
ISTQB-based Software Testing Education:
Advantages and Challenges

1st Attila Szatmári
Software Engineering Department

University of Szeged
Szeged, Hungary

szatma@inf.u-szeged.hu

2nd Tamás Gergely
Software Engineering Department

University of Szeged
Szeged, Hungary

gertom@inf.u-szeged.hu

3rd Árpád Beszédes
Software Engineering Department

University of Szeged
Szeged, Hungary

beszedes@inf.u-szeged.hu

Abstract—The International Software Testing Qualifications
Board (ISTQB) is a widely-recognized organization that provides
a certification scheme in the field of software testing. The knowl-
edge this scheme sets for different levels and areas of software
testing has become a standard terminology and requirement for
software testers in the industry. In the first part of this paper,
in a small survey, we examine the importance of certification
in the industry, then we do a literature review to investigate to
what extent the ISTQB material is used in university curricula.
We examined job-offering portals and discovered that LinkedIn
and Jobline mostly had job listings that favored the certificate,
however, many jobs required the same skills and knowledge that
the ISTQB Foundation Level certificate provides. Therefore, we
recommend that universities include software testing in their
computer science curriculum and accommodate the principles
outlined by ISTQB. In the last part of the paper, we highlight
the challenges of using ISTQB material in education based on our
experience and show some possible solutions to overcome them.
In conclusion, by providing sufficient knowledge, universities can
provide an opportunity for students and companies to save time
spent on post-graduate training for test-related positions.

Index Terms—ISTQB, Test Education, Higher Level Educa-
tion, Testing

I. INTRODUCTION

Software Testing is a vital step in the software development
process. A badly written software program can cause problems
of all sorts, from minor inconveniences to even potentially
life-threatening situations. Skilled software testers are able to
find these problems before the software is released to the
users. Therefore, it is important to teach computer science
(CS) students how to test software effectively [1]–[3]. Gariousi
et al. [4] show that requirements, design, and testing are the
most important skills in the industry. Hence, it is necessary
to investigate effective approaches for teaching students about
testing in academic environments. Even if CS graduates do
not pursue careers as testers, they can identify problems easier
before testers even see them [5]. This practice makes software
programs more robust in general.

ISTQB®1, short for International Software Testing Quali-
fications Board, is a non-profit organization that offers ed-
ucational resources and certifications for testers on a global
scale. These are based on widely accepted testing principles
and practices used in the industry. Those who take the path

1https://www.istqb.org/

of becoming software testers face their first challenge in their
job application interviews. Interviewers usually ask as a bonus
question about whether the applicant has any tester certifica-
tions like ISTQB CTFL (Certified Tester Foundation Level) or
a higher level ISTQB certification. Usually, companies prefer
the job applicant to have some experience, but it is even
better if they have at least a foundation-level ISTQB certificate.
Nowadays, this became the defacto entry-level knowledge for
the majority of software tester jobs.

While ISTQB provides excellent materials for software
testers, there are plenty of other sources, standards, and books
from which testers can extend their knowledge. One example
is the international standard (ISO/IEC/IEEE 29119 standard
family [6]–[9]), which ISTQB also acknowledges and refers to
further details on the subjects they cover. Additionally, the Art
of Software Testing by Myers et al. [10] provides a brief but
comprehensive presentation on software testing approaches,
and also gives examples of “Absence-of-errors is a fallacy”
testing principles alongside Kaner [11], Weinberg [12], Jor-
gensen [13], and Copeland [14].

Computer Science students often take courses in software
development that cover a variety of programming languages
and software testing to some extent [15]–[17]. However, few of
these courses focus only on testing. As a result, students may
only learn the basics and the technical aspects of unit testing
and may not be able to effectively ensure the quality of their
software. This highlights the importance of including testing
as a key part of a Computer Science education. By learning
how to test software effectively, students can better ensure
the quality and reliability of the software they develop. Some
Hungarian universities have testing courses in their curricula,
which are based on testing concepts defined by ISTQB [18].

Though the ISTQB foundation-level syllabus provides a
solid foundation for understanding testing concepts and prin-
ciples, it has certain obstacles when it comes to teaching
practical testing skills. This paper aims to explore them and
discuss the challenges of teaching testing effectively, with a
focus on the ISTQB approach, and gives an outline to complete
it. By understanding the challenges of using ISTQB materials
in education we can identify ways to improve the teaching and
learning of testing skills. Thus the paper tackles three research
questions.

https://www.istqb.org/


RQ1: To what extent is an ISTQB certification required
or preferred in job applications within the software testing
industry?
RQ2: How common is the teaching of software testing based
on ISTQB principles within the curriculum of universities?
RQ3: What are the challenges of using ISTQB materials in
education and how can they be overcome?

II. ISTQB STRUCTURE

The International Software Testing Qualifications Board
(ISTQB) is a non-profit organization that provides learning
materials and certifications for testers based on widely used
testing principles and techniques in the industry. ISTQB has
67 member boards through which it is present in 130 countries
of the world, and more than 836,000 individuals have at least
one ISTQB certificate. Therefore, it is not surprising that many
companies prefer testers who have ISTQB certificates. Of
course, there are software industry sectors, domains, and also
geographical regions in which this certification scheme is less
important, but we can say with confidence that this is the de-
facto industry standard in software testing.

ISTQB offers the Certified Tester Foundation Level (CTFL)
certificate, which acts as a prerequisite for the other certifi-
cations. The AGILE, CORE, and SPECIALIST certifications
cover a wide range of topics and skill levels, which is an
excellent source for software testers to become an expert
in specific fields of testing. Getting an ISTQB certification
shows that a software tester has a strong understanding of the
industry’s best practices. It is also beneficial for testers who
are looking to advance their careers or increase their earning
potential.

Figure 1 shows the certificates a software tester can obtain
and their relations (as of January 2023). For each certificate,
ISTQB provides a syllabus and a couple of sample exams. Af-
ter getting the Foundation Level certificate (CTFL), a software
tester can take a path to be certified. All of these paths offer
a chance for a variety of specializations.

An Agile certified tester has a deep knowledge of agile
testing methodologies and the principles of agile software
development. This individual understands the role of testers
within an agile team and is able to support the team in planning
and executing test-related activities. They adapt their testing
experience and knowledge to align with Agile values and prin-
ciples. Agile testers are highly valued by organizations that use
Agile methodologies, as they help ensure the timely delivery
of high-quality software products. Additionally, Agile-certified
testers can provide valuable guidance and support to other
team members in implementing Agile practices and achieving
a successful Agile project outcome.

The Core certifications provide the skills needed to perform
structured and thorough software testing across the software
development life cycle. The Test Manager certification covers
the knowledge and skills required to design an appropriate
test approach for a project, build a test team, and develop
the necessary testing competencies. Test Analysts learn how
to translate software requirements and quality aspects into

effective and efficient tests and gain an understanding of
key testing techniques that help them do this translation.
Additionally, Technical Test Analysts are trained in risk-based
testing, white box testing, static and dynamic analysis, non-
functional testing, and test automation; all things that are
required to effectively implement and execute the different
tests.

Specialist certifications provide in-depth knowledge and
skills in specialized areas of software testing. These certifi-
cations cover the concepts, methods, and practices of specific
areas such as game testing and mobile application testing. For
instance, the Game Testing certification imparts the necessary
understanding and skills to test games at all levels in game
projects. The Mobile Application Testing certification equips
testers with knowledge of the necessary mobile project activi-
ties, test processes, approaches, and automated test execution.
These certifications are beneficial for testers who wish to
expand their expertise in a specific field of software testing.

III. JOB APPLICATIONS

We looked for job applications on different job offering
websites (Jobline 2, Profession 3, LinkedIn 4, EuroJobs 5)
to see how frequently ISTQB certification is required for
the QA role. We provided the “software tester”, “QA”, and
“software engineer” keywords in the search bar and manually
examined the job applications. Note, that the Jobline and
Profession portals are in Hungarian, so we needed to translate
the keywords to get meaningful results. To be able to compare
them, we set the location for international portals to Hungary,
thereby ensuring that only Hungarian job postings were listed.
Furthermore, LinkedIn is profile specific, i.e. it lists different
job applications based on what information the user sets as
experience and interests, thus it may vary from person to
person. To avoid bias we used LinkedIn in incognito mode.

Figure 2 shows the number of jobs from each portal
using the above-mentioned keywords. Since there is still a
widespread preconception that testing is less important than
designing software, it is not surprising that software engineers
are sought after more than software testers. While analyzing
job listings, we found that some software tester positions
did not explicitly state a preference or requirement for an
ISTQB certificate. However, these job listings did mention
similar knowledge such as knowledge of black-and-white box
testing techniques, and an understanding of software QA
methodologies, tools, and processes. Although we did not
classify these as positions that specifically favor having an
ISTQB certification, it further supports our claim that the
ISTQB Foundation Level certificate is commonly sought-after
at entry-level software tester jobs. Additionally, it is impor-
tant to note that obtaining an ISTQB certification not only
demonstrates a certain level of knowledge and understanding

2 https://jobline.hu/
3 https://www.profession.hu/
4 https://www.linkedin.com/
5 https://eurojobs.com/

https://jobline.hu/
https://www.profession.hu/
https://www.linkedin.com/
https://eurojobs.com/


Fig. 1. ISTQB certifications

Jobline Profession LinkedIn EuroJobs

0

1,000

2,000

3,000

21 110

504

1,245

7 20

1,643

139130 38

2,922

1,544

Portal Name

N
um

be
r

of
Jo

bs

Software Tester QA Software Engineer

Fig. 2. Number of jobs in Hungary in 2023.
Keywords used: Software Tester, QA, Software Engineer

of software testing but also shows an individual’s commitment
to professional development and career growth in the field.

Figure 3 shows the percentage of how frequently ISTQB
is a requirement for Software Testing jobs. We found that
all portals had more than 100 software tester job listings
except for Jobline, which only had 21 job listings as seen in
Figure 2. As a result, we manually investigated a maximum
of one hundred job offerings from each site. When looking
at the percentage of software tester jobs that require or prefer
ISTQB certificates, we found that LinkedIn and Jobline had
relatively high rates. Both of them are popular job listing

Jobline Profession LinkedIn EuroJobs

20

40

60

47

18

67

29

Portal Name

IS
T

Q
B

Pe
rc

en
ta

ge

Fig. 3. Percentage of Software Tester jobs (out of a hundred) mentioning
ISTQB as a requirement

websites, therefore, we can conclude that ISTQB certificates
are commonly preferred by companies. While the other portals
had a relatively lower rate of job postings where they favor
the ISTQB certificate, it should not be interpreted as them
favoring other certificates. Simply, there is no other software
tester certification that could be equally sufficient and globally
accepted. Furthermore, having an ISTQB certification can also
open up opportunities for advancement and higher-paying po-
sitions within a company. It is also an international certification
that is recognized globally. This supports our claim that ISTQB
certificates provide the defacto knowledge that is required for
software tester jobs.



Answer to RQ1: The results show that an ISTQB certifica-
tion is generally favored in software testing job offers. Thus,
we can conclude that the industry highly values the ISTQB
certification.

IV. TEST EDUCATION IN UNIVERSITY CURRICULA

The purpose of this section is to give a short survey of how
software testing is taught in higher education. This is by no
means a comprehensive survey, just an excerpt to illustrate
the level to which testing is included in the curricula and
especially how much ISTQB is mentioned in these. In addition
to a literature review, we also checked several QS-ranked
universities6 for their curricula and software testing. It is worth
mentioning that many universities do not provide the curricula
publicly, only the requirements and topics they cover in the
courses.

MIT offers open courses, and we found one single course
that covers testing7, but this course offers more content. It also
covers basic Java skills, debugging, synchronization, version
control, etc. The dedicated testing lesson covers white-box,
black-box, unit testing, and code coverage, but it is not based
on the ISTQB program. We found a few courses at Stanford
that include testing, which are CS106B, and CS107. CS106B
has a lecture8 where they cover some aspects of testing. Sim-
ilarly, CS107 provides a page9 dedicated to software testing
where they talk about black-and-white box techniques. We also
found some courses at Carnegie Mellon University (CMU) that
include teaching software testing. An example of that is the
15-11210 course that includes testing and debugging. Another
example is 15-41411, an undergraduate course that is called
Bug Catching: Automated Program Verification. Additionally,
the course we found that is related to testing is 17-35512. This
course gives an in-depth knowledge of program analysis.

These courses generally teach some form of software testing
as part of one or two lectures, however, they do not follow
the ISTQB foundation-level material. Nevertheless, there is
definitely evidence of the use of ISTQB syllabi at universities.
For instance, the German Testing Board lists a number of such
institutions on its website. 13.

Many universities consider including testing in their curricu-
lum in Computer Science programs. Heckman et al. [15] inte-
grated software testing principles in introductory core courses
at North Carolina State University (NCSU). At the beginning
of the semester, students were encouraged to test the assigned
programs with various inputs. Later in the semester, white
and black box techniques were introduced. Students were

6https://www.topuniversities.com/university-rankings/
world-university-rankings/2023

7https://ocw.mit.edu/ans7870/6/6.005/s16/classes/03-testing/
8https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1232/lectures/

03-strings/
9https://web.stanford.edu/class/archive/cs/cs107/cs107.1234/testing.html
10https://www.cs.cmu.edu/∼112/index.html
11https://www.cs.cmu.edu/∼15414/s22/index.html
12http://www.cs.cmu.edu/∼aldrich/courses/17-355-18sp/
13https://www.german-testing-board.info/en/universities/

certified-tester-at-universities/list-of-universities/

required to submit tests for their assignments. In the Software
Development Fundamentals course, students received a more
in-depth look at testing, learning about test levels, coverage,
and static analysis. They were also required to perform testing
for their development assignments. Other universities have
similar modifications to their courses. [16], [17]

While incorporating testing in introductory programming
courses is an excellent idea, it might be overwhelming for
new students to learn that software development is more
than just coding. Furthermore, they may not fully grasp the
importance of software quality and find it difficult to accept
that teaching software testing is as important as teaching soft-
ware development. Nonetheless, it is essential for students to
understand testing principles and how to avoid possible bugs.
While teaching testing principles to computer science students
throughout their education is important, universities should
offer specialized software testing courses where students can
learn testing concepts and principles in-depth.

The following articles tackle some approaches to how they
effectively teach testing at their universities. Aniche et al. [19]
made a pragmatic software testing education program at Delft
University. Their course is currently a compulsory part of
the Computer Science bachelor program. Their course covers
topics from ISTQB industry certification. Lambers [20] used
a sandwich approach for test education at the University of
Potsdam. They first briefly address static analysis, and then
they teach testing concepts and test automation, then they teach
how to verify software. Krutz et al. [21] at the Rochester
Institute of Technology offer a software testing course to
Software Engineering, Computer Science, Computer Engi-
neering, Electrical Engineering, and Game Design students.
Buckley et al. [22] made a study with two undergraduate
students from Florida Gulf Coast University. Their course is
project-based and they used three different strategies over 4
semesters to teach black-and-white box techniques. Within
these “strategies” students either had to test projects that were
sponsored by local companies, a single project that was being
developed during the semester, or a project that has been
developed previously.

Balla et al. [18] made a study on the place of software
testing in Hungarian higher education. They presented the
state of software testing education in 4 Hungarian universities,
and 3 of them actually build their software testing course
on the ISTQB CTFL material. It is worth noting, that the
curricula of these universities might have changed over the
last 12 years since the publication of the article. One of the
investigated institutions was the University of Szeged, whose
software testing course we present in more detail in Section V.
Budapest University of Technology and Economics (BME)
offers a software testing course for Master’s students. In the
course, students are learning about the basic concepts and
techniques of software testing, effective testing requirements,
and possibilities of organizing an effective testing process.
They are applying the basic software testing concepts de-
scribed by the ISTQB. At Eötvös Loránd University (ELTE),
software testing does not appear as a separate subject in

https://www.topuniversities.com/university-rankings/world-university-rankings/2023
https://www.topuniversities.com/university-rankings/world-university-rankings/2023
https://ocw.mit.edu/ans7870/6/6.005/s16/classes/03-testing/
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1232/lectures/03-strings/
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1232/lectures/03-strings/
https://web.stanford.edu/class/archive/cs/cs107/cs107.1234/testing.html
https://www.cs.cmu.edu/~112/index.html
https://www.cs.cmu.edu/~15414/s22/index.html
http://www.cs.cmu.edu/~aldrich/courses/17-355-18sp/
https://www.german-testing-board.info/en/universities/certified-tester-at-universities/list-of-universities/
https://www.german-testing-board.info/en/universities/certified-tester-at-universities/list-of-universities/


their undergraduate curriculum. However, several subjects are
concerned with testing methodology, the semantics of unit tests
in different languages, and test environments. Two subjects in
the Master’s program deal with testing, one of which builds
on the foundation-level ISTQB material and extends it with
agile testing methodologies.

In addition, there is a dedicated software testing course14

at the University of Debrecen. The topics of the course are
publicly available, however, their lectures are not. The course
covers a variety of techniques from the ISTQB CTFL syllabus
and expands upon it by covering additional areas like testing
databases and security testing, etc.

V. TEST EDUCATION AT UNIVERSITY OF SZEGED

The Software Engineering Department at the University
of Szeged, Hungary, offers a variety of courses that cover
testing concepts for undergraduate students. Although most of
the generic software engineering courses are rather focused
on teaching software development and programming, they
also include some form of testing, e.g. unit testing. Two
specific software testing courses are offered to undergraduate
Computer Science students, and one software testing course is
offered to Master’s students. All of these courses are elective,
so students can choose to apply for them but they are not
required to take it to graduate.

Fundamentals of Software Testing: The first undergrad-
uate course gives lectures on the theoretical part of testing,
alongside laboratory exercises where students gain practical
knowledge by doing hands-on exercises. The theoretical lec-
tures cover all content of the Foundation Level Syllabus of the
ISTQB and give examples where needed, e.g. how to write test
cases, how and where to report bugs, and how to write test
plans. At the start of the semester, students in laboratories
learn about testing concepts, e.g. how to write test cases, how
and where to report bugs, how to write test plans, and need
to select from a list of Open-Source programs from GitHub
that they will thoroughly test during the term. The list consists
of Java and C/C++ programs, which are ranked in the top 10
most popular languages in 2022 15, therefore, they learn to use
a variety of relevant testing tools.

By the middle of the semester, students learn about static
analysis and white box testing. Students have to perform
static analysis accompanied by code reviews or code coverage
analysis as part of their assignment. They are taught to use
Spotbugs, PMD, Checkstyle, and EclEmma for Java, and gcov
for C++. Students may use other tools for their assignments.

By the end of the semester, students will have gained
knowledge of black-box testing techniques. This allows them
to effectively implement these techniques when creating test
cases for their assignments. At the end of the semester,
students are required to write a report that summarizes the
methods and tools employed during testing.

14https://gyires.inf.unideb.hu/KMITT/c12/
15https://octoverse.github.com/2022/top-programming-languages#:∼:text=

Top%20languages%20used%20in%202022,place%20year%2Dover%2Dyear.

Practical Software Testing: The second undergraduate
software testing course provides a practical introduction to
software testing after the theoretical part, which students learn
from the previous course. Additionally, the aim of the course is
to learn about automation and to get a basic introduction to test
automation tools and some agile testing practices. They learn
how to use popular test automation tools/frameworks such as
Postman, Selenium, JUnit, Mockito, Cucumber, etc., and get
familiar with test-first approaches, like Test Driven Develop-
ment and Behavior Driven Development. The lectures are held
by guest lecturers invited from external companies who can
use the tools at an expert level. Students are required to do
weekly assignments using the tools presented in class. These
tools are widely used in the industry, meaning that students
who are mastering them will be in high demand when they
enter the job market. By completing weekly assignments using
the tools, students will gain hands-on experience, and if they
have any problems they can ask for help from professionals.

Software Testing Methods: The Master’s course covers
the most important black-and-white box testing and static
analysis methods, mainly from a technical point of view, and
occasionally the scientific aspects are covered as well. This
course aims to provide not just a basic discussion but an
in-depth study of the subject, sometimes covering specific
methods used in unusual circumstances or not yet widely used
in the industry. These include mutation testing, combinatorial
testing, test selection/prioritization, slicing, fault localization,
etc.

Answer to RQ2: While testing is typically included in the
courses for computer science programs in higher education,
specialized testing courses that are based on ISTQB mate-
rials are not common.

VI. CHALLENGES OF TEACHING SOFTWARE TESTING
BASED ON ISTQB SYLLABI

ISTQB certifications are globally accepted and are often
requirements for companies, therefore, it is beneficial for
students to learn the concepts and techniques the syllabi offer.
Based on the literature review it can be seen that teaching
software testing built around ISTQB syllabi is not widespread.
However, based on our own experience as lecturers and on
feedback from students, the approach to include the topics of
this certification scheme is successful. Our recommendation
to other higher educators is to consider including the topics
covered by the ISTQB syllabi in their software testing courses.

However, this approach comes with some challenges as
well, and in this section, we overview how to address them.
ISTQB syllabi are designed to standardize testing principles,
therefore, it is expected to be broad and let the tester figure
out a few things for themselves, or complement the training on
special practical projects. Many companies follow this path:
they require the foundation level certification first from the
employees as basic theoretical knowledge, and then they com-
plement it with knowledge obtained from practical projects.

https://gyires.inf.unideb.hu/KMITT/c12/
https://octoverse.github.com/2022/top-programming-languages#:~:text=Top%20languages%20used%20in%202022,place%20year%2Dover%2Dyear.
https://octoverse.github.com/2022/top-programming-languages#:~:text=Top%20languages%20used%20in%202022,place%20year%2Dover%2Dyear.


The syllabi intentionally do not mention what tools need
to be used while testing. However, this is can be a challenge,
since teachers need to be up to date with the usage of the most
popular testing tools. It is also worth noting that the higher
the certification level, the more theoretical the ISTQB syllabus
becomes. For example, the Advanced Level Test Manager
(CTAL-TM) material is built on test management, which is
a very complex topic to teach in a classroom setting as it
requires a testing team. This can make it difficult for educators
to effectively cover all the material in a classroom setting.
ISTQB’s specialist certifications cover a number of current
topics in the testing industry, but they may not fully address
some unique challenges of testing, such as DevOps. As a
result, other materials may be necessary.

We outline several challenges of using ISTQB syllabi as a
base for testing education:

1) Highly theoretical: ISTQB syllabi mainly focus on
teaching a theoretical understanding of testing concepts
and principles. It is essential for testers to grasp these
concepts, but they are not enough to use the knowledge
in practice immediately.

2) Lack of hands-on exercises: It is fundamentally not
designed to equip the student with hands-on exercises
and testing tools. This can make it harder for students
to generalize the concepts and use them in real-life
environments.

3) Too broad: While it covers a wide range of testing con-
cepts, it lacks in-depth information about using specific
testing tools and techniques. This can make it difficult
for students to gain experience in testing.

We demonstrate how we successfully addressed these chal-
lenges in our undergraduate software testing course mentioned
in Section V, which builds around the basic knowledge re-
quired by the ISTQB CTFL syllabi.

A. To Overcome The Overly Theoretical Nature

First, we solved the highly theoretical problem by creating a
laboratory component of the course, where students can learn
how to create efficient test cases, bug reports, and test plans.
This allows them to apply the theoretical concepts they have
learned in a practical setting. They are introduced to these con-
cepts using small, easy-to-understand real-life examples, and
then gradually, they are required to perform quality assurance
on real-life open-source programs. Additionally, the laboratory
component provides students with hands-on experience that
they can apply to their future careers in the tech industry. At
the beginning of the semester, students learn how to create test
cases on small examples like turning their screens on and off
by following the well-known AAA pattern. The AAA pattern,
also known as the Arrangement, Action, and Assertion pattern,
is a widely used and natural way to structure test cases. [23]
An example test case would look like Table I.

Apart from this small example, there are many more
complex test cases in real life. However, students who had
hardly any knowledge of testing before the course can learn
a lot better from these small examples as they are easy to

TABLE I
A TYPICAL TEST CASE FOLLOWING THE AAA PATTERN

Test steps
Arrange The screen must be turned on
Act Manually push the power button on the monitor
Assert The monitor’s screen should be turned off

understand. These small examples serve as a foundation for
the students to build upon as they learn to tackle more complex
test cases in the course. Once they understand and can use the
basic concepts, students are required to create test plans as
their assignments on the chosen Open-Source program.

The test plan is an important document that guides all
software testing projects. It outlines the tasks that need to
be completed, the quality standards that need to be met, the
resources required, the timeline, and the plan for managing
risks. Students are advised to follow the IEEE 829 [24] Test
Documentation Standard while writing their test plans. Though
ISTQB has updated its reference from IEEE 829 to ISO 29119-
3, we suggest using the prior for students, since it is shorter
and easier to understand. We recommend that test educators
adopt this approach as it simplifies the completion process for
students and helps with grading the assignments for teachers.

B. Giving Hands-on Exercises

At the University of Szeged, we are teaching black box
techniques in the later part of the semester. There are 5
black box techniques that the ISTQB CTFL [25] syllabus
covers. While students may understand the importance of these
techniques, they may have difficulty applying them in real-
world situations. This may be due to a number of reasons, but
one contributing factor could be that the techniques are based
on specifications that are written in natural language. These
specifications may be more complex and nuanced in real-world
scenarios, making it challenging for students to effectively use
the techniques they have learned. Therefore, we provide an
anonymized specification of commercially used software for
students to practice. One effective strategy to study black box
techniques is to review the sample exams provided by ISTQB
and practice solving questions that involve these techniques.
Additionally, it is helpful for students to check if their answers
are correct, as this allows them to identify any areas where they
may need further improvement.

Along with this, we provide a set of examples and answers
to practice these techniques, which can be found in the
online Appendix 16. Another recommendation we have is that
students should be required to apply black box techniques
while completing their testing assignments. This way, they
can practice using these concepts on real-world specifications
and become more proficient in their application. A lot of
open-source projects have poorly written or no specifications,
which is a challenge in itself. In that case, students may do
exploratory testing with the help of the teacher before applying
black box techniques.

16https://doi.org/10.6084/m9.figshare.21983024.v1

https://doi.org/10.6084/m9.figshare.21983024.v1


TABLE II
LIST OF PROGRAMS WE USE DURING OUR SOFTWARE TESTING COURSE

Tool Name Purpose

GitLab
- Bug reporting
- Write test plan
- Store test case documentation

JUnit 5
- Unit testing
- Integration testing
- System testing

EclEmma - Measure coverage for Java programs
- Analyze the generated report

Gcov - Measure coverage for C programs
- Analyze the generated report

SpotBugs - Static analysis
- Find possible errors

PMD - Static analysis

Checkstyle - Static analysis
- Catch coding styling violations

C. Using Specific Testing Tools

We overcome the third challenge by teaching the usage of
testing tools and specific testing techniques. We show what
we use in our course and provide an explanation for why we
use them. Table II lists the programs we use in our course and
their benefits. Students are required to use GitLab17 for turning
in their assignments which include bug reports, test plans,
test cases, and so on. We used to use TestLink18, an open-
source test management system, for documenting test cases
and plans, however, we decided to switch to GitLab since it
makes it easier for the students that everything is in one place.
This tool can be used to practice the test management part of
the CTFL syllabus. We use JUnit19 to teach several testing
levels which complement the Test Levels part of the syllabus.
This is beneficial for students since they are introduced to and
taught how to properly use a tool that is commonly used in
the industry.

For static software analysis, we used three different pro-
grams (SpotBugs20, PMD21, and Checkstyle22). All of these
tools are commonly used in the industry and each has its
own benefits. SpotBugs uses static analysis to look for bugs
in Java programs. The benefit of using it is that it can help
software engineers, including testers, identify potential bugs
in their code before they are deployed, resulting in more
stable and reliable software. Additionally, it can also help
improve code quality by identifying patterns of poor coding
practices. Similarly, PMD (Programming Mistake Detector)
can identify patterns of poor code practices. PMD can also
be easily integrated into build tools such as Maven and
Gradle, allowing for automated code analysis as part of the
development process. Additionally, the usage of Checkstyle is
taught to the students. Checkstyle is a rule-based Java code

17https://gitlab.com/
18https://testlink.org/
19https://junit.org/junit5/
20https://spotbugs.github.io/
21https://pmd.github.io/
22https://checkstyle.org/

checker, which automates verifying the code against coding
standards. It is highly configurable and can be integrated into
the git flow by using a git hook. This way the user is not able
to commit anything until they resolve the code styling errors
their code has. The students are required to review the code
of their assignment programs, but they can use these tools as
a guide. These tools complement the static analysis part of the
ISTQB CTFL syllabus.

Lastly, we show how we use two separate coverage tools
in education. EclEmma23 is a code coverage tool for Eclipse.
The benefit of using it is that it allows developers and software
testers to easily see which lines of code are being executed
during testing, and identify areas of the code that are not
being sufficiently tested, enabling them to write more effective
test cases. Similarly, Gcov24 is a code coverage program
for C/C++. It is used alongside with the GNU Compiler
Collection (GCC) to analyze a program’s source code and
generate a report of which parts of the code have been
executed and which have not. Both tools can generate reports
on code coverage, which students have to analyze and draw
conclusions from.

By explaining the solution to the three challenges the
ISTQB syllabus has as educational material, we can answer
the third research question.

Answer to RQ3: The ISTQB CTFL syllabus has some
parts that induce challenges in the higher education context.
We identified three during our university course: highly
theoretical, lack of hands-on exercises, and too broad.
We addressed them by using practical scenarios in exercises,
including a set of tools used in specific environments.

VII. CONCLUSION

In this study, we examined how important ISTQB certi-
fications are. First, in order to determine how crucial the
certification is for software tester positions, we manually
reviewed 321 job postings from 4 distinct job portals. We
discovered that ISTQB certifications for software testers are
mentioned in 18%–67% of the job offers in the different sites,
and in 39% of all the job offers. Therefore, we came to the
conclusion that ISTQB certificates are important and preferred
in the industry.

Additionally, we looked at the curricula of different univer-
sities to see how software testing is integrated into education.
Since many do not make their courses available to the public,
we were limited to using the topics they teach. On the other
hand, some universities published papers on how they are
integrating software testing into their educational programs,
however, they are not explicitly following the ISTQB syllabus.
At the University of Szeged, we offer a specialized software
testing course to Computer Science students. With our course,
we follow the outline of the ISTQB CTFL syllabus. We
identified some challenges when using it for education and
we showed how we addressed them.

23https://www.eclemma.org/
24https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

https://gitlab.com/
https://testlink.org/
https://junit.org/junit5/
https://spotbugs.github.io/
https://pmd.github.io/
https://checkstyle.org/
https://www.eclemma.org/
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html


In conclusion, we can say that the ISTQB syllabi are good
and useful, but one must be aware that it needs supplementary
tasks when used as educational material. This is not surprising
since the purpose of the syllabus is to help candidates pass the
ISTQB exam by explaining techniques and not to prepare the
student to use their knowledge in practice immediately. De-
spite the identified challenges, we want to advise universities
to teach software testing based on ISTQB because students
would learn relevant and useful techniques. Furthermore, if
they decide to take the exam, they will already be familiar
with the terminology and will have some prior knowledge,
thus will not have to start from the beginning. A university
educator who wishes to incorporate ISTQB into their software
testing course should consider the following steps:

• Use the ISTQB syllabi as a guide for creating course
content that covers relevant and useful techniques for
software testing.

• Provide students with opportunities to practice applying
the techniques they learn in real-world scenarios, such as
through simulations (testing OS programs) or hands-on
projects (See in online Appendix 25).

• Seek ways to extend the basic syllabi with topics that are
most relevant for the students in the education program
in question.

• Continuously evaluate and adapt the course content to
ensure that it aligns with the latest version of the ISTQB
syllabi and meets the needs of the students.

In this paper, we presented what challenges we need to
overcome using ISTQB CTFL syllabus for teaching software
testing. However, further examination of advanced ISTQB
syllabi remains an area of opportunity. Additionally, it would
be interesting to compare with other subjects that follow a
globally recognized educational material, like IREB [26] for
requirements engineering, and teach them useful knowledge
that can serve as a foundation if they want to attain certifica-
tion.

ACKNOWLEDGEMENT

This research was carried out in project TKP2021-NVA-
09 supported by the Ministry of Innovation and Technology
of Hungary from the National Research, Development and
Innovation Fund, financed under the TKP2021-NVA funding
scheme.

REFERENCES

[1] J. C. Carver and N. A. Kraft, “Evaluating the testing ability of senior-
level computer science students,” in 2011 24th IEEE-CS Conference on
Software Engineering Education and Training (CSEE&T). IEEE, 2011,
pp. 169–178.

[2] T. Shepard, M. Lamb, and D. Kelly, “More testing should be taught,”
Communications of the ACM, vol. 44, no. 6, pp. 103–108, 2001.

[3] J. Spacco, D. Hovemeyer, W. Pugh, F. Emad, J. K. Hollingsworth,
and N. Padua-Perez, “Experiences with marmoset: designing and using
an advanced submission and testing system for programming courses,”
ACM Sigcse Bulletin, vol. 38, no. 3, pp. 13–17, 2006.

25https://doi.org/10.6084/m9.figshare.21983024.v1

[4] V. Garousi, G. Giray, E. Tüzün, C. Catal, and M. Felderer, “Aligning
software engineering education with industrial needs: A meta-analysis,”
Journal of Systems and Software, vol. 156, pp. 65–83, 2019.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0164121219301347

[5] O. A. L. Lemos, F. C. Ferrari, F. F. Silveira, and A. Garcia, “Experience
report: Can software testing education lead to more reliable code?”
in 2015 IEEE 26th International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 2015, pp. 359–369.

[6] “Iso/iec/ieee international standard - software and systems engineer-
ing –software testing –part 1:general concepts,” ISO/IEC/IEEE 29119-
1:2022(E), pp. 1–60, 2022.

[7] “Iso/iec/ieee international standard - software and systems engineering
- software testing – part 2: Test processes,” ISO/IEC/IEEE 29119-
2:2021(E), pp. 1–64, 2021.

[8] “Ieee/iso/iec international standard for software and systems
engineering–software testing–part 3:test documentation,” ISO/IEC/IEEE
29119-3:2021(E), pp. 1–98, 2021.

[9] “Ieee/iso/iec international standard - software and systems engineering–
software testing–part 4: Test techniques,” ISO/IEC/IEEE 29119-
4:2021(E), pp. 1–148, 2021.

[10] G. J. Myers, C. Sandler, and T. Badgett, The art of software testing.
John Wiley & Sons: New York, NY, 2011.

[11] C. Kaner, J. Bach, and B. Pettichord, Lessons learned in software testing.
John Wiley & Sons: New York, NY, 2002.

[12] G. M. Weinberg, Perfect Software and other illusions about testing.
Dorset House: New York, NY, 2008.

[13] P. C. Jorgensen, Software Testing: A Craftsman’s Approach. Auerbach
Publications, 2008.

[14] L. Copeland, A Practitioner’s Guide to Software Test Design. USA:
Artech House, Inc., 2003.

[15] S. Heckman, J. Y. Schmidt, and J. King, “Integrating testing throughout
the cs curriculum,” in 2020 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW). IEEE, 2020,
pp. 441–444.

[16] M. H. Goldwasser, “A gimmick to integrate software testing throughout
the curriculum,” ACM SIGCSE Bulletin, vol. 34, no. 1, pp. 271–275,
2002.

[17] J. L. Gersting, “A software engineering “frosting” on a traditional cs-
1 course,” in Proceedings of the twenty-fifth SIGCSE symposium on
Computer science education, 1994, pp. 233–237.

[18] K. Balla, Á. Beszédes, B. G. Csonka, T. Heckenast, and A. Kovács, “The
software testing curriculum in the hungarian education in conjunction
with international standards,” in Proceedings of the Conference on
Informatics in Higher Education 2011 (IF 2011). Debreceni Egyetem,
Informatikai Kar, Aug. 2011, pp. 1096–1103.

[19] M. Aniche, F. Hermans, and A. Van Deursen, “Pragmatic software test-
ing education,” in Proceedings of the 50th ACM Technical Symposium
on Computer Science Education, 2019, pp. 414–420.

[20] L. Lambers, “How to teach software testing? experiences with a sand-
wich approach,” in 2020 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW). IEEE, 2020,
pp. 425–428.

[21] D. E. Krutz, S. A. Malachowsky, and T. Reichlmayr, “Using a real world
project in a software testing course,” in Proceedings of the 45th ACM
technical symposium on Computer science education, 2014, pp. 49–54.

[22] I. Buckley and P. J. Clarke, “Experiences of teaching software testing
in an undergraduate class using different approaches for the group
projects,” in 2021 ASEE Virtual Annual Conference Content Access,
2021.

[23] C. Wei, L. Xiao, T. Yu, X. Chen, X. Wang, S. Wong, and A. Clune,
“Automatically tagging the “aaa” pattern in unit test cases using ma-
chine learning models,” in 37th IEEE/ACM International Conference on
Automated Software Engineering, 2022, pp. 1–3.

[24] “Ieee standard for software and system test documentation,” IEEE Std
829-2008, pp. 1–150, 2008.

[25] I. S. T. Q. B. (ISTQB), “Cerfified tester foundation level syllabus –
version 2018 v3.1,” 2018.

[26] K. Pohl, Requirements engineering fundamentals: a study guide for the
certified professional for requirements engineering exam – foundation
level – IREB compliant. Rocky Nook, Inc., 2016.

https://doi.org/10.6084/m9.figshare.21983024.v1
https://www.sciencedirect.com/science/article/pii/S0164121219301347
https://www.sciencedirect.com/science/article/pii/S0164121219301347

	Introduction
	ISTQB Structure
	Job Applications
	Test Education in University Curricula
	Test Education at University of Szeged
	Challenges of Teaching Software Testing Based on ISTQB Syllabi
	To Overcome The Overly Theoretical Nature
	Giving Hands-on Exercises
	Using Specific Testing Tools

	Conclusion
	References

