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ABSTRACT
Spectrum-Based Fault Localization (SBFL) is one of themost popular
genres of Fault Localization (FL) methods among researchers. One
possibility to increase the practical usefulness of related tools is to
involve interactivity between the user and the core FL algorithm. In
this setting, the developer provides feedback to the fault localization
algorithm while iterating through the elements suggested by the
algorithm. This way, the proposed elements can be influenced in
the hope to reach the faulty element earlier (we call the proposed
approach Interactive Fault Localization, or iFL). With this work, we
would like to propose a presentation of our recent achievements
in this topic. In particular, we overview the basic approach, and
the supporting tools that we implemented for the actual usage of
the method in different contexts: iFL4Eclipse for Java developers
using the Eclipse IDE, and CharmFL for Python developers using the
PyCharm IDE. Our aim is to provide an insight into the practicalities
and effectiveness of the iFL approach, while acquiring valuable
feedback. In addition, with the demonstration we would like to
catalyse the discussion with researchers on the topic.

CCS CONCEPTS
• Software and its engineering → Dynamic analysis; Software
maintenance tools; Integrated and visual development environments;
Software testing and debugging; • Human-centered comput-
ing → Interactive systems and tools.

KEYWORDS
spectrum-based fault localization, interactive fault localization, in-
teractive debugging, testing, user feedback
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1 INTRODUCTION
This work deals with fault localization (FL), a debugging subactivity
in which the root causes of an observed failure are sought. In partic-
ular, we present a technique and several tools to aid Spectrum-Based
Fault Localization (SBFL), a class of FL methods popular among
researchers [17]. The benefit of SBFL is that it relies on two sets of
information: detailed code coverage and test outcomes. These are
typically readily available or easily obtainable in existing projects.
Based on statistical information about the number of failing and
passing test cases exercising different code elements of the sys-
tem, elements are assigned various suspiciousness scores that can
be used to rank the code elements, thus aiding the developer in the
debugging activity.

There are barriers to the wider adoption of SBFL in programming
practice, such as a high number of elements to investigate [12, 18],
and other issues [8, 15]. A possibility to increase the practical useful-
ness of SBFL tools is to involve interactivity and hence improve one
of the tool’s most crucial performance properties, fault localization
effectiveness [5, 14, 16].

In our approach, called Interactive Fault Localization (iFL), we
involve the user’s previous or acquired knowledge about the system.
The developer interacts with the fault localization algorithm via the
iFL ToolKit by giving feedback on the elements of the prioritized list.
This way, the next proposed suspicious elements can be influenced
in the hope to reach the faulty element earlier.

2 INTERACTIVE FAULT LOCALIZATION
2.1 Related Work
The developer typically has additional information about the sys-
tem of which the SBFL engine is not aware. For example, Li et
al. [10, 11] reuses the knowledge about passing parameter values in
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a debugging session, Hao et al. [4] asks for feedback about the exe-
cution trace, Gong et al. [3] asks only for a simple yes/no feedback
for a given statement. Lei et al. [9] utilize test data generation tech-
niques to produce feedback for interacting with fault localization
techniques automatically. To our knowledge, however, contextual
information about higher level entities (for instance, statement vs.
enclosing function) has not yet been leveraged for interactive SBFL.

2.2 Our Approach

Figure 1: Basic process of Interactive Fault Localization

Figure 1 shows a conceptual overview of our approach. The
process starts by calculating the initial ranking based on some tra-
ditional SBFL approach (e. g., Tarantula [7], but any other method
could be used). The elements are then shown to the user starting
from the beginning of the list, and the iFL engine is waiting for user
feedback. In addition, the context of the elements is shown. The
type of contextual data is implementation dependent. Related ele-
ments can be organized and presented based on various principles,
for example, structural information, call-hierarchy, control-flow
data, and others can be used. Next, the user investigates the recom-
mended elements and their contexts, and is able to give feedback
on the different groups of elements (practically the investigated
element, and its context). Based on the feedback, the iFL engine
performs various actions on the affected elements. It makes adjust-
ments to the suspiciousness scores, recalculates the ranking and
updates the list of elements, and the process continues with the
next iteration.

3 IFL TOOLKIT
3.1 iFL4Eclipse for Java Developers
Wepresent iFL4Eclipse [6], which is an Eclipse plug-in that supports
iFL for Java projects developed in this environment. The plug-in
reads the tree of project elements (classes and methods) and lists
them in a view showing detailed information about those elements.
This information includes, among others, the suspiciousness scores
calculated using a traditional SBFL formula, such as Tarantula.

This view also enables navigation to the source code elements and
towards their contexts.

Interactivity between the tool and the programmer is achieved
by providing the capability to send feedback to the FL engine about
elements in the view. The interaction involves the context of the
investigated element: in our case, Java classes and methods. This
gives an opportunity to change the order of elements in the view
and hopefully arrive at the faulty element more quickly.

iFL4Eclipse is a plug-in that supports Eclipse 2018-12 and later,
and project written in Java 10 or later, and configured with Maven
3.6+, so it is part of the well-known workspace of developers. It is
published via an update site and can be installed using common
Eclipse functionality.

3.2 CharmFL for Python Developers
We also present CharmFL 1 [1], an Open-source fault localization
tool for Python programs. The tool has many features that can help
developers debugging their programs by providing a hierarchical
list of ranked program elements based on their suspiciousness
scores.

The front-end part of the tool, is a plug-in using the CharmFL en-
gine for the PyCharm IDE. After installing the plug-in and opening
the Python project in the IDE, the user can run the fault localization
process to get the list of program suspicious elements. Additionally,
the programmer may interact with the given list during debugging.
For each statement the context: in our case Python methods, classes
and static calls are provided to the developer. The wider range of
information about the statements helps the developers to filter out
parts of the list and find the faulty element more quickly.

The back-end of the framework that gathers and processes cover-
age and test results can be used as a stand-alone tool or integrated
in other IDEs too as a plug-in. To obtain the code coverage, our
tool uses the popular coverage measuring tool for Python, called
coverage.py [2]. After collecting the coverage report, we run tests
using pytest [13] to fetch the results. Finally, the tool calculates the
suspiciousness score for each program element based on traditional
SBFL methods.

4 DEMONSTRATION PLAN
During the first part of the hands-on session, we will start with a
short presentation (10 minutes) that introduces the iFL approach to
the participants, then we give a walk-through of all features of the
aforementioned tools (approximately 25-25 minutes). The features
will be presented on real open source projects to demonstrate the
usefulness of the approach in actual fault-finding. For the remaining
time – the second part of the session –, we prepare other examples
on which the participants can try out our tools. Note that the second
part could be scaled according to the final schedule of the event.
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