
Poster: Improving Spectrum Based Fault
Localization For Python Programs Using Weighted

Code Elements
Qusay Idrees Sarhan1, 2 and Árpád Beszédes1

1 Department of Software Engineering, University of Szeged, Szeged, Hungary
2 Department of Computer Science, University of Duhok, Duhok, Iraq

{sarhan, beszedes}@inf.u-szeged.hu

Abstract—In this paper, we present an approach for improving
Spectrum-Based Fault Localization (SBFL) by integrating static
and dynamic information about code elements. This is achieved
by giving more importance to code elements that include math-
ematical operators compared to other types of elements (e.g.,
declaration, selection, iteration, or function call) and appear in
failed tests. The intuition is that these elements are more likely
to have bugs than others. The proposed approach is applicable
to any SBFL formula without requiring any modifications to
their structures because the weighting is done on the ranking
list and not on the formulas. The experimental results of a
preliminary study show that our approach achieved a much
better performance in terms of average ranking compared to
the underlying SBFL formulas. It also improved the Top-N
categories; it doubled the number of cases in which the faulty
method became the top-ranked element, and in all cases the fault
became part of Top-5 of the ranking list.

Index Terms—Debugging, fault localization, spectrum-based
fault localization, importance weight, suspiciousness score.

I. INTRODUCTION

Many aspects of our daily lives are automated by software.
They are, however, far from being faultless. Software bugs can
result in dangerous situations, including death. As a result, var-
ious software fault localization techniques, such as spectrum-
based fault localization (SBFL) [1], have been proposed over
the last few decades. SBFL calculates the likelihood of each
program element of being faulty based on program spectra
collected from executing test cases and their results. SBFL,
on the other hand, is not yet widely used in the industry due
to a number of challenges and issues [2], [3].

In SBFL, code elements are ranked from most to least sus-
picious based on their suspicion scores. In the basic approach,
only the execution information about each element is used in
calculating these scores. As a result, other sorts of information
(such as the types of statements, the relationships between
statements, how many times a statement is executed, etc.)
are disregarded, which lowers SBFL’s effectiveness. Therefore,
many studies involved other types of information to improve
its effectiveness.

In this paper, we improve the effectiveness of SBFL by
involving static information about each code element into the
SBFL process. We give more importance to code elements
that include mathematical operators compared to other types of
elements (e.g., declaration, selection, iteration, jump, function

return, or function call). The intuition is that these elements are
more error prone due to the computations they include which
are critical parts of any algorithm. Other kinds of statements
can generally be treated as “more simple” which means the
probability of a mistake is lower [4]. The proposed approach
is applicable to any SBFL formula without requiring any
modifications to their structures because the score values are
adjusted after the rankings are produced.

We performed a limited experimental study by implement-
ing the method for Python programs, and used a subject
system with seeded faults. The results show that our proposed
approach achieved a better performance in both the average
ranking positions and in Top-N measurements compared to
the underlying SBFL formulas. Namely, the average ranks
dropped to around 1.5 from 10-20, the number of highest rank
positions doubled, while all faults have been ranked in Top-5
in the worst case.

II. BACKGROUND ON SBFL

To extract the spectra for the subject program, the execution
of tests on program elements is first recorded as part of the
SBFL process. The relationship between the tests and the
program elements is represented by a two-dimensional matrix
called a “program spectra”. Its rows correspond to the program
elements, while its columns show the tests.

In the matrix, a cell shows if a relevant test (column) covers
a corresponding program element (row). The matrix also stores
test results, whether passed or failed (in an extra row).

From the spectra, the following four fundamental statistical
counts are made for each program element e: (a) ep: number of
passed tests executed e; (b) ef: number of failed tests executed
e; (c) np: number of passed tests not executed e; (d) nf: number
of failed tests not executed e.

Then, an SBFL formula [5], e.g., Tarantula, Ochiai, or
Barinel, can utilize these four fundamental statistics to cal-
culate each element’s suspicion score.

As an output, a ranking list based on the scores is created.
The element with the highest ranking on the list is the one
with the greatest likelihood of having a bug. Thus, SBFL helps
developers to identify problematic elements in their programs.



III. RELATED WORKS

Based on the hypothesis that some failed tests may reveal
more information than other failed tests, the authors of [6] used
this information with SBFL formulas. Different weights for
failed tests were therefore allocated for each formula in use,
and these weights were subsequently employed with multi-
coverage spectra.

Another interesting way is to add new information to
existing SBFL formulas. The authors in [7] utilized the method
calls frequency of the subject programs during the execution
of failed tests to add new contextual information to the
standard SBFL formulas. Here, the function call frequency
was incorporated into the ef value in each formula. The results
of their study demonstrated that employing new information
from method calls into the underlying formulas can improve
SBFL effectiveness.

In the work [8], the presented approach gives more im-
portance to program elements that are executed by more
failed test cases compared to other elements. In essence, we
are emphasizing the failing test cases factor because there
are comparably much less failing tests than passing ones.
We multiply each element’s suspicion score obtained by an
SBFL formula by this importance weight, which is the ratio
of covering failing tests over all failing tests. The proposed
approach can be applied to SBFL formulas without modifying
their structures.

The approach proposed in [9] is similar to ours as it
also employed statements types in the SBFL process. In the
following, we summarize the main differences. (1) It is for
C programs, while our approach targets programs written in
Python; which is considered the most popular programming
language nowadays [10], [11]. (2) Statements are classified
into four groups (i.e., conditional, assignment, return, and
other), while we are seeking for mathematical operations only.
(3) The types of statements are extracted using a Python
script, written by the authors, that searches for the language
keywords (e.g., if, for, while, return, etc.), while we are using
the functions provided by the official AST module. (4) The
statements x=5 and x=x+y are considered as the same type
of statements, i.e. assignment, while in our case, x=x+y is
considered a statement that has a mathematical operator and
x=5 is an initialization statement. (5) Weights are learnt using
optimization methods such as simulated annealing, grid search,
or brute force search based on training data, which we do not
require. (6) There is no relationship between the test statistics
(i.e., ef ) extracted from the dynamic information and the
elements types extracted from the static information, while
we consider the element type when the element appears in
failed test only.

IV. THE PROPOSED APPROACH

Our proposed approach is depicted in Figure 1. Using the
selected SBFL formulas on the program spectra, we calculate
the suspicion scores of code elements (i.e., statements in our
study). The output is the initial suspicion scores of statements.
Then, we extract the Abstract Syntax Trees (AST) of each

Fig. 1. The proposed approach

Python subject program using the ast1 module. After that
we walk through the generated AST and collect only the
mathematical statements (i.e., statements that perform mathe-
matical operations) and ignore other types of statements (e.g.,
statements that are used for declaration, selection, iteration,
or function call). We then filter the obtained mathematical
statements by taking only the mathematical statements that
appeared in failed test cases (i.e., when ef > 0). Then, we
give them more importance (weight) compared to others by
using Equation 1, and finally we rank all the code elements.
The Max Initial Score is the maximum score in the initial
ranking list. It is used to ensure that the mathematical state-
ments will always be examined before the elements that have
the highest scores in the initial list of suspicion scores that has
been generated before applying our approach.

Final Score = Initial Score+Max Initial Score (1)

This will improve the initial ranking list by giving more
importance to the mathematical statements that are executed by
failing tests and lowering the rank of other types of statements.
A final, better ranking list is then generated for the user.

To show how our proposed approach works and how it
achieves improvements, we will illustrate it with the basic
statistics extracted from the spectra of the code example shown
in Figure 2, which has the faulty statement S5 (it should be
avg = s/n), as presented in Table I.

The Tarantula formula was applied to the extracted exe-
cution information to compute the suspicion score of each
statement as presented in Table II. It can be seen that Tarantula
cannot put the faulty statement S5 very near the top of the

1https://docs.python.org/3/library/ast.html

https://docs.python.org/3/library/ast.html


Fig. 2. Running example – code and test cases

TABLE I
RUNNING EXAMPLE – SPECTRA AND BASIC STATISTICS

T1 T2 T3 T4 ef ep nf np
S1 1 1 1 1 2 2 0 0
S2 1 1 1 1 2 2 0 0
S3 1 1 1 1 2 2 0 0
S4 1 1 1 1 2 2 0 0
S5 1 1 1 1 2 2 0 0
S6 1 1 1 1 2 2 0 0

Results 0 1 1 0

TABLE II
RUNNING EXAMPLE – SCORES AND RANKS

Tarantula score Rank Tarantula * Rank *
S1 0.5 3.5 0.5 4.5
S2 0.5 3.5 0.5 4.5
S3 0.5 3.5 0.5 4.5
S4 0.5 3.5 1.0 1.5
S5 0.5 3.5 1.0 1.5
S6 0.5 3.5 0.5 4.5

ranking list suggested by the formula (it is ranked 3.5 based on
Equation 5). The reason, in this case, is that Tarantula assigned
the same score to all the statements in our code example.
However, after applying our proposed approach denoted with
*, the faulty statement got a higher rank than before. Thus, it
will be examined before most of the other statements.

V. EVALUATION AND DISCUSSION

The Research Questions (RQs) we address in this study are
the following:

• RQ1: What level of average ranks improvements can we
achieve using the proposed approach?

• RQ2: What is the impact of the proposed approach on
SBFL effectiveness across the Top-N categories?

Our proposed approach has been evaluated on 17 seeded
single-fault versions of the “bottle.py”2 micro-framework for
Python web-based applications. Each seeded version has a
bug in a statement that has a mathematical operator. As
this concept paper focuses on this types of bugs, all the
17 bugs are mathematical. For future work, we plan to add

2http://bottlepy.org/

other types of statements and use existing datasets instead
of seeded programs to perform a more comprehensive and
realistic evaluation.

“bottle.py” is a 168 KB project that has about 4.4 KLOC
and about 350 tests. It has been selected in this study be-
cause it is a well-known Python framework that has 100
contributors and has been forked 1.4k times. The open-source
tool “CharmFL” [12] was used to extract the statement-
level granularity as a coverage type. Also, we compared our
proposed approach to the well-known formulas presented in
Equations (2-4) respectively; to measure its effectiveness.

Tarantula =

ef
ef+nf

ef
ef+nf + ep

ep+np

(2)

Ochiai =
ef√

(ef + nf) ∗ (ef + ep)
(3)

Barinel =
ef

ef + ep
(4)

The overall effect of our proposed strategy on SBFL efficacy
is presented and discussed in this section. For this, we employ
evaluation metrics that have previously been employed by
other researchers in the literature [13], [14].

A. Achieved improvements in average ranks (RQ1)

The program elements with the same suspicion score are
ranked using the average rank, such elements are called tied
elements [15], by averaging their positions after they get sorted
in descending order according to their scores. We use the
average rank approach in Equation 5, where S denotes the
tie’s starting position and E denotes the tie’s size.

MID = S +

(
E - 1

2

)
(5)

Table III presents the average ranks before and after
(columns 2 & 3) applying our proposed approach and the
difference between their average ranks (column 4). If the
difference is negative, it indicates that our proposed approach
improved the baseline.

TABLE III
COMPARISON OF AVERAGE RANKS

Before After Diff.

Tarantula 24.8 1.5 -23.3
Ochiai 10.3 1.3 -9.0
Barinel 24.8 1.5 -23.3

With all of the selected SBFL formulas, we can observe that
our proposed approach improved the average rank; reduced
by about 19 positions in overall. Considering the formulas
that have lower average ranks after applying our proposed
approach, Ochiai is the best one. This indicates that using an
importance weight could have a positive impact and enhances
the SBFL results.

http://bottlepy.org/


B. Achieved improvements in the Top-N categories (RQ2)

According to [16] and [17], developers believe that exam-
ining the first five elements in the ranking list is acceptable,
with the first ten elements being the highest limit for inspection
before the list is dismissed. Thus, the success of SBFL can also
be measured by concentrating on these rank positions, which
are collectively known as Top-N, as follows: (a) Top-N: When
a buggy program element’s rank is N or less. (b) Other: If a
buggy program element’s rank is higher than the highest N
value used for categorizations (it is 10 in our study).

Table IV presents the number of bugs in each of the Top-N
categories for all the buggy versions of our subject program,
before and after applying our proposed approach, as well as
the differences between them. Here, improvement is defined
as a decrease in the number of cases in the “Other” category
and an increase in any of the Top-N categories.

TABLE IV
TOP-N CATEGORIES

Top-1 Top-3 Top-5 Top-10 Other

Tarantula 4 7 9 11 6
Tarantula* 9 16 17 17 0

Diff. 5 9 8 6 -6
Ochiai 5 9 10 15 2

Ochiai* 12 17 17 17 0
Diff. 7 8 7 2 -2

Barinel 4 7 9 11 6
Barinel* 9 16 17 17 0

Diff. 5 9 8 6 -6

It can be noted that there were noticeable improvements in
terms of the Top-N categories with positive results in all the
categories. Also, we were successful in increasing the number
of cases in which the faulty method was ranked first: 5–7
bugs moved to Top-1 category. Another interesting finding is
that 2–6 bugs were moved from the “Other” category into one
of the higher-ranked categories. In particular, no elements left
beyond Top-5 in our case, and looking at Top-1, the number of
identified elements were at least double than for the baseline.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented an approach to improve the effec-
tiveness of SBFL by involving static information (i.e., types
of code elements) into the SBFL process for Python pro-
grams. This way, we combine static and dynamic information
about code elements. Presently, we considered one type of
statements: mathematical statements, such statements were
given more weight/importance compared to other types of
statements. Based on the positive results for this approach,
we believe that it could be explored more in future such as by
experimenting with other statement types and other ways for
the weighting.

In particular, we want to carry out the following studies:

• Extending the statements types to more fine-grained types
and considering other features that could be extracted
from the source code. Finding out the most frequent

faulty elements [4] can be a good starting point to define
more elaborate weighting strategies.

• Comparing the effectiveness of each statement type on
SBFL and then combining the best statements types.

• Including other SBFL formulas and involving other
benchmark datasets in the evaluation.

Our measurement data and the seeded program files are
available at: https://bit.ly/41QerL2

REFERENCES

[1] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A Survey on
Software Fault Localization,” IEEE Transactions on Software Engineer-
ing, vol. 42, no. 8, pp. 707–740, aug 2016.

[2] Q. I. Sarhan and A. Beszedes, “A survey of challenges in spectrum-based
software fault localization,” IEEE Access, vol. 10, pp. 10 618–10 639,
2022.

[3] R. Abreu, “The bumpy road of taking automated debugging to industry,”
CoRR, vol. abs/2212.01237, 2022.

[4] P. Gyimesi, B. Vancsics, A. Stocco, D. Mazinanian, A. Beszedes,
R. Ferenc, and A. Mesbah, “Bugsjs: a benchmark and taxonomy of
javascript bugs,” Software Testing, Verification and Reliability, vol. 31,
no. 4, p. e1751, 2021, e1751 stvr.1751.

[5] Neelofar, “Spectrum-based Fault Localization Us-
ing Machine Learning,” 2017. [Online]. Avail-
able: https://findanexpert.unimelb.edu.au/scholarlywork/
1475533-spectrum-based-fault-localization-using-machine-learning

[6] Y.-S. You, C.-Y. Huang, K.-L. Peng, and C.-J. Hsu, “Evaluation and
analysis of spectrum-based fault localization with modified similarity
coefficients for software debugging,” in 2013 IEEE 37th Annual Com-
puter Software and Applications Conference, 2013, pp. 180–189.

[7] B. Vancsics, F. Horvath, A. Szatmari, and A. Beszedes, “Call frequency-
based fault localization,” in 2021 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER), 2021, pp.
365–376.

[8] Q. I. Sarhan, “Enhancing spectrum based fault localization via em-
phasizing its formulas with importance weight,” in 2022 IEEE/ACM
International Workshop on Automated Program Repair (APR), 2022,
pp. 53–60.

[9] N. Neelofar, L. Naish, J. Lee, and K. Ramamohanarao, “Improving
spectral-based fault localization using static analysis,” Software: Practice
and Experience, vol. 47, no. 11, pp. 1633–1655, 2017.

[10] “Tiobe index,” https://www.tiobe.com/tiobe-index/, accessed: 06-03-
2023.

[11] “Pypl index,” https://pypl.github.io/PYPL.html, accessed: 06-03-2023.
[12] Q. I. Sarhan, A. Szatmari, R. Toth, and A. Beszedes, “Charmfl: A fault

localization tool for python,” in 2021 IEEE 21st International Working
Conference on Source Code Analysis and Manipulation (SCAM), 2021,
pp. 114–119.

[13] J. Jiang, R. Wang, Y. Xiong, X. Chen, and L. Zhang, “Combining
spectrum-based fault localization and statistical debugging: An empirical
study,” in 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2019, pp. 502–514.

[14] A. Beszédes, F. Horváth, M. Di Penta, and T. Gyimóthy, “Leveraging
contextual information from function call chains to improve fault local-
ization,” in IEEE 27th International Conference on Software Analysis,
Evolution and Reengineering (SANER), 2020, pp. 468–479.

[15] Q. I. Sarhan, B. Vancsics, and A. Beszedes, “Method calls frequency-
based tie-breaking strategy for software fault localization,” in 2021 IEEE
21st International Working Conference on Source Code Analysis and
Manipulation (SCAM), 2021, pp. 103–113.

[16] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations
on automated fault localization,” in Proceedings of the 25th Interna-
tional Symposium on Software Testing and Analysis, ser. ISSTA 2016.
New York, NY, USA: Association for Computing Machinery, 2016, p.
165–176.

[17] X. Xia, L. Bao, D. Lo, and S. Li, ““automated debugging considered
harmful” considered harmful: A user study revisiting the usefulness of
spectra-based fault localization techniques with professionals using real
bugs from large systems,” in 2016 IEEE International Conference on
Software Maintenance and Evolution (ICSME), 2016, pp. 267–278.

https://bit.ly/41QerL2
https://findanexpert.unimelb.edu.au/scholarlywork/1475533-spectrum-based-fault-localization-using-machine-learning
https://findanexpert.unimelb.edu.au/scholarlywork/1475533-spectrum-based-fault-localization-using-machine-learning
https://www.tiobe.com/tiobe-index/
https://pypl.github.io/PYPL.html

	Introduction
	Background on SBFL
	Related Works
	The proposed approach
	Evaluation and Discussion
	Achieved improvements in average ranks (RQ1)
	Achieved improvements in the Top-N categories (RQ2)

	Conclusions and Future Work
	References

