
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Interacting with Interactive Fault Localization Tools
Ferenc Horváth

hferenc@inf.u-szeged.hu
Department of Software Engineering,

University of Szeged
Szeged, Hungary

Gergő Balogh
geryxyz@inf.u-szeged.hu

Department of Software Engineering,
University of Szeged
Szeged, Hungary

Attila Szatmári
szatma@inf.u-szeged.hu

Department of Software Engineering,
University of Szeged
Szeged, Hungary

Qusay Idrees Sarhan
sarhan@inf.u-szeged.hu

Department of Software Engineering,
University of Szeged
Szeged, Hungary

Department of Computer Science,
University of Duhok

Duhok, Iraq

Béla Vancsics
vancsics@inf.u-szeged.hu

Department of Software Engineering,
University of Szeged
Szeged, Hungary

Árpád Beszédes
beszedes@inf.u-szeged.hu

Department of Software Engineering,
University of Szeged
Szeged, Hungary

ABSTRACT
Spectrum-Based Fault Localization (SBFL) is one of themost popular
genres of Fault Localization (FL) methods among researchers. One
possibility to increase the practical usefulness of related tools is to
involve interactivity between the user and the core FL algorithm. In
this setting, the developer provides feedback to the fault localization
algorithm while iterating through the elements suggested by the
algorithm. This way, the proposed elements can be influenced in
the hope to reach the faulty element earlier (we call the proposed
approach Interactive Fault Localization, or iFL). With this work, we
would like to propose a presentation of our recent achievements
in this topic. In particular, we overview the basic approach, and
the supporting tools that we implemented for the actual usage of
the method in different contexts: iFL4Eclipse for Java developers
using the Eclipse IDE, and CharmFL for Python developers using the
PyCharm IDE. Our aim is to provide an insight into the practicalities
and effectiveness of the iFL approach, while acquiring valuable
feedback. In addition, with the demonstration we would like to
catalyse the discussion with researchers on the topic.

CCS CONCEPTS
• Software and its engineering → Dynamic analysis; Software
maintenance tools; Integrated and visual development environments;
Software testing and debugging; • Human-centered comput-
ing → Interactive systems and tools.

KEYWORDS
spectrum-based fault localization, interactive fault localization, in-
teractive debugging, testing, user feedback

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
A-TEST 2022, 17 - 18 November, 2022, Singapore
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:
Ferenc Horváth, Gergő Balogh, Attila Szatmári, Qusay Idrees Sarhan, Béla
Vancsics, and Árpád Beszédes. 2022. Interacting with Interactive Fault Lo-
calization Tools. In Proceedings of The 13th Workshop on Automating Test
Case Design, Selection and Evaluation (A-TEST 2022). ACM, New York, NY,
USA, 3 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
This work deals with fault localization (FL), a debugging subactivity
in which the root causes of an observed failure are sought. In partic-
ular, we present a technique and several tools to aid Spectrum-Based
Fault Localization (SBFL), a class of FL methods popular among
researchers [17]. The benefit of SBFL is that it relies on two sets of
information: detailed code coverage and test outcomes. These are
typically readily available or easily obtainable in existing projects.
Based on statistical information about the number of failing and
passing test cases exercising different code elements of the sys-
tem, elements are assigned various suspiciousness scores that can
be used to rank the code elements, thus aiding the developer in the
debugging activity.

There are barriers to the wider adoption of SBFL in programming
practice, such as a high number of elements to investigate [12, 18],
and other issues [8, 15]. A possibility to increase the practical useful-
ness of SBFL tools is to involve interactivity and hence improve one
of the tool’s most crucial performance properties, fault localization
effectiveness [5, 14, 16].

In our approach, called Interactive Fault Localization (iFL), we
involve the user’s previous or acquired knowledge about the system.
The developer interacts with the fault localization algorithm via the
iFL ToolKit by giving feedback on the elements of the prioritized list.
This way, the next proposed suspicious elements can be influenced
in the hope to reach the faulty element earlier.

2 INTERACTIVE FAULT LOCALIZATION
2.1 Related Work
The developer typically has additional information about the sys-
tem of which the SBFL engine is not aware. For example, Li et
al. [10, 11] reuses the knowledge about passing parameter values in

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

A-TEST 2022, 17 - 18 November, 2022, Singapore Beszédes et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

a debugging session, Hao et al. [4] asks for feedback about the exe-
cution trace, Gong et al. [3] asks only for a simple yes/no feedback
for a given statement. Lei et al. [9] utilize test data generation tech-
niques to produce feedback for interacting with fault localization
techniques automatically. To our knowledge, however, contextual
information about higher level entities (for instance, statement vs.
enclosing function) has not yet been leveraged for interactive SBFL.

2.2 Our Approach

Figure 1: Basic process of Interactive Fault Localization

Figure 1 shows a conceptual overview of our approach. The
process starts by calculating the initial ranking based on some tra-
ditional SBFL approach (e. g., Tarantula [7], but any other method
could be used). The elements are then shown to the user starting
from the beginning of the list, and the iFL engine is waiting for user
feedback. In addition, the context of the elements is shown. The
type of contextual data is implementation dependent. Related ele-
ments can be organized and presented based on various principles,
for example, structural information, call-hierarchy, control-flow
data, and others can be used. Next, the user investigates the recom-
mended elements and their contexts, and is able to give feedback
on the different groups of elements (practically the investigated
element, and its context). Based on the feedback, the iFL engine
performs various actions on the affected elements. It makes adjust-
ments to the suspiciousness scores, recalculates the ranking and
updates the list of elements, and the process continues with the
next iteration.

3 IFL TOOLKIT
3.1 iFL4Eclipse for Java Developers
Wepresent iFL4Eclipse [6], which is an Eclipse plug-in that supports
iFL for Java projects developed in this environment. The plug-in
reads the tree of project elements (classes and methods) and lists
them in a view showing detailed information about those elements.
This information includes, among others, the suspiciousness scores
calculated using a traditional SBFL formula, such as Tarantula.

This view also enables navigation to the source code elements and
towards their contexts.

Interactivity between the tool and the programmer is achieved
by providing the capability to send feedback to the FL engine about
elements in the view. The interaction involves the context of the
investigated element: in our case, Java classes and methods. This
gives an opportunity to change the order of elements in the view
and hopefully arrive at the faulty element more quickly.

iFL4Eclipse is a plug-in that supports Eclipse 2018-12 and later,
and project written in Java 10 or later, and configured with Maven
3.6+, so it is part of the well-known workspace of developers. It is
published via an update site and can be installed using common
Eclipse functionality.

3.2 CharmFL for Python Developers
We also present CharmFL 1 [1], an Open-source fault localization
tool for Python programs. The tool has many features that can help
developers debugging their programs by providing a hierarchical
list of ranked program elements based on their suspiciousness
scores.

The front-end part of the tool, is a plug-in using the CharmFL en-
gine for the PyCharm IDE. After installing the plug-in and opening
the Python project in the IDE, the user can run the fault localization
process to get the list of program suspicious elements. Additionally,
the programmer may interact with the given list during debugging.
For each statement the context: in our case Python methods, classes
and static calls are provided to the developer. The wider range of
information about the statements helps the developers to filter out
parts of the list and find the faulty element more quickly.

The back-end of the framework that gathers and processes cover-
age and test results can be used as a stand-alone tool or integrated
in other IDEs too as a plug-in. To obtain the code coverage, our
tool uses the popular coverage measuring tool for Python, called
coverage.py [2]. After collecting the coverage report, we run tests
using pytest [13] to fetch the results. Finally, the tool calculates the
suspiciousness score for each program element based on traditional
SBFL methods.

4 DEMONSTRATION PLAN
During the first part of the hands-on session, we will start with a
short presentation (10 minutes) that introduces the iFL approach to
the participants, then we give a walk-through of all features of the
aforementioned tools (approximately 25-25 minutes). The features
will be presented on real open source projects to demonstrate the
usefulness of the approach in actual fault-finding. For the remaining
time – the second part of the session –, we prepare other examples
on which the participants can try out our tools. Note that the second
part could be scaled according to the final schedule of the event.

REFERENCES
[1] CharmFL 2022. CharmFL - homepage. https://sed-szeged.github.io/

SpectrumBasedFaultLocalization/. (Accessed on 07/27/2022).
[2] Coverage.py 2022. Coverage.py - homepage. https://pypi.org/project/coverage/.

(Accessed on 07/27/2022).

1Our tool paper “Interactive Fault Localization for Python with CharmFL” submitted
to A-TEST(tool paper track) complements this hands-on paper

2

https://sed-szeged.github.io/SpectrumBasedFaultLocalization/
https://sed-szeged.github.io/SpectrumBasedFaultLocalization/
https://pypi.org/project/coverage/

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Interacting with Interactive Fault Localization Tools A-TEST 2022, 17 - 18 November, 2022, Singapore

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

[3] Liang Gong, David Lo, Lingxiao Jiang, and Hongyu Zhang. 2012. Interactive fault
localization leveraging simple user feedback. In IEEE International Conference on
Software Maintenance, ICSM. IEEE, 67–76.

[4] Dan Hao, Lu Zhang, Tao Xie, Hong Mei, and Jia-Su Sun. 2009. Interactive Fault
Localization Using Test Information. Journal of Computer Science and Technology
24, 5 (sep 2009), 962–974.

[5] Ferenc Horváth, Árpád Beszédes, Béla Vancsics, Gergő Balogh, László Vidács,
and Tibor Gyimóthy. 2020. Experiments with Interactive Fault Localization Using
Simulated and Real Users. In Proceedings of the 36th IEEE International Conference
on Software Maintenance and Evolution (ICSME’20) (Adelaide, Australia (virtual
event)). 290–300.

[6] iFL4Eclipse 2022. iFL4Eclipse - homepage. https://github.com/
InteractiveFaultLocalization/iFL4Eclipse. (Accessed on 07/27/2022).

[7] James A. Jones andMary JeanHarrold. 2005. Empirical evaluation of the tarantula
automatic fault-localization technique. In Proc. of International Conference on
Automated Software Engineering (Long Beach, CA, USA). ACM, 273–282.

[8] Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. 2016. Practitioners’
expectations on automated fault localization. In Proceedings of the 25th Interna-
tional Symposium on Software Testing and Analysis - ISSTA 2016. ACM Press, New
York, New York, USA, 165–176.

[9] Yan Lei, Xiaoguang Mao, Ziying Dai, and Dengping Wei. 2012. Effective Fault
Localization Approach Using Feedback. IEICE Transactions on Information and
Systems E95.D, 9 (2012), 2247–2257.

[10] Xiangyu Li, Marcelo d’Amorim, and Alessandro Orso. 2016. Iterative User-Driven
Fault Localization. Springer International Publishing, Cham, 82–98.

[11] Xiangyu Li, Shaowei Zhu,Marcelo d’Amorim, andAlessandroOrso. 2018. Enlight-
ened Debugging. In Proceedings of the 40th IEEE and ACM SIGSOFT International

Conference on Software Engineering (ICSE 2018) (Gothenburg, Sweden). ACM.
[12] Chris Parnin and Alessandro Orso. 2011. Are Automated Debugging Tech-

niques Actually Helping Programmers?. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis (Toronto, Ontario, Canada). ACM,
199–209.

[13] pytest 2022. pytest - homepage. https://docs.pytest.org/. (Accessed on
07/27/2022).

[14] Qusay Idrees Sarhan and Árpád Beszédes. 2022. Effective Spectrum Based Fault
Localization Using Contextual Based Importance Weight. In Proceedings of the
15th International Conference on the Quality of Information and Communications
Technology (QUATIC’22) (Talavera de la Reina, Spain).

[15] Friedrich Steimann, Marcus Frenkel, and Rui Abreu. 2013. Threats to the Validity
and Value of Empirical Assessments of the Accuracy of Coverage-based Fault
Locators. In Proceedings of the 2013 International Symposium on Software Testing
and Analysis (Lugano, Switzerland). ACM, 314–324.

[16] Béla Vancsics, Ferenc Horváth, Attila Szatmári, and Árpád Beszédes. 2021. Call
Frequency-Based Fault Localization. In 2021 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER). 365–376. https://doi.
org/10.1109/SANER50967.2021.00041

[17] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
survey on software fault localization. IEEE Transactions on Software Engineering
42, 8 (2016), 707–740.

[18] Xin Xia, Lingfeng Bao, David Lo, and Shanping Li. 2016. “Automated Debugging
Considered Harmful” Considered Harmful: A User Study Revisiting the Useful-
ness of Spectra-Based Fault Localization Techniques with Professionals Using
Real Bugs from Large Systems. In 2016 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 267–278.

3

https://github.com/InteractiveFaultLocalization/iFL4Eclipse
https://github.com/InteractiveFaultLocalization/iFL4Eclipse
https://docs.pytest.org/
https://doi.org/10.1109/SANER50967.2021.00041
https://doi.org/10.1109/SANER50967.2021.00041

	Abstract
	1 Introduction
	2 Interactive Fault Localization
	2.1 Related Work
	2.2 Our Approach

	3 iFL ToolKit
	3.1 iFL4Eclipse for Java Developers
	3.2 CharmFL for Python Developers

	4 Demonstration Plan
	References

