very intuitive
from our daily lives. Our approach, CodeMetropolis [2], [3]

differs from related methods in that we employ an existing 3D
visualization engine borrowed from the Minecraft game [4].

Previously, only code related metrics were available in
CodeMetropolis as the basic mapping from code artifacts to
the virtual objects’ properties in the Minecraft world. The
present work extends the metaphor by using additional metrics
computed from test related artifacts of the same system. Our
approach to combine code and test metrics in CodeMetropolis
is to build separate objects corresponding to the code and the
associated tests on a physically close proximity. In addition,
suitable mapping is used between the metrics and the physical
properties such as building dimensions and build materials.
This way, code will become houses and test will turn to out-
posts “defending the code.” Physical attributes of the outposts
such as height, density and material will indicate, for example,
how thoroughly the associated code is tested (covered) or how
specialized are the tests to this code or do they test other
objects as well.

II. MOTIVATION AND RELATED WORK

Information can be represented in many different ways,
but most of us like to see some visual representations where
various colors, shapes, and sizes are assigned to different
data attributes. This is not different in the field of software
engineering, where various techniques and tools were designed
to represent the software, its parts, and their different attributes
in a visual form. The goal is usually to help the understanding
and the analysis of the large amount of available data.

Data visualization techniques are often used in software
engineering, but the relatively new concept of gamification
is still far from this field [5]. In general, gamification employs
gaming elements in non-game contexts in order to ease the
learning curve of new technologies, improve user engagement
and organizational productivity. In software engineering, there
are some examples of using this paradigm, mostly in the co-
texts of learning and enhancing motivation [6]. Our approach
for combined test and code visualization could be a first step to
utilize gamification for improving motivation and productivity,
because testing and code inspection are often tedious tasks.

CodeCity [7] and EvoSpace [8] are two visualization solu-
tions that are very close to our approach. They use the analogy
of buildings in a city. CodeCity simplifies the buildings to
boxes, and assigns source code properties to width, height,



and color attributes of these buildings. The buildings represent
classes, and districts are formed from buildings whose classes
are in the same namespaces. EvoSpace extends this mapping,
and allows the exploration of lower level structures of the
classes by “opening” the houses.

Visualization of test related phenomena is usually limited to
code coverage or execution result metrics and simple diagrams.
Sosnówka proposed the Test City Metaphor [9] to visualize
test entities and properties in order to support regression test
selection for low level test cases. This metaphor does not
concern the code itself, however. The authors of the present
paper used the city metaphor to visualize source code metrics
in Minecraft [2], which is now extended to test-related metrics,
while maintaining the visual representation of code-related
ones.

III. BACKGROUND

A. Measuring test-related metrics

Similarly to code metrics, test-related metrics can be defined
for the different code and test artifacts. A popular test-related
metric is code coverage, which expresses the percentage of
how well the code elements are covered by the test cases.
Code coverage can be computed at different levels: a single
global value can express to what extent all the test cases are
able to check the whole code base; a value can be assigned
to method-test case pairs to show detailed coverage; or it can
be assigned to functional units formed from pairs of code and
test groups [10]. In a functional unit, a code group implements
some functionality and the associated test group is intended
to verify it. Analyzing the system and the tests with this kind
of division can be an aid in test selection, prioritization, and
test suite reduction activities [10], [11].

We defined several concrete metrics for the above mentioned
functional units. For example, the partition metric character-
izes how well a set of test cases can differentiate between
the program elements based on their coverage information.
This is an important aspect for fault localization applications,
where the differences in execution profiles of passed and failed
test case executions are observed to find code elements that
caused the tests to fail. The specialization metric shows how
specialized a test group is to a code group in terms of the ratio
of other test groups. A small value shows that other test groups
intensively test the code group in question, while a high value
reflects better specialization. A related metric is the uniqueness
metric, which measures the portion of the elements that are
covered only (uniquely) by a particular test group.

These metrics are applicable to cross-functional code and
test groups, not only to functional units. For example, we can
compute how the test group of functional unit A covers the
code group of functional unit B. These additional measure-
ments can reveal properties of the test suite and its parts,
and hence they may contribute to e. g. the changeability or
maintainability of the test suite.

We used the SoDA library and toolset [12] to compute
different test-related metrics. SoDA uses detailed coverage
information and other metadata (e. g. functionalities tested

Fig. 1: Source code in the city metaphor

or implemented by a group of items) to compute the above
mentioned metric values as well as others such as the tests to
code element ratio.

B. The city metaphor

In software visualization, there have been various mappings
proposed between code elements and visualization space ob-
jects. As mentioned above, these mappings are usually based
on metaphors such as forests, landscapes or solar systems.
The metaphor determines what objects can be used in the
visualization space and what attributes of these objects can
potentially be used to capture the properties of the represented
entities. A popular metaphor in software visualization is the
city metaphor [1], where source code elements are assigned
to buildings, and the whole software is presented as a city.

On a high level, the city metaphor usually assigns classes
to buildings and attributes to width, length, height, or color
of the buildings. Sometimes additional elements like the
roof size, shape, or color are used to express other metrics.
Buildings may also represent methods, which are grouped into
districts according to their relationsip in the code; districts are
usually formed from namespaces or packages. The hierarchical
structure of packages are usually represented by flat platforms
that are elevated from their context. Figure 1 shows a possible
implementation of the city metaphor visualization using the
CodeMetropolis tool [13], [2] (here, static source code metrics
are presented only).

IV. TEST VISUALIZATION IN CODEMETROPOLIS

A. Overview

CodeMetropolis assigns gardens to classes, cellars to at-
tributes, rooms to methods, buildings to method sets, and
uses elevated platforms to denote namespaces (or packages)
and express inclusion. Different metrics can be assigned to
properties of various components of the virtual city. For
example, the physical dimensions of cellars and rooms, the
amount of the flowers, trees or mushrooms in a garden can
represent various metrics like complexity, size, coupling, code
style issues, etc. The assignment between the metrics and the
visualization attributes is easily configurable.

The main goal of this work was to extend this metaphor
and include the visualization of functional and cross-functional
units, and test-related metrics, but also preserve visibility of
existing static code attributes. Former methods presented either



Fig. 2: An example of functional units

code or test related objects individually, but not both in a
common space.

Data preparation: The first step in our method is source
code analysis and code metrics computation. Next, functional
units are formed by assigning code and test case groups to
the different feature sets of the program. This process can
be performed in various manual, semi-automatic or automatic
ways, but this is not a topic of the present paper. Finally, tests
are executed, which generates the detailed code coverage from
which test related metrics are calculated. More details of the
process can be found in other work [10].

Visualization: The first step in visualization is to map
code and test entities and their properties to architectural
or landscape objects, to their attributes, and other visually
observable phenomena. Then, these objects are constructed
from the building blocks of the Minecraft world and placed
in it according to their relations. Finally, the game loads the
created world and the developers can get around the city and
examine different objects.

B. Program elements to be visualized

The existing visualization concepts in CodeMetropolis re-
mained the same, thus all source code elements (namespaces,
classes, methods, attributes) and their properties (source code
metrics) are visualized as before. The additions are functional
and cross-functional units and their metrics. Functional units
are organized around the functionalities (features) of the
software. For each feature there are test cases created to test
the given functionality, we call these the test groups. Similarly,
the features were implemented in certain classes and methods,
which constitute the code group. A functional unit consist of
the code group and the test group of the same feature, while a
cross-functional unit consists of a code group and a test group
of two different funcionalities [10].

As an example, consider a class called TextFile with
only two methods, read() and write() implementing
input and output features, which are tested by the test cases
testRead and testWrite, respectively (Figure 2). This enables

us to define two functional units: input-input with testRead
and read(); output-output with testWrite and write(); as
well as two cross-functional units: input-output with testRead
and write(); output-input with testWrite and read().

We could not directly visualize functional units as simple
objects in the virtual space, as this combination of code and
test groups does not fit in the existing hierarchical approach
based on the source code. So, we decided to represent a
functional unit as some visible properties of the corresponding
objects. Similarly, test cases do not appear in the visualization
space as individual objects, rather our metrics were computed
for the code item–test case relations. Since the granularity of
the metrics is not individual pairs of these items but functional
code and test groups, the base of visualization will be code
group–test group relations. More concretely, test related met-
rics computed for a given functional or cross-functional unit
will appear as objects, and their visual properties will reflect
the corresponding metrics. We call these objects the outposts.

However, if we placed outposts directly in the visualization
space, we would loose the connection between them and the
source code. Therefore, we place an outpost for each (test
metric, code group, class) triple. This decision implied an
additional property to be visualized: the completeness of a
feature regarding a class. This metric expresses the ratio of
the concerned code elements (methods in the same class that
belong to the assigned code group) compared to all code
elements that are assigned to the feature implemented by the
given code group. For example, if the class TextFile has a
read() method assigned to the input feature, which has two
other assigned methods in addition from other classes, then
TextFile provides 1/3 feature completeness for the input
feature.

C. Side by side visualization of code and tests

Two objects whose source code elements are close to each
other in the code structure (and hence appear also close in
the virtual city) may implement different features. Similarly,
the same feature may be assigned with distant objects, so
mapping functionalities to object placement would raise sev-
eral problems. Therefore, instead of representing features as
objects they will be mapped to object properties. Fortunately,
in Minecraft we can use many kinds of building blocks,
so we assigned different blocks to different features. Then,
the outlook (color and texture) of the objects represents the
assigned feature.

To visualize the concept of (cross-) functional units and
their test related metrics we are using the mentioned outpost
objects. What we want to see is how well the code elements are
tested along the features, so we had to find a way to visualize
the metric values of functional and cross-functional units.
Outposts are placed inside the gardens of classes, and each
outpost is assigned to a (test metric, unit, class) triplet. Each
outpost has a central watch tower and a surrounding fence as
shown in Figure 3. The height attribute is used to represent the
metric value. Also one of its two building materials reflects



Fig. 3: Parts of outpost of test-related metrics

the assigned feature. In addition, the outposts are equipped
with explanatory signs and a colored flag on the top.

The basic concept behind using outposts is that tests are
“guarding” the code. Tests of a certain functional unit are
created to check the quality of the code of the same unit,
but they are not intended to test code from cross-functional
units. Based on this consideration, each outpost of the class is
assigned to a metric–code group pair and represents a single
metric of multiple (cross-) functional units. The central tower
of the outpost is assigned to the test group of the same feature
the code group of the outpost was assigned to, while segments
of the surrounding fence of the outpost represent the other test
groups. Thus, the central tower represents the metric value
of the functional unit. The completeness of the central tower
shows the actual feature completeness regarding the given
class and functionality. The tower also has a scaffolding up
to the top which represents the actual metric value. The name
of the functional unit is shown on a wall sign, but also encoded
into the building material of the tower walls and outpost
ground. This provides a strong visual connection between the
methods and the outposts of their test related data.

The surrounding fence of the tower is divided into segments
and each segment is assigned to a cross-functional unit (cross-
functional test group of the given code group). The height of
each fence segment represents the metric value of the same
metric (which was assigned to the outpost) for the cross-
functional unit assigned to the segment. For example, if the
outpost stands for coverage and is assigned to the input code
group, the fence will represent the output test group, i. e. the
output-input cross-functional unit. Note, that in the example
the whole fence represents the same unit as this is the only
cross-functional unit.

This construction of the outpost lets us visualize some
common shortcomings of the tests. For example, a high fence
around a low tower in an outpost (like the leftmost outpost in
Figure 3) assigned to the coverage metric (and some feature)
shows that tests intended to check the implementation of
a feature are not performing well, while other tests (not
intentionally created to do so) will do the job instead; which
violates the modularity of the system.

V. CONCLUSIONS

Understanding the structure of large test suites and the
relation of its constituent test cases to the code of a system
is hard, and there are not much tools to aid this activity. This
work combines two previous approaches: a method to express
test quality in terms of metrics, and visualization of code
related metrics in the CodeMetropolis framework. The city
metaphor employed by CodeMetropolis seems to be useful
for test metrics as well, and we believe that the side by side
presentation of code and tests will enable for the developer to
obtain a more global picture of her software.

Currently, the approach has been tried on systems that
we developed, about which we have in depth knowledge. In
the near future we plan to perform additional experiments,
possibly involving human evaluation, on other software. Our
long term goal is to enhance the metaphor to include additional
information sources (such as defects or process data) because
we believe that a successful visualization needs to feed from
multiple sources.

REFERENCES

[1] R. Wettel and M. Lanza, “Codecity: 3d visualization of large-
scale software,” in Companion of the 30th International Conference
on Software Engineering, ser. ICSE Companion ’08. New York,
NY, USA: ACM, 2008, pp. 921–922. [Online]. Available: http:
//doi.acm.org/10.1145/1370175.1370188

[2] G. Balogh and Á. Beszédes, “CodeMetropolis - code visualisation in
Minecraft,” in Proceedings of the 13th IEEE International Working
Conference on Source Code Analysis and Manipulation (SCAM’13), Tool
Track, Sep. 2013, pp. 127–132.

[3] “Homepage of codemetropolis project.” [Online]. Available: http:
//www.sed.inf.u-szeged.hu/codemetropolis

[4] “Minecraft Official Website.” [Online]. Available: http://minecraft.net/
[5] D. J. Dubois and G. Tamburrelli, “Understanding gamification mecha-

nisms for software development,” in Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2013.
New York, NY, USA: ACM, 2013, pp. 659–662.

[6] S. Deterding, “Gamification: Designing for motivation,” ACM Interac-
tions, vol. 19, no. 4, pp. 14–17, 2012.

[7] R. Wettel and M. Lanza, “Codecity,” in Proceedings of 1st International
Workshop on Academic Software Development Tools and Techniques
2008, ser. WAS-DeTT 2008, 2008, pp. 1–13.

[8] D. Lalanne and J. Kohlas, Human machine interaction: research results
of the MMI program. Springer Science & Business Media, 2009, vol.
5440.

[9] A. Sosnówka, “Test city metaphor for low level tests restructuration
in test database,” in Evaluation of Novel Approaches to Software
Engineering. Springer, 2013, pp. 141–150.

[10] D. Tengeri, Á. Beszédes, T. Gergely, L. Vidács, D. Havas, and
T. Gyimóthy, “Beyond code coverage – an approach for test suite
assessment and improvement,” in Proceedings of the Testing: Academic
& Industrial Conference – Practice and Research Techniques (TAIC
PART 2015). IEEE Computer Society, Apr. 2015, pp. 1–7.

[11] F. Horváth, B. Vancsics, L. Vidács, Á. Beszédes, D. Tengeri, T. Gergely,
and T. Gyimóthy, “Test suite evaluation using code coverage based
metrics,” in Proceedings of the 14th Symposium on Programming
Languages and Software Tools (SPLST’15), Oct. 2015, pp. 46–60.

[12] D. Tengeri, Á. Beszédes, D. Havas, and T. Gyimóthy, “Toolset and
program repository for code coverage-based test suite analysis and
manipulation,” in Proceedings of the 14th IEEE International Working
Conference on Source Code Analysis and Manipulation (SCAM’14), Sep.
2014, pp. 47–52.

[13] G. Balogh, A. Szabolics, and A. Beszédes, “Codemetropolis: Eclipse
over the city of source code,” in Source Code Analysis and Manipulation
(SCAM), 2015 IEEE 15th International Working Conference on. IEEE,
2015, pp. 271–276.


