
Experiments with Interactive Fault Localization
Using Simulated and Real Users

Ferenc Horváth∗, Árpád Beszédes∗, Béla Vancsics∗, Gergő Balogh∗, László Vidács∗†, and Tibor Gyimóthy∗†
∗Department of Software Engineering, University of Szeged, Hungary

†MTA-SZTE Research Group on Artificial Intelligence, University of Szeged, Hungary
{hferenc,beszedes,vancsics,geryxyz,lac,gyimi}@inf.u-szeged.hu

Abstract—Fault localization is considered a difficult and time
consuming activity. However, tool support for automated fault
localization is still limited because state-of-the-art algorithms
often fail to provide efficient help to the user. They usually
offer a ranked list of suspicious code elements, but the fault
is not guaranteed to be found among the highest ranks. In
Spectrum-Based Fault Localization (SBFL) – which uses code
coverage information of test cases and their execution outcomes
to calculate the ranks –, the developer has to investigate several
locations before finding the faulty code element. Yet, all the
knowledge she a priori has or acquires during this process is not
reused by the SBFL tool. We propose an approach in which the
developer interacts with the SBFL algorithm by giving feedback
on the elements of the prioritized list. We exploit contextual
knowledge of the user about the next item in the ranked list
(e. g., a statement), with which larger code entities (e. g., a whole
function) can be repositioned in their suspiciousness. First, we
evaluated the approach using simulated users incorporating two
types of imperfections, their knowledge and confidence levels. On
SIR and Defects4J, results showed notable improvements in fault
localization efficiency, even with strong user imperfections. We
then empirically evaluated the effectiveness of the approach with
real users, which also showed promising results.

Index Terms—Spectrum-Based Fault Localization, automated
debugging, interactive debugging, user feedback, user simulation,
user imperfection, user study.

I. INTRODUCTION

Debugging and related activities are among the most dif-
ficult and time consuming tasks in software engineering [1].
This activity involves human participation to a large degree,
and many subtasks are difficult to automate. In this work, we
address fault localization, a necessary subactivity in which
the root causes of an observed failure are sought. Fault
localization is notoriously difficult, and any (semi)automated
method, which can help the developers and testers in this
task, is welcome. There is a class of approaches to aid fault
localization which are popular among researchers, but have
not yet been widely adopted by the industry: Spectrum-Based
Fault Localization (SBFL) [2]–[4].

Recent studies highlighted some barriers to the wide adop-
tion of the SBFL methods, including a high number of
suggested elements to investigate [5], [6], applicability of
theoretical results in practice [7], little experimental results
with real faults [4], validity issues of empirical research [8],
and so on. Kochar et al. performed a systematic analysis of
practitioner’s expectations in the field [9]. With this paper, we

aim at bringing closer the applicability of SBFL methods to
practice by involving user’s knowledge to the process.

The basic intuition behind SBFL is that code elements
(statements, blocks, functions, etc.) that are exercised by
comparably more failing test cases than passing ones are more
suspicious to contain a fault. Additionally, non-suspicious code
elements are traversed primarily by passing tests. Suspicious-
ness is usually expressed by assigning one value to each code
element (the suspiciousness score), which can then be used to
rank the code elements. When this ranked list is given to the
developer for investigation, it is hoped that the fault will be
found near the beginning of the list. A possible approach to
measure the effectiveness of a SBFL method is to investigate
the average rank position of the actual faulty element (absolute
or relative to the total number of code elements), i. e., the
number of elements that have to be investigated before finding
the fault (called the Expense measure). Later studies revealed
that absolute Expense is crucial to the adoption of the method
in practice. In particular, research showed that if the faulty
element is beyond the 5th element (or 10th according to other
studies), the method will not be used by practitioners because
they need to investigate too many elements [4]–[6], [9]. A
further problem is that there are no guarantees that any scoring
mechanism will show sufficiently good correlation between the
score and the actual faults [2], [4], [10], [11].

It seems that automatic SBFL methods require external
information – not just the program spectra and test case
outcomes – to improve on state-of-the-art performance and be
more suitable in practical settings. In this work, we propose a
form of an Interactive Fault Localization approach, called iFL .
In traditional SBFL, the developer has to investigate several
locations before finding the faulty code elements, and all the
knowledge she a priori has or acquires during this process
is not fed back into the SBFL tool. In our approach, the
developer interacts with the fault localization algorithm by
giving feedback on the elements of the prioritized list.

We build on the hypothesis that a programmer, when
presented with a particular code element, in general has a
strong intuition whether any other elements belonging to the
same containing higher level code entity should be considered
in fault localization. In other words, we exploit the knowledge
of the user about the context of the next item in the ranked list;
e. g., if the item is a statement the whole function is considered,
or the whole class if the item is a function. This way, larger

code parts can be repositioned in their suspiciousness in the
hope to reach the faulty element earlier. Other interactive
approaches have been proposed by researchers as well [12]–
[19], but to our knowledge, similar contextual information
about higher level entities has not yet been leveraged.

We evaluated the approach in two experiments. First, we
used simulated users and measured the Expense metric im-
provements with respect to traditional Tarantula SBFL [20].
We relied on two benchmarks: artificial defects from the SIR
repository [21] and real defects from Defects4J [22]. We
also modeled user imperfection, which was rarely studied in
related interactive SBFL research. We addressed this aspect
from two viewpoints: the user’s knowledge and confidence.
Experiments simulating these two factors show that iFL can
outperform a traditional non-interactive SBFL method notably
even at low user confidence and knowledge levels. Second,
we invited students and professional programmers to solve a
set of fault localization tasks using the implementation of the
iFL approach in a controlled experiment. The goal was to find
out whether using the tool shows actual benefits in terms of
finding more bugs or finding them more quickly, and this also
showed promising results.

In summary, our contributions are:

1) We introduced iFL , a novel context-aware interactive
fault localization method, embedded in a flexible inter-
active fault localization framework.

2) We implemented a simulated user and performed experi-
ments on both artificial and real faults. The latter has not
yet been studied in interactive fault localization research.

3) We provide an analysis of two dimensions of user imper-
fection: knowledge and confidence, which was marginally
addressed in previous literature.

4) We implemented iFL as an Eclipse plug-in that enables
interactive fault localization on Java systems at method
level granularity.

5) We performed an empirical study involving real users to
compare the fault localization efficiency with and without
using the iFL approach.

II. MOTIVATING EXAMPLE

For illustration, consider the example in Table I. This is part
of program replace from the SIR benchmark repository, which
includes manually seeded faults (this benchmark is often used
in SBFL research, although being somewhat outdated). Line
116 is a predicate inside function dodash, where an artificial
fault is seeded: the relation is changed and the +1 part is
deleted (the original version of the code line is shown in a
comment). There are three other functions in this program
that closely participate in exposing this particular fault, getccl,
omatch and locate. The relevant code lines are shown in
Table I. Function getpat is first called from the main program
which indirectly calls getccl and eventually dodash to calculate
and return a value. This value is subsequently passed to change
and eventually to omatch and locate where the fault will be
manifested in form of failing test cases.

Table I also shows the coverage relationship between some
typical test cases and the code elements in question, which
expose different behavior with respect to the suspicious ele-
ments. We can see that there are passing and failing test cases,
and that they are exercising different parts of the program. The
faulty statement is traversed both by passing and failing test
cases. The fourth column (0. iteration) of Table I corresponds
to the suspiciousness scores computed by the Tarantula method
along with the ranking position of the elements (the ranking
position is arbitrary in the case of ties in the scores). There
are several lines in functions getccl, omatch and locate that
have higher scores than the faulty one from dodash, which
will push it farther in the rank, in particular to the 11th-13th
place (in the actual implementation, ties are handled so that
the average position among the elements with the same value
will be used, in this case 12th).

We can explain failing of SBFL in this case as follows.
Recall the Tarantula formula for a code element s [20]:

T (s) =

ef (s)
ef (s)+nf (s)

ef (s)
ef (s)+nf (s) +

ep(s)
ep(s)+np(s)

,

where the functions ef (s), nf (s), ep(s) and np(s) count the
number of test cases that execute s and fail, do not execute
s and fail, execute s and pass, and do not execute s and
pass, respectively. Table II shows the four basic statistics for
lines 116 (the actual fault), 366 (one of the most suspicious
statements in the initial ranking) as well as 145 and 321
(the two most suspicious statements in intermediate iterations
of our algorithm, which will be presented shortly). We can
observe that all failing test cases are exercising statement 116
(30/30), while only (25/30) statement 366. This, in itself,
would make the first statement more suspicious, however, the
counts for the passing test cases will change the result. In
particular, a lot more passing test cases exercise statement 116
(2280/5511) than statement 366 (1066/5511). In other words,
there are comparably more coincidentally correct tests [23] for
the actual faulty statement than for the other, and despite the
correct ordering in terms of failing test cases, the final score
will flip their relationship.

III. INTERACTIVE FAULT LOCALIZATION

Our approach to improve SBFL is to leverage the back-
ground and acquired knowledge of the developer about the
system being debugged outside her current focus – the cur-
rently investigated code element. We build on the hypothesis
that a programmer, when presented with a statement from a
particular function, in general has a strong intuition whether
any other statements in that function should be considered in
fault localization. Or, in a different setting, the programmer
is assumed to be able to decide (in certain cases) about the
whole class being faulty or not, if presented with one of
its methods. Example situations when such decisions could
be made include when the element is known to have been
reviewed or otherwise tested recently, it was examined in a
previous debugging session, class members follow the same
pattern such as getters-setters, etc.

TABLE I
EXAMPLE CODE AND FAULT LOCALIZATION PROCESS WITH SEEDED FAULT

Source code Test cases Scores and ranks
Line Code 557 560 855 857 864 0. iteration 1. iteration 2. iteration 3. iteration

93 void dodash(delim, src, i, dest, j, maxset) • • • • • 0.658 (23.) 0.658 (20.) 0.658 (7.) 0.658 (5.)
115 else if ((isalnum(src[*i - 1])) && (isalnum(src[*i + 1])) • • • • 0.677 (14.) 0.677 (12.) 0.677 (5.) 0.677 (4.)
116 &&(src[*i - 1] > src[*i])) { //faulty version • • • • 0.707 (11.) 0.707 (9.) 0.707 (2.) 0.707 (1.)116 //&&(src[*i - 1] <= src[*i + 1])) { //original version
118 for (k = src[*i-1]+1; k<=src[*i+1]; k++) • • • • 0.707 (12.) 0.707 (10.) 0.707 (3.) 0.707 (2.)
122 *i = *i + 1; • • • • 0.707 (13.) 0.707 (11.) 0.707 (4.) 0.707 (3.)
123 }

131 bool getccl(arg, i, pat, j) • • • • • 0.658 (24.) 0.658 (21.) 0.658 (8.) 0
144 } else
145 junk = addstr(CCL, pat, j, MAXPAT); • • • 0.709 (10.) 0.709 (8.) 0.709 (1.) 0

305 bool locate(c, pat, offset) • • • • • 0.762 (5). 0.762 (3.) 0 0
313 flag = false; • • • • • 0.762 (6.) 0.762 (4.) 0 0
314 i = offset + pat[offset]; • • • • • 0.762 (7.) 0.762 (5.) 0 0
315 while ((i > offset)) { • • • • • 0.762 (8.) 0.762 (6.) 0 0
317 if (c == pat[i]) { • • • • • 0.765 (4.) 0.765 (2.) 0 0
318 flag = true; • • • 0.677 (15.) 0.677 (13.) 0 0
319 i = offset; • • • 0.677 (16.) 0.677 (14.) 0 0
320 } else
321 i = i - 1; • • • • • 0.768 (3.) 0.768 (1.) 0 0
322 }
323 return flag; • • • • • 0.762 (9.) 0.762 (7.) 0 0

327 bool omatch(lin, i, pat, j) • • • • •
366 if (locate(lin[*i], pat, j + 1)) • • • 0.811 (1.) 0 0 0
367 advance = 1; • 0.665 (18.) 0 0 0
368 break; • • • 0.811 (2.) 0 0 0

Pass/Fail Status P F F F P

TABLE II
BASIC SBFL STATISTICS FOR THE EXAMPLE PROGRAM

Line ef ep nf np Tarantula score

116 30 2 280 0 3 231 0.707
145 25 1 882 5 3 629 0.709
321 30 1 662 0 3 849 0.768
366 25 1 066 5 4 445 0.811

In our approach, we call this information the contextual
knowledge, which can be fed back to the iFL engine. More
precisely, we define the context of an investigated code
element as the other elements of its enclosing higher level
syntactic entity. For example, in the case of a statement, its
context are all other statements belonging to its function. A
context of a function is its enclosing class, and so on.

Suppose that a developer is performing SBFL and starts with
the highest ranked element, statement 366 (see columns 4-7
in Table I). She looks at the function this statement belongs
to and concludes that it is not likely to contain the fault. This
knowledge is then fed back to the iFL engine, which in turn
reduces the suspiciousness scores for all contained elements
to 0, sending other highly ranked elements to the end of the
list. Then, the next most suspicious element is given to the
user, statement 321 of function locate. Again, the developer
decides based on contextual knowledge that this function is
not suspicious, so the engine reduces scores of all contained
statements to 0. This is repeated for line 145 as well in the next
iteration. Consequently, several elements are pushed to the end
of the list, moving the faulty one to the next rank position.
This terminates the fault localization process with success. The
effort required to locate the fault was reduced from 12 steps
to only 5 (3 steps for removing the three functions and two
steps in the final iteration to select the middle one from the
three elements with the same suspiciousness score).

Figure 1 shows a conceptual overview of our approach. The
process starts by calculating an initial rank based on some
traditional SBFL approach like Tarantula. The elements are
then shown to the user starting from the beginning of the list,
and the iFL engine is waiting for user feedback. The user
investigates the recommended element and gives one of the
following answers: 1) fault is found, 2) element is not faulty,
neither its context, 3) element is not faulty, but the fault is
somewhere within the context, or 4) don’t know.

Fig. 1. Basic process of Interactive Fault Localization

Based on the feedback from the user, the iFL engine
performs the following actions. In the case of (1), the process
terminates, while at (4) it is continued as usual with the
next suspicious element (this means that in the worst case
when the developer has no background knowledge, the method
falls back to the pure SBFL approach). In the remaining two
cases, the iFL engine makes adjustments to the suspiciousness
scores, recalculates the ranking and shows the next element
from the new list to the user in the next iteration.

There may be different strategies to make these adjustments,

such as applying proportional reductions or increases to the
scores, which are different for the context and other parts of
the system, etc. Presently, we follow this approach: in the case
of (2), the whole context (i. e., function) gets 0 score, while
for (3) everything but the context is reduced to 0.

IV. EVALUATION GOALS

We verified the effectiveness of the Interactive Fault Lo-
calization approach in two separate empirical studies: using
simulated (Section V) and real users (Section VI). The study
with simulated users enables large scale and automated ex-
perimentation with different faults from existing benchmarks,
and predicting the expected effectiveness in real life scenarios.
This approach has been followed by most of the related
research, e. g. [12], [13], but we also perform measurements
by simulating various degrees of user imperfection, which is
a novelty compared to previous studies. On the other hand,
evaluation with real users provides direct results about the
usefulness of the approach, although only for a limited number
of fault finding scenarios.

More precisely, the goal of the first part of the evaluation
was the following. With simulated users, how much improve-
ment in localization effectiveness, in terms of elements to be
inspected, can we achieve with iFL over a traditional non-
interactive SBFL method? We have the following Research
Questions for this part of the evaluation:

RQ1 What improvement can we observe with iFL on artificial
faults from the SIR repository?

RQ2 What improvement can we observe with iFL on real
faults from the Defects4J repository?

RQ3 How sensitive iFL is to user imperfections?
The goal of the second part of the evaluation was the

following. Given actual fault finding tasks with real users, is
it true that users with access to an implementation of iFL in
their development environment are able to find more bugs or
find them more quickly compared to a control group who did
not have access to iFL? We formulate the following Research
Questions for the second part of the evaluation with real users:

RQ4 Is it true that users could find more bugs with iFL than
users without access to the method?

RQ5 Is it true that users could find bugs more quickly with
iFL than users without access to the method?

RQ6 How do real users subjectively evaluate the iFL method
and its implementation in the development environment?

V. RESULTS WITH SIMULATED USERS

A. Experiment Setup

To answer research questions RQ1–RQ3, we relied on
two sets of benchmarks: the SIR repository which contains
mostly artificial faults and Defects4J, a benchmark consisting
of real faults. These two benchmarks are different also in
terms of their size and complexity so we will perform fault
localization at different granularity levels. For SBFL, we
selected the Tarantula method [20], which has been reported
to be one of the most successful in different settings [4], and

are often referred in literature. Regarding the user responses
and SBFL engine actions, for RQ1 and RQ2 we follow a
relatively simple but strict approach (there are no intermediate,
partial or uncertain responses and actions, in other words,
we simulate a perfect user). Of the four possible responses
explained in Section III, we will not use the fourth one,
“don’t know”. Furthermore, the mentioned strategy for the
actions will be employed, that is, reducing either the whole
context or everything but the context to 0. Experiments of user
imperfection that answer RQ3, including the “don’t know”
answer, are presented separately in Section V-E.

We implemented the required components of the iFL system
according to these settings on different granularities for the
two benchmarks, and executed it using all available bugs. The
simulated user component works so that it takes the elements
from the ranked list starting from the first one, compares their
context to the context of the known fault and generates the
corresponding answers until the faulty element is reached.

B. Evaluation Method

For measuring the effectiveness of fault localization, in this
study we follow the strategy to look at “elements that need to
be investigated” using the “expected case” in the case of ties
(other approaches are available as well [2], [24]) We express
this in a set of measures called Expense, with two variants: an
absolute one expressed in the number of code elements (E)
and a relative version compared to the length of the rank list
(E′). Parnin and Orso argued that absolute rankings are more
helpful in practical situations [6]. The following formulae
express precisely how to calculate this value (following [25]):

E =
|{i|si > sf}|+ |{i|si ≥ sf}|+ 1

2
, E′ =

E

N
· 100% ,

where N is the number of code elements, for i ∈ {1, . . . , N}
si is the suspiciousness score of the ith code element and f
is the index of the faulty code element.

To compare the iFL method to a traditional SBFL approach,
we will compute Expense metrics for both approaches and
compare them in terms of improvement relative to traditional
SBFL. Since in each iteration of the approach one block of
code is decided upon in one step, we will count each iteration
as an equivalent of one rank position for calculating Expense.
The amount of improvement will then be calculated for each
defect and suitable averages will be produced.

Recent user studies report that developers tend to investi-
gate only the top 5 or at most the top 10 elements in the
recommendation list provided by localization methods before
giving up [5], [9]. Hence, any improved rank position which
is beyond these thresholds will probably be less useful, no
matter how much relative improvement they can achieve.
Therefore, we define the notion of enabling improvement, an
improvement in which the traditional FL algorithm ranks the
faulty method at a position larger than 10 (or 5), but the iFL
method reaches the faulty method in less than 10 (or 5) steps.
This way from a practically “hopeless” localization scenario
our method enables the user to localize the fault by inspecting

the top elements in the list (the accuracy measure by Sohn
and Yoo [26] is similar). We will use three concrete cases to
express enabling improvement:
• (10,∞] → (5, 10] The base FL score is larger than 10

and iFL reaches the fault in 5 to 10 steps.
• (10,∞]→ [1, 5] The base FL score is larger than 10 and

iFL reaches the fault within 5 steps.
• (5, 10] → [1, 5] The base FL score is between 5 and 10

and iFL reaches the fault fault within 5 steps.

C. Results for Seeded Faults

To answer RQ1, seven small C/C++ programs from the
Software-artifact Infrastructure Repository (SIR) [21] were
included in the experiments, which are the so-called “Siemens”
suite. This benchmark contains seeded faults, and both the
original and faulty versions are available. The subject pro-
grams are listed in Table III. Column 2 shows the size of
the programs in lines of code (LOC) including the comment
and empty lines, along with the number of executable code
elements (CE) for which coverage information could be ob-
tained. In column 3, the number of functions in the program
is given (this corresponds to the context in iFL). The number
of test cases in the test suite is presented in column 4, while
the 5th one contains the number of available faulty versions
(each version has exactly one fault in it).

The last column of Table III shows the number of defects we
were able to use in the experiments: 1) we filtered out versions
where there were multiple faulty code elements; 2) we omitted
faults where the coverage tool was unable to record coverage
in, e. g., headers and macros; 3) we omitted cases where the
suspiciousness score of the faulty code element assigned by
the actual SBFL technique was zero (these could not be further
improved). For preparing the raw data for the iFL experiments
including the code coverage information and test case results,
the tools GCOV [27] and SoDA [28] were used.

TABLE III
DETAILS OF SUBJECT PROGRAMS FROM SIR

Program LOC (CE) No. Tests No. No. suitable
func. faults faults

printtokens 726 (277) 18 4 130 7 1
printtokens2 570 (262) 19 4 115 10 7
replace 564 (400) 21 5 542 32 22
schedule 412 (225) 18 2 650 9 2
schedule2 374 (198) 16 2 710 10 4
tcas 173 (95) 9 1 608 41 31
totinfo 565 (187) 7 1 052 23 18

Total 3 384 (1 644) 108 21 807 132 85

Table IV shows the improvements iFL was able to achieve
on SIR. The performance of the original SBFL algorithm can
be seen in column 3, which we used as the reference to eval-
uate iFL. Both absolute and relative versions of the Expense
measure are provided. On average, Tarantula prioritized the
faulty code elements roughly to the 25th place (24.85), which
means that on average 15.43% of the code elements must be
examined to find the faulty one.

Column 4 contains the same data for iFL. The average
Expense measures are notably better than for the original
algorithm. This means that in this case a programmer would
need only about seven (6.86) steps to find the fault on average.
Column 5 shows the actual difference between the absolute
and relative Expense measures, which is 17.99 (11.19%).
Column 6 of the table contains a summary of improvements in
terms of relative changes in the Expense values, expressed in
percentage (that is, the difference over the SBFL base value):
the improvement is notable, 72.42%.

The last four columns of Table IV summarize the enabling
improvements iFL achieved on the SIR benchmark. Here, the
number of faults (and their relative ratio) are presented falling
in the three categories of enabling improvements. According to
the last column, the total ratio of improvements that turned out
to be enabling is quite large, 49.41%. More importantly, most
of these improvements are those that bring the faulty code
element from outside of top 10 into top 10 (Column 7) or, even
better, into top 5 (Column 8). The two programs on which iFL
produces the highest rate of enabling improvements are tcas
and replace. Interestingly, tcas is the smallest and replace is
the largest program in our set, which may indicate that there
is no connection between improvement rate and program size.
Answer to RQ1: In the case of SIR programs containing
seeded faults, iFL achieved 72.42% improvement in Ex-
pense, and resulted in 42 enabling improvements, which
corresponds to 49.41% of the faults.

D. Results for Real Faults

In the field of Interactive Fault Localization, there is an
emerging need for studies that go beyond the size and com-
plexity of the SIR repository. Here, we present our measure-
ment results with iFL on defects from the Defect4J repository
(v1.1.0) [22], to answer RQ2.

The dataset contains 6 open source Java programs and 395
bugs in total. For iFL experiments, we used Clover [29],
Apache Maven [30] and SoDA [28]. Clover is an open source
code coverage measurement tool which we used to extract
coverage and results data from Java systems in which Maven
is used as the software project management tool. Since the
JFreeChart, the Closure Compiler and the Mockito projects are
not Maven based they were excluded from our experiments.
Defects4J provides the fix for each bug as a patch set. We
used the SourceMeter source code analyzer tool [31] to get the
location of all methods in each program. Then, using the patch
sets and the information provided by the static analyzer we
were able to create change sets that contain data about which
methods were affected by which bug fixes. The minimum
requirement of SourceMeter is Java 8, hence older versions are
omitted from our experiments. As with the other benchmark,
we considered only single method faults, and those faults
where the suspiciousness score was not 0. The final set of
programs and defects from the Defects4J dataset can be seen
in Table V. The last column includes the number of bugs we
could use in the experiments.

TABLE IV
iFL IMPROVEMENTS ON SIR

Program Faults
E(E′)

Impr.
Enabling improvements

Avg rank Avg rank w iFL Diff. (10,∞] (10,∞] (5, 10] Total→ (5, 10] → [1, 5] → [1, 5]

printtokens 1 5.00 (1.81%) 2.00 (0.72%) -3.00 (-1.08%) 60.00% 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
printtokens2 7 30.71 (11.72%) 7.21 (2.75%) -23.50 (-8.97%) 76.51% 1 (14.29%) 0 (0.00%) 0 (0.00%) 1 (14.29%)
replace 22 19.18 (4.80%) 4.70 (1.18%) -14.48 (-3.62%) 75.47% 2 (9.09%) 6 (27.27%) 5 (22.73%) 13 (59.09%)
schedule 2 10.75 (4.78%) 5.50 (2.44%) -5.25 (-2.33%) 48.84% 1 (50.00%) 0 (0.00%) 0 (0.00%) 1 (50.00%)
schedule2 4 77.38 (39.02%) 14.25 (7.18%) -63.12 (-31.84%) 81.58% 0 (0.00%) 1 (25.00%) 0 (0.00%) 1 (25.00%)
tcas 31 21.65 (22.78%) 5.58 (5.87%) -16.06 (-16.91%) 74.22% 9 (29.03%) 11 (35.48%) 1 (3.23%) 21 (67.74%)
totinfo 18 26.00 (13.90%) 10.33 (5.53%) -15.69 (-8.39%) 60.36% 4 (22.22%) 0 (0.00%) 1 (5.56%) 5 (27.78%)

85 24.85 (15.43%) 6.86 (4.25%) -17.99 (-11.19%) 72.42% 17 (20.00%) 18 (21.18%) 7 (8.24%) 42 (49.41%)

TABLE V
MAIN PROPERTIES OF PROGRAMS USED FROM DEFECTS4J (KLOC,

TESTS AND NO. BUGS COLUMNS DATA FROM [22])

Project name KLOC Tests Avg. no. Avg. no. No. No. suitable
methods classes bugs bugs

Commons Lang 22 2 245 2 045 101 65 8
Commons Math 85 3 602 4 753 394 106 69
Joda-Time 28 4 130 4 066 179 27 18

Total 135 9 977 10 864 674 198 95

In this experiment, the granularity of fault localization was
elevated to the method level because of two reasons. First,
we could use statement level granularity as well, but the
benchmark contains larger and real programs, and even on
method level it includes a large number of code elements.
Second, we wanted to check how does the algorithm behave
on this level and if there is a significant difference in terms
of effectiveness to the other benchmark. Our feedback-based
algorithm needed adjustment as well: the basic elements are
changed from source code lines to methods, and the context is
changed from functions to classes. Otherwise, the main steps
of the iFL process (from Figure 1) including the responses and
actions were the same as with the statement-level granularity.
The measurements themselves followed the same steps as we
used for SIR in Section V-C, and the results will be presented
in the same way in this section as well. Therefore, detailed
explanation of the structure of tables will be omitted.

Table VI contains the associated results. The Expense
measure for the original SBFL method is quite different than
for the SIR programs, it is 42 steps on average, which is
much more than the average on small programs, however, the
relative measure is smaller, 0.95%. This is due to the signifi-
cantly larger number of program elements in this benchmark
(despite the higher granularity level). iFL achieved a notable
improvement with this benchmark as well, as can be seen from
columns 4 and 5 of the table. The difference is 33, but given
the large total number of elements, the change in percentages
is modest. However, the relative improvement (column 6) is
equally large as for SIR, even a bit higher, 78.45%. Practically,
this means that on average the iFL approach could potentially
save 78.45% of the human effort.

More importantly, in the case of large programs and real
defects there are many cases when iFL achieved enabling
improvements. Detailed data is shown in the second part of

Table VI. Overall, iFL had 33 (35%) enabling improvements,
which is slightly worse than for the SIR programs. In most
cases, iFL brings the faulty elements into the top-10 or top-5
range from outside of top-10. These are the cases where the
original SBFL produced very bad Expense results initially.
Compared to SIR, the lower number of test cases may be
one reason for this phenomenon, but finding the actual causes
needs more investigation. Note that, this benchmark contains
much larger programs and that the original Expense measures
were typically much higher as well.
Answer to RQ2: In the case of Defects4J experiments with
real faults, iFL achieved 78% improvement in Expense,
and produced 33 enabling improvements, corresponding
to 35% of the faults in this benchmark.

E. Effect of User Imperfections

To answer RQ3, in this section we investigate to what
extent user imperfection affects the results of our method.
This phenomenon is only marginally addressed in interactive
fault localization literature. Hao et al. [13] tackled the problem
of user imperfection by incorporating two factors into their
approach and analysis. They introduce a parameter which ap-
proximates the confidence of developers by acting as a scaling
factor on suspiciousness modifications. Also, they define the
concept of accuracy rate to represent the probability that the
developer makes correct estimations. Li et al. [16], [17] used
a similar approach to simulate the reliability of the users by
modifying the automated oracle in their experiment such that
it gives erroneous answers on a configurable rate. We provide
a similar, but more detailed analysis of user imperfection by
experimenting with two factors that may influence the validity
of simulated users:

Confidence Level: This factor indicates how much con-
fidence we have in the user for providing reliable answers.
We model confidence by applying a proportional decrease of
the scores instead of nullation as with the base algorithm. The
iFL engine was modified to scale down the suspiciousness
of appropriate code elements proportionally to the confidence
level: the new score s′ is calculated from the original s using
confidence level c as: s′ = (1 − c)s. Here, c = 0 means no
confidence in which case the original scores remain, and with
perfect confidence, c = 1, nullation will be performed.

Knowledge Level: In our model, the knowledge of the
user means the rate at which she can make informed decisions

TABLE VI
iFL IMPROVEMENTS ON DEFECTS4J

Program Faults
E(E′)

Impr.
Enabling improvements

Avg rank Avg rank w iFL Diff. (10,∞] (10,∞] (5, 10] Total→ (5, 10] → [1, 5] → [1, 5]

commons-lang 8 4.38 (0.22%) 2.38 (0.12%) -2.00 (-0.10%) 45.71% 1 (12.50%) 0 (0.00%) 1 (12.50%) 2 (25.00%)
commons-math 69 29.33 (0.57%) 7.33 (0.15%) -22.01 (-0.41%) 75.02% 12 (17.39%) 6 (8.70%) 9 (13.04%) 27 (39.13%)
joda-time 18 109.56 (2.77%) 19.11 (0.48%) -90.44 (-2.29%) 82.56% 4 (22.22%) 0 (0.00%) 0 (0.00%) 4 (22.22%)

95 42.43 (0.95%) 9.14 (0.21%) -33.29 (-0.74%) 78.45% 17 (17.89%) 6 (6.32%) 10 (10.53%) 33 (34.74%)

about the context. Thus, knowledge is modeled by the user’s
ability to give meaningful answers about the context as a
whole. This factor was implemented by letting the user choose
the “don’t know” response randomly with a frequency that
is inversely proportional to the knowledge level. This means
that a perfect knowledge, k = 1, allows no “don’t know”
responses, while with no knowledge at all, k = 0, every answer
will be of this type, falling back to the base FL algorithm.

If either of the two factors is 0, the method will fall back
to the traditional FL approach, while if both are 1, we will
obtain the base approach we used for research questions RQ1-
RQ2. Any combination of values in between are interesting to
observe to what extent they are influencing the effectiveness
of the iFL method. We re-executed our experiments on both
datasets with confidence and knowledge levels set between
20% and 100% in 10% steps. We decided to ignore values
below 20% because they simulate an unlikely situation in
which the user is very incompetent. Due to the random factor
that was introduced by the implementation of the knowledge
level, we repeated each measurement 100 times and used the
average data that was collected during the iterations.

Improvement levels, in terms of absolute Expense dif-
ference, can be seen in Figure 2 for the SIR benchmark
(results were similar for Defects4J but due to space constraints
we are not presenting them here). Each point on the 3D
surface represents a different configuration of knowledge and
confidence. The near and far edges of the 3D cube mean the
perfect and almost completely incompetent users, respectively
(note, that values for configurations of less than 20 are not
shown, which tend towards 0).

Fig. 2. Improvement with different knowledge and confidence levels on SIR

Results show that both knowledge and confidence affect
the performance of iFL , but to various extent. iFL seems
to be relatively stable, because both factors change only a

small amount from the perfect user to the very low 20%
knowldge and confidence levels. Low knowledge level seems
to have a bigger influence on the results than confidence,
which can be observed by comparing the left and right hand
side edges of the surface. This seems to be aligned with the
everyday observation that high confidence combined with low
knowledge is a worse situation than a low confidence with
high knowledge scenario. These results indicate that relatively
low levels of knowledge and confidence are sufficient in order
to preserve the accuracy of the approach at an almost perfect
level. We can observe from Figure 2, in particular, that when
both aspects of user imperfection exceed the roughly 30-40%
levels, the overall gain will be above 80% of the gain of the
perfect user (14.4 instead of 17.99).
Answer to RQ3: User imperfection, as modeled by our
experiments, only marginally affects the results of the
context aware iFL algorithm. Our experiments show that
even very low confidence (20-30%) and knowledge levels
(30-40%) suffice to keep 80% of the improvements.

VI. RESULTS WITH REAL USERS

A. Experiment Setup

To answer research questions RQ4-RQ6, we performed
a user study involving real programmers and asking them
to solve real fault localization tasks within an IDE. For
the experiment setup, we reused parts of the methodology
followed by Parnin and Orso in their 2011 article [6].

Participants: 36 software engineering students were in-
vited for participation on a voluntary basis, of which 22 were
BSc (undergraduate) and 14 were MSc (graduate) students.
23 participants had at least 1 year programming experience
working in industry. Only the top-performing students were
invited from the class of about 230 based on their previous
scholastic performance in the relevant subjects. Only students
with sufficient knowledge of Java, Eclipse, and its debugging
features were included. The programming experience of the
participants was between 0.5–6 years, on average 2.5 years.
Three groups (G1 − G3) have been formed randomly, each
having approximately the same ratio of BSc and MSc students.

To diversify the experiment we also invited professional
programmers from the software development teams of our
university. We excluded everyone who had some relation to
the topic of this paper and from the 4 volunteers we created
group G4. The average programming experience in this group
was 12.75 years (between 5–18 years).

Tool Support: We implemented a prototype tool [32], [33]
as an Eclipse plug-in that implements the basic functionality of
iFL. Currently, it supports Java projects and fault localization
on method granularity. It provides in a window a ranked list of
methods with the associated suspiciousness scores, the context
(enclosing class), and other information. The user can interact
with this list, provide the feeedback, make filtering on the
scores, navigate to the source, etc.

Task Assignment: We designed altogether 8 different fault
localization tasks (A −H), keeping in mind that participants
should be able to solve each task in about 30 minutes including
understanding the problem and documenting the solution (it
was treated successful if the participant can briefly explain
the required fix but no actual implementation was needed).
We also wanted to ensure some diversity, so we selected A
and E to be small, the rest large programs, B, E, F be simple
bugs and the rest more complex, some to have low Tarantula
ranks (A, C, D), and the rest high ranks. This information
was not told to the participants.

We selected 6 concrete bugs from the Defects4J database (3
from Commons Math and 3 from Joda-Time) and 2 bugs from
a student projectIn particular, the eight bugs with their ID-
s, names and Tarantula ranks were the following: [A] ship-3
(rank 11), [B] math-5 (rank 2), [C] time-9 (rank 7), [D] time-8
(rank 7), [E] ship-1 (rank 2), [F] math-53 (rank 1), [G] time-4
(rank 5), [H] math-4 (rank 2).

Groups G1−G3 have each been assigned 4 different tasks
from the 8 available, half of which had to be executed using
the iFL functionality and the rest without it (feedback was
disabled). In order to increase the diversity, we assigned the
tasks and tool modes in various combinations to the groups.
We reserved two more complex tasks for group G4, and tool
modes were randomly selected when the participants started
their tasks. Table VII shows the task assignments (I: iFL used,
N: iFL not used).

TABLE VII
TASK ASSIGNMENT

Group / Task A B C D E F G H

G1 N I - N I - - -
G2 - N I - N I - -
G3 I - N I - N - -
G4 - - - - - - I/N I/N

Experiment Execution: The experiment was executed in
two sessions with three 1/2 hour blocks in each session and
a break between the sessions. The first block was dedicated
to introduce participants to the experiment, explain the goals,
the basic functionality of the tool and other instructions. Then,
the four tasks have been performed in the next blocks, where
25 minutes were available to actually perform the task and
5 minutes were reserved for documenting the results and
switching to the next task. After each task and for each
participant, we recorded the following information: number
of minutes for completion if it was successful, the solution,
how much was the tool used (none, little, fully), how much
did it help (none, little, a lot), if the tool was not used what

method was used instead to find the bug. During the final
30 minutes, the participants were asked to fill a questionnaire
about their general impressions and comments: how useful was
the approach (on a scale 1-5), actual benefits and drawbacks
encountered, further information that could be used as the
context and other ideas to improve the tool.

B. Results for Bug Finding Efficiency

Results regarding the number of completed tasks are pre-
sented in Table VIII.1 For each task, we include the total
number of participants who performed it, using iFL support
and without it (columns 2, 4 and 6, respectively).2 Columns
Compl. show the number of participants who successfully
completed the task belonging to the group using the tool and
not using it, respectively (also, percentages are given wrt. the
number of participants in the corresponding groups).

TABLE VIII
NUMBER OF ALL AND COMPLETED TASKS

Bug Overall with iFL no iFL
All Compl. All Compl. All Compl.

A - ship-3 24 3 (12%) 12 2 (17%) 12 1 (8%)
B - math-5 24 19 (79%) 12 9 (75%) 12 10 (83%)
C - joda-9 24 14 (58%) 12 5 (42%) 12 9 (75%)
D - joda-8 24 18 (75%) 12 8 (67%) 12 10 (83%)
E - ship-1 25 15 (60%) 13 8 (62%) 12 7 (58%)
F - math-53 23 23 (100%) 12 12 (100%) 11 11 (100%)

Total 144 92 (64%) 73 44 (60%) 71 48 (68%)

The overall success is 64% but it is highly variable across
the different tasks. We could not observe any dependence on
the program size (A vs. D), but more simpler bugs could be
localized by more participants (B vs. E), overall. Initially, it
was not our intent, but task A turned out to be the most difficult
to solve by the participants. Besides the relative complexity of
the bug, this might also be influenced by the fact that it was
the first assignment for the participants, who perhaps did not
have enough understanding of the tool at that time.

We could not observe any difference in the success rate of
participants who used iFL compared to those who did not. In
particular, the number of participants who successfully solved
the tasks is approximately the same, there is even a slight
increase in the overall number of cases without tool support.
A very slight improvement within the group using the tool can
be observed for tasks A (small but difficult bug), E (complex
bug) and F (simple bug and high Tarantula rank).
Answer to RQ4: iFL does not seem to help in localizing
more bugs. A slight increase in success rate can be observed
in the case of complex bugs and when the Tarantula rank
is very high.

1In group G4 success rate was 100% for both tasks, and the completion
time varied between 10-29 minutes independently from tool usage, but due
to space limitations and the very low number of participants we excluded this
group from the evaluation of effectiveness and efficiency.

2For E and F , number of group members with and without iFL was not
equally 12+12 because two workstations had to be exchanged due to technical
reasons, which resulted in a slight change to the planned task assignment.

TABLE IX
TASK COMPLETION TIME IN HOURS, MINUTES AND SECONDS

Bug with iFL no iFL Diff.

A - ship-3 0:16:00 0:25:00 -0:09:00 (-36%)
B - math-5 0:10:33 0:05:48 0:04:45 (82%)
C - joda-9 0:08:00 0:14:53 -0:06:53 (-46%)
D - joda-8 0:15:15 0:21:06 -0:05:51 (-28%)
E - ship-1 0:16:07 0:19:17 -0:03:09 (-16%)
F - math-53 0:12:40 0:09:16 0:03:23 (37%)

Total 9:30:00 11:05:00 -1:35:00 (-14%)

Table IX shows the results we collected about the time
required to localize the fault, which was needed for RQ5.

For each bug, we present the average times required for
completion over all group members who managed to complete
the task. The last column shows the difference of the times
(absolute and relative) with respect to the cases without tool
support. We could observe a noticeable overall improvement,
of 14%. But, results also show that there is a big variance
of the difference across the different tasks: in the case of
the Commons Math bugs, B and F , the tool even resulted
in longer completion times, but in the other cases there was
16-46% improvement on average. Both Commons Math bugs
were quite easy to understand and to locate the faulty element
in them, so it might be the case that the use of iFL resulted
in such a big overhead that not using the tool was actually
more simpler. The overall improvement excluding these two
tasks was about 36% (5:23:00 vs. 8:25:00 total times). We
could not observe any relationship between the program size
or Tarantula rank and the completion times.
Answer to RQ5: Using iFL reduced the time required to
localize the fault, overall by 14%, except for the cases
when the bug was very simple and easy to identify (without
these, the improvement was 36%).

C. Subjective Evaluation by the Participants

For answering RQ6, participants were asked to fill out a
questionnaire that consisted of two parts: short questions about
each bug and questions about the approach and tool in general.
Table X includes the data for the first part, the responses per
bug (this relates only to tasks where iFL was enabled). In
more than two-thirds of all cases, participants expressed their
opinion regarding the usage and usefulness of iFL .

TABLE X
SUBJECTIVE EVALUATION OF iFL PER BUG

Bug
Usage Usefulness

no none little fully no none little a lotansw. answ.

A - ship-3 6 0 3 3 6 2 3 1
B - math-5 2 2 6 2 3 1 6 2
C - joda-9 5 2 5 0 5 2 3 2
D - joda-8 5 2 2 3 6 2 1 3
E - ship-1 3 1 5 4 3 2 5 3
F - math-53 1 0 8 3 1 0 7 4

Total 22 7 29 15 24 9 25 15
(30%) (10%) (40%) (20%) (33%) (12%) (34%) (21%)

Users responded that they did not use the tool in 7 cases
(10%); they used it a little in 29 cases (40%); and relied

fully on iFL in 15 cases (20%). Overall, participants used
the interactive approach at least a little in 44 cases (60%).
Considering the usefulness of iFL , the results were similar.
Participants did not find the approach helpful at all in 9 (12%)
cases, but in the remaining 25 (34%) and 15 (21%) cases they
found that iFL aided fault localization at least a little or a
lot, respectively (this is 82% of the cases when participants
responded). Experts also agreed on the usefulness of the tool,
but they argued that the complexity of the bugs may have an
impact on it. However, we did not identify any pattern in the
distribution of opinions wrt. differences in bug types.

In the next part of the survey, participants were asked to
rate the usefulness of the interactivity for SBFL in general on
a scale 1–5 (1-not useful, 5-extremely useful). The results are
presented in Fig. 3. Two thirds of the participants (24) said
that iFL was useful at least moderately and only 8.3% (3)
answered that they did not find it helpful at all.

3
(8%)

Not
useful

9
(25%)

Little
useful

11
(31%)

Moderately
useful

7
(19%)

Very
useful

6
(17%)

Extremely
useful

Fig. 3. Overall usefulness of the iFL approach

Participants could also write a textual evaluation of the
approach and the tool, in which they could list the advantages
and disadvantages they experienced. Some typical benefits
mentioned: “The tool gives good hints and it can confirm if
my idea is good or not”, “It is straightforward to navigate
between suspicious functions”. Some disadvantages of the tool
mentioned by participants: “The tool can mislead and so gives
an unnecessary overhead”, “We can exclude the actually faulty
functions with feedback, which cannot be undone”.

In addition, participants could articulate suggestions for
using or further developing the tool. Several commented that it
would be helpful if the selected method could be automatically
opened in a separate window or a view. Also, undo-redo and
the dynamic score-update were among the most frequently
mentioned missing features. Some commented that for a large
set of methods, the traditional search function made it easier
to find the appropriate methods.

Professional developers said that the tool provides good
starting points for debugging and it also helps focusing their
efforts on the most suspicious parts of the source code.
However, they also added that more information would be
beneficial to make full use of the potential of interactivity and
to make decisions about contexts easier. They mentioned the
visualization of factors that contribute to the suspiciousness
scores (e. g., related tests, especially the failing ones) and
provide more detailed information about the bug (e. g., stack
traces, call-chains, etc.) in an organized, easily understandable
way as the most advantageous improvement.
Answer to RQ6: For most tasks where they responded,
participants found interactive feedback useful to find the
bug (82%), and two thirds of the participants said that in
general it was useful at least at a moderate level. Textual
responses about the benefits and drawbacks will help us in
further developing the approach and tool.

VII. RELATED WORK

SBFL methods are still finding their way to be employed
in practice [7]–[9], [34]. For instance, most studies are carried
on using artificial faults [4], and still the faulty element is
usually placed far from the top of the rankings [5], [6]. Le et
al. showed in their study that there is a gap between theoretical
and practical results [7]. Since SBFL heavily relies on the
coverage and the pass/fail information, test suite properties
directly affect fault localization [35], [36]. The Zoltar [37] and
GZoltar [38], [39] tools provide the ranked list of diagnosis
candidates to help the user in practice.

The closest related works to our approach are the ones
that change the ranking of program elements based on the
user feedback iteratively. However, the setup of experiments
and metrics used for the evaluation are different in every
case. Differences include the set of defects, the total number
of code elements, different interpretation of the localization
effectiveness metrics, etc. This makes it difficult to compare
our results directly to the reported ones in these works.

For reference, Lei et al. [15] utilize test data generation
techniques to automatically produce feedback for interacting
with fault localization techniques. They used a very similar
metric to ours (E′) to measure the relative effectiveness
improvement and concluded that the improvement is around
21% on average compared to the 71-72% range achieved by
iFL. Hao et al. [13] propose a trace-based method which is
reported to achieve about 8% in a similar measure; they also
showed that about 90% accuracy from the user is needed to
improve the base SBFL algorithm.

In the work of Gong et al. [12], the user simply decides
whether the statements are faulty or not. Ranking is updated
to find the root cause of the fault using the program spectra.
Their approach yields about 12-13% absolute improvement
in Expense on average over Tarantula and Ochiai on small
programs from the SIR repository [34].

Li et al. uses a concept of contextual knowledge that is
similar to ours [16], [17]. They build on the assumption that
the semantics of a method wrt. inputs and output is well
known by developers. They generate queries and use the
feedback to guide the SBFL based recommendation process
in a debugging scenario. Also, they considered the correlation
between the success rate of their approach and the percentage
of erroneous answers to these queries. Bandyopadhyay and
Ghosh proposed a method to iteratively predict and remove
coincidentally correct test cases based on user feedback [14].

Fry and Weimer [40] used software- and defect-related
features to study human accuracy at locating faults. They
found that certain types of bugs are much harder for humans
to locate accurately. Also, they identified source code features
that can foretell human FL accuracy and proposed formal
models of debugging accuracy based on these features.

We concentrated on statistical analysis of dynamic test case
executions, but there have been other approaches proposed for
fault localization as well. For details and comparison of these

approaches we refer to the surveys of Wong et al. [2], [41]
and Parmar and Patel [3].

Some debugging approaches are loosely related to the topic
of this article, where user feedback may be incorporated, for
example the works of Zeller et al. on Delta Debugging [42],
[43], as well as algorithmic debugging and testing [44].

VIII. CONCLUSIONS

In this work, we presented iFL – Interactive Fault Lo-
calization, an approach to extend traditional Spectrum-Based
Fault Localization by providing the ability for the developer
to interact with the fault localization algorithm. Interaction
means giving feedback on the elements of the prioritized list,
based on which the suspiciousness scores are adjusted. We
exploit the knowledge of the user about the next item in the
ranked list (e. g., a statement or a function) and its context
(the containing function or class), with which larger amounts
of code elements can be repositioned in their suspiciousness.

In the present phase of the research, we used simulated
users and a limited empirical study with real users using an
experimental tool implementation, which might not represent
real life scenarios fully. However, the empirical results with
simulated users showed quite big improvements with respect
to non-interactive SBFL even in the case when the users
exhibit low levels of reliability. The study with real users
also showed promising results. Although, iFL does not seem
to help in localizing more bugs, the fault localization times
were reduced significantly (except for the very simple cases),
and subjective feedback was also mostly positive about our
experimental implementation. Current results indicate that
there is a huge potential in improving the interaction between
developers and FL algorithms. The improvement of the score
updating mechanism could also result in even stronger results.
Therefore, we plan to perform more comprehensive empirical
experiments with real programmers, more bugs, and other
strategies for the adjustment of suspiciousness scores. We
would also like to investigate the assumption about developers’
contextual knowledge in our future work.

The interested reader can find more information about the
data and software used in this paper on GitHub [45] and in
the following archives: [46], [47].

ACKNOWLEDGEMENTS

We would like to thank Rita Bártfai and Dávid Horváth for
their contribution to the development of the iFL for Eclipse.

This research was supported by grant TUDFO/47138-
1/2019-ITM of the Ministry for Innovation and Technology,
Hungary. Árpád Beszédes and Ferenc Horváth were supported
by the EU-funded Hungarian national grant GINOP-2.3.2-15-
2016-00037 titled “Internet of Living Things. László Vidács
was also funded by the János Bolyai Scholarship of the Hun-
garian Academy of Sciences. Dávid Horváth was supported
by project EFOP-3.6.3-VEKOP-16-2017-0002, co-funded by
the European Social Fund.

REFERENCES

[1] I. Vessey, “Expertise in debugging computer programs: An analysis of
the content of verbal protocols,” IEEE Transactions on Systems, Man,
and Cybernetics, vol. 16, no. 5, pp. 621–637, Sep. 1986.

[2] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineering,
vol. 42, no. 8, pp. 707–740, 2016.

[3] P. Parmar and M. Patel, “Software fault localization: A survey,” Intl.
Journal of Computer Applications, vol. 154, no. 9, pp. 6–13, 2016.

[4] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst,
D. Pang, and B. Keller, “Evaluating and improving fault localization,”
Proceedings of the 39th International Conference on Software Engineer-
ing, pp. 609–620, 2017.

[5] X. Xia, L. Bao, D. Lo, and S. Li, ““Automated Debugging Considered
Harmful” Considered Harmful: A User Study Revisiting the Useful-
ness of Spectra-Based Fault Localization Techniques with Professionals
Using Real Bugs from Large Systems,” in 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE,
oct 2016, pp. 267–278.

[6] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in Proceedings of the 2011 International Sym-
posium on Software Testing and Analysis. ACM, 2011, pp. 199–209.

[7] T.-D. B. Le, F. Thung, and D. Lo, “Theory and Practice, Do They
Match? A Case with Spectrum-Based Fault Localization,” in 2013 IEEE
International Conference on Software Maintenance, 2013, pp. 380–383.

[8] F. Steimann, M. Frenkel, and R. Abreu, “Threats to the validity and
value of empirical assessments of the accuracy of coverage-based fault
locators,” in Proceedings of the 2013 International Symposium on
Software Testing and Analysis. ACM, 2013, pp. 314–324.

[9] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on
automated fault localization,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis - ISSTA 2016. New York,
New York, USA: ACM Press, 2016, pp. 165–176.

[10] X. Xie, T. Y. Chen, F.-C. Kuo, and B. Xu, “A theoretical analysis of
the risk evaluation formulas for spectrum-based fault localization,” ACM
Trans. Softw. Eng. Methodol., vol. 22, no. 4, pp. 31:1–31:40, Oct. 2013.

[11] S. Yoo, X. Xie, F.-C. Kuo, T. Y. Chen, and M. Harman, “Human compet-
itiveness of genetic programming in spectrum-based fault localisation:
Theoretical and empirical analysis,” ACM Trans. Softw. Eng. Methodol.,
vol. 26, no. 1, pp. 4:1–4:30, Jun. 2017.

[12] L. Gong, D. Lo, L. Jiang, and H. Zhang, “Interactive fault localization
leveraging simple user feedback,” in IEEE International Conference on
Software Maintenance, ICSM. IEEE, 2012, pp. 67–76.

[13] D. Hao, L. Zhang, T. Xie, H. Mei, and J.-S. Sun, “Interactive Fault
Localization Using Test Information,” Journal of Computer Science and
Technology, vol. 24, no. 5, pp. 962–974, sep 2009.

[14] A. Bandyopadhyay and S. Ghosh, “Tester feedback driven fault localiza-
tion,” in 2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation, April 2012, pp. 41–50.

[15] Y. LEI, X. MAO, Z. DAI, and D. WEI, “Effective fault localization
approach using feedback,” IEICE Transactions on Information and
Systems, vol. E95.D, no. 9, pp. 2247–2257, 2012.

[16] X. Li, M. d’Amorim, and A. Orso, Iterative User-Driven Fault Local-
ization. Cham: Springer International Publishing, 2016, pp. 82–98.

[17] X. Li, S. Zhu, M. d’Amorim, and A. Orso, “Enlightened debugging,”
in Proceedings of the 40th IEEE and ACM SIGSOFT International
Conference on Software Engineering (ICSE 2018). ACM, 2018.

[18] Y. Lin, J. Sun, Y. Xue, Y. Liu, and J. Dong, “Feedback-based debug-
ging,” in Proceedings of the 39th International Conference on Software
Engineering. Piscataway, NJ, USA: IEEE Press, 2017, pp. 393–403.

[19] D. Lehmann and M. Pradel, “Feedback-directed differential testing of
interactive debuggers,” in Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ser. ESEC/FSE 2018. New
York, NY, USA: ACM, 2018, pp. 610–620.

[20] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in Proc. of International Con-
ference on Automated Software Engineering. ACM, 2005, pp. 273–282.

[21] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled experi-
mentation with testing techniques: An infrastructure and its potential
impact,” Emp. Softw. Eng., vol. 10, no. 4, pp. 405–435, 2005.

[22] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in Pro-
ceedings of the 2014 International Symposium on Software Testing and
Analysis. ACM, 2014, pp. 437–440.

[23] W. Masri and R. A. Assi, “Prevalence of coincidental correctness and
mitigation of its impact on fault localization,” ACM Trans. Softw. Eng.
Methodol., vol. 23, no. 1, pp. 8:1–8:28, Feb. 2014.

[24] M. Renieris and S. P. Reiss, “Fault localization with nearest neighbor
queries,” in Proceedings of 18th IEEE International Conference on
Automated Software Engineering (ASE 2003). IEEE Computer Society,
2003, pp. 30–39.

[25] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the accuracy
of spectrum-based fault localization,” in Proceedings of the Testing:
Academic and Industrial Conference Practice and Research Techniques
- MUTATION, 2007, pp. 89–98.

[26] J. Sohn and S. Yoo, “FLUCCS: Using code and change metrics to
improve fault localization,” in Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA
2017. ACM, 2017, pp. 273–283.

[27] “gcov-—a test coverage program,” https://gcc.gnu.org/onlinedocs/gcc/
Gcov.html, last visited: 2020-08-13.

[28] “SoDA library,” https://github.com/sed-szeged/soda, last visited: 2020-
08-13.

[29] “Atlassian Clover,” https : / /www.atlassian .com/software /clover, last
visited: 2020-08-13.

[30] “Apache Maven,” https://maven.apache.org, last visited: 2020-08-13.
[31] “SourceMeter,” https://www.sourcemeter.com, last visited: 2020-08-13.
[32] G. Balogh, V. Schnepper Lacerda, F. Horváth, and Á. Beszédes, “iFL for

Eclipse – a tool to support interactive fault localization in Eclipse IDE,”
12th IEEE International Conference on Software Testing, Verification
and Validation (ICST’19), Tool Demo Track, Apr. 2019.

[33] G. Balogh, F. Horváth, and Á. Beszédes, “Poster: Aiding Java developers
with interactive fault localization in Eclipse IDE,” in Proceedings of the
12th IEEE Conference on Software Testing, Verification and Validation
(ICST’19), Posters Track, Apr. 2019, pp. 371–374.

[34] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. C. van Gemund, “A
practical evaluation of spectrum-based fault localization,” J. Syst. Softw.,
vol. 82, no. 11, pp. 1780–1792, Nov. 2009.

[35] B. Baudry, F. Fleurey, and Y. Le Traon, “Improving test suites for
efficient fault localization,” in 28th international conference on Software
engineering, ser. ICSE ’06. ACM, 2006, pp. 82–91.

[36] Y. Yu, J. A. Jones, and M. J. Harrold, “An empirical study of the effects
of test-suite reduction on fault localization,” in International Conference
on Software Engineering (ICSE). ACM, 2008, pp. 201–210.

[37] T. Janssen, R. Abreu, and A. J. van Gemund, “Zoltar: A toolset for
automatic fault localization,” in Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering. IEEE
Computer Society, 2009, pp. 662–664.

[38] A. Riboira and R. Abreu, “The GZoltar Project: A Graphical Debugger
Interface,” in Testing: Academia-Industry Collaboration, Practice and
Research Techniques. Springer, Berlin, Heidelberg, 2010, pp. 215–218.

[39] J. Campos, A. Riboira, A. Perez, and R. Abreu, “GZoltar: an
eclipse plug-in for testing and debugging,” in Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineer-
ing - ASE 2012. ACM Press, 2012, p. 378.

[40] Z. P. Fry and W. Weimer, “A human study of fault localization accuracy,”
in 2010 IEEE International Conference on Software Maintenance, Sep.
2010, pp. 1–10.

[41] W. E. Wong and V. Debroy, “A survey of software fault localization,”
Department of Computer Science, University of Texas at Dallas, Tech.
Rep. UTDCS-45, vol. 9, 2009.

[42] A. Zeller, Why Programs Fail, Second Edition: A Guide to Systematic
Debugging, 2nd ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2009.

[43] A. Kiss, R. Hodován, and T. Gyimóthy, “Coarse hierarchical delta
debugging,” in Proceedings of the 2017 IEEE International Conference
on Software Maintenance and Evolution (ICSME), 2017, pp. 194–203.

[44] J. Silva, “A survey on algorithmic debugging strategies,” Adv. Eng.
Softw., vol. 42, no. 11, pp. 976–991, Nov. 2011.

[45] “iFL 4 Eclipse,” https://github.com/sed-szeged/iFL4Eclipse.
[46] F. Horváth, Á. Beszédes, B. Vancsics, G. Balogh, L. Vidács,

and T. Gyimóthy, “Data for Experiments with Interactive Fault
Localization Using Simulated and Real Users,” 2020. [Online].
Available: https://doi.org/10.5281/zenodo.3991763

[47] ——, “Supplemental Material for Experiments with Interactive Fault
Localization Using Simulated and Real Users,” 2020. [Online].
Available: https://doi.org/10.6084/m9.figshare.c.5099597.v1

