
Impact Analysis Using Static Execute After
in WebKit

Judit Jász, Lajos Schrettner, Árpád Beszédes, Csaba Osztrogonác, Tibor Gyimóthy
Department of Software Engineering

University of Szeged
Szeged, Hungary

{jasy, schrettner, beszedes, oszi, gyimi}@inf.u-szeged.hu

Abstract—Insufficient propagation of changes causes the ma-
jority of regression errors in heavily evolving software systems.
Impact analysis of a particular change can help identify those
parts of the system that also need to be investigated and
potentially propagate the change. A static code analysis technique
called Static Execute After can be used to automatically infer
such impact sets. The method is safe and comparable in precision
to more detailed analyses. At the same time it is significantly more
efficient, hence we could apply it to different large industrial
systems, including the open source WebKit project. We overview
the benefits of the method, its existing implementations, and
present our experiences in adapting the method to such a
complex project. Finally, using this particular analysis on the
WebKit project, we verify whether applying the method we
can actually predict the required change propagation and hence
reduce regression errors. We report on the properties of the
resulting impact sets computed for the change history, and their
relationship to the actual fixes required. We looked at actual
defects provided by the regression test suite along with their
fixes taken from the version control repository, and compared
these fixes to the predicted impact sets computed at the changes
that caused the failing tests. The results show that the method
is applicable for the analysis of the system, and that the impact
sets can predict the required changes in a fair amount of cases,
but that there are still open issues for the improvement of the
method.

Keywords-Change impact analysis, source code analysis, Static
Execute After, regression testing.

I. INTRODUCTION

Change propagation in heavily evolving systems is often
incomplete [10]. This is mainly due to our inability to perfectly
identify the parts of the system directly or indirectly affected
by the change. Incomplete change propagation will then cause
defects in the system, which can lead to failures. Many
development processes try to minimize the amount of such
failures in released software and rely on regression testing to
identify them in advance [22].
Hence, any method that can aid change propagation can

reduce the risk of regression. Specifically, the field of change
impact analysis is heavily researched [8]. The task is to assess
the expected impact of a change (e.g. in terms of software
modules affected), and then this impact is used to perform
selective regression testing [22] or guided code review [10].
However, everyday industrial application of sophisticated im-
pact analysis methods is not typical, which can be attributed
to a number of causes. First, automatic methods should be

precise, complete and efficient at the same time, which is a
challenge with state-of-the-art approaches. Second, there is
little objective evidence of the efficiency of specific impact
analysis methods in terms of their actual ability to prevent
regression.

In this work, we concentrate on automatic impact analysis
based on static code analysis. Recently, an algorithm called
Static Execute After (SEA) has been introduced with promis-
ing results about its precision and efficiency [5], [18], [17].
The impact sets computed by the algorithm include the sets
computed by the more precise dependence based algorithms,
but at the same time – computed at procedure level – the sets
are comparable in their sizes. Furthermore, the efficiency of
the algorithm is much better, which enables its application to
real, big software systems.

In this paper, our first aim is to overview the benefits of the
method, its existing implementations and earlier experiences
in applying it to experimental and also real size industrial
systems. The algorithm has been implemented in different
environments, and has been applied successfully to large
systems like Mozilla and OpenOffice. Second, we wish to
verify the applicability of the SEA algorithm on another real
size, complex, and lively evolving software system, the open
source WebKit web browser engine [26]. We had different
goals with this research:

• Adapt the SEA method to this system and integrate it
into the build process.

• Perform the analysis of a significant number of revisions
and changes of WebKit.

• Make an analysis of the resulting impact sets in terms of
their sizes.

• Process the regression test results for the selected revi-
sions to find out how regression test results change over
the selected evolution period.

• Finally, verify the hypothesis that applying this algorithm
for impact analysis we can actually predict the required
change propagation in a fair number of cases. For this, we
looked at actual defects provided by the regression test
suite along with their fixes taken from the version control
repository, and compared these fixes to the predicted
impact sets computed at the changes that caused the
failing tests.

Our first, biggest experience is that the adaptation of the
algorithm implementation to be able to regularly perform an
analysis of the WebKit system required significant effort. We
report on how it was possible to seamlessly integrate into
the build, change and testing processes of the project. We
managed to perform the analysis of a significant number of
versions of the system, but the number of interesting revisions
where we could simulate the effect of the impact analyis was
more modest than we expected. However, we are still able to
draw useful conclusions about when SEA was successful in
identifying the required change, and the causes when it was
not. The research in the present state is a good starting point to
further improve the algorithm, and is a significant step towards
its industrial application in this particular project, and similar
projects. Most of the research around impact analyis deals with
exploring the application areas for the method [8]. We believe
that this work is one of the rare experiments where the actual
prediction capability of an impact analysis method is verified.
The paper is organized as follows. In Section II, we provide

some basic background information about impact analysis in
general, and overview some related approaches. We introduce
the basic method in Section III, and discuss some of its
properties and earlier experiences. Section IV deals with
existing implementations of the method by overviewing the
basic related toolset. In Section V, we describe the application
of the algorithm in WebKit, and the experimental study design,
while the actual related results are presented in Section VI.
Finally, we conclude in Section VII.

II. RELATED WORK ON IMPACT ANALYSIS

Impact analysis [8] deals with the problem of identifying
those parts (the impact set) of a software system that might
be affected by a change in the system, in other words finding
the possible dependencies between the change and the other
parts of the system. The motivation behind the analysis is that
developers can concentrate their efforts to the impact set when
they want to evaluate the effects of a change. Most often they
are interested in which parts of a program they have to (re)test
if they want to ensure that the modifications did not break
existing behaviour, or which part to (re)examine if a change
turns out to cause their program to misbehave.
A practical impact analysis method should be as accurate

as possible, safe, and sufficiently fast at the same time. Unfor-
tunately it seems that present technology does not allow us to
meet these requirements. There are accurate methods that are
inefficient for real-life systems; their size is simply too large
to handle them within reasonable resource bounds. Another
way of approaching the problem is to calculate the impact
set with a method that sacrifices accuracy for speed. Such a
method should be validated by checking whether its accuracy
is still good enough for practical purposes, and also whether
it is safe in a sense that it does not miss any dependency that
could have been identified by other, more accurate methods.
In particular, it should be checked whether

1) the sizes of the impact sets produced by the method are
reasonably small, and

2) despite the inaccuracy of the impact sets, they can serve
as a basis for determining the effects of a change.

The problem of balancing between accuracy and safety
can be tackled by, for instance, applying different weighting
methods that limit the analysis according to some heuristic
prioritization of the dependencies.
Program slicing [27] is suitable for determining the impact

sets of modified program components. There are a lot of differ-
ent approaches to compute the slices, but almost all general
solutions are not effective for large programs, including the
probably most important practical method based on depen-
dence graphs [14], [16]. Here, first a program representation
is built that captures all the different dependencies between
program elements like statements, and then a reachability
algorithm finds the dependencies starting from a particular
point, which represents the initial change. These methods
have limited applicability – despite the existence of some
commercial tools – in an everyday software development
activity, as part of an integrated development environment,
for instance. Although there are reports on the usability of
program slicing on large programs [1], to our knowledge there
are no tools that are able to deliver the performance that
would be needed to any of the present day big and complex
software projects. The reason is twofold: first, the program
representation of a program with millions of lines of code can
be extremely large; second, in many cases it is not necessary
to determine dependencies at statement level as is done with
the general approach of dependence-based slicing.
Because of these problems, other related approaches have

been proposed. Many of them determine the impact sets of
the modified procedures of a program from the call graph [8],
[23]. Dependencies among classes can be approximated by
using cohesion metrics [9], [28], if one would like to carry
out class-level impact analysis in an object oriented system.
Although these methods are quite simple, they are not safe,
and it is easy to show that they miss to identify a set of real
dependencies [5].
In previous works, we introduced the Static Execute After

(SEA) relation as an alternative to traditional software de-
pendencies, i.e. static forward program slicing. We presented
empirical evidence that the SEA relations can be a good
approximation of program slices at the procedure level, while
its computational complexity is better than that of program
slicing [5], [18], [17]. Our approach was motivated by Apiwat-
tanapong et al. [3], who introduced the notion of the Execute

After relation and applied it in dynamic impact analysis. The
basic idea of both the dynamic version and the SEA approach
is that we treat a program component to be dependent on the
other if it is possible that they will be executed one after the
other (not necessarily consecutively) in some execution of the
program. This definition implies that the SEA relation will be
a superset of the dependencies computed by the dependency
based program slicing as its dependencies all rely on the
existence of execution flow between the components. In the
next section we will elaborate in more detail about the SEA
relation and the algorithms for computing them.

Our method and the above mentioned approaches concen-
trated only on the source code and its changes in a system.
But in many cases we can gain important information from
other software artifacts like software repositories, bug tracking
systems, or natural language texts. This information can then
be used to derive special kinds of impact sets, but this work
is not concerned with this area [29], [15], [21].

III. STATIC EXECUTE AFTER

A. Definition of the relation

The Static Execute After relation is defined as follows. For
program elements (procedures, classes, statements, etc) f and
g, we say that (f, g) ∈ SEA if and only if it is possible that
any part of g is executed after any part of f in any one of
the executions of the program. Based on Apiwattanapong et

al. [3] and Beszédes et al. [4] we formulate the SEA relation
as follows:

SEA = CALL ∪ SEQ ∪ RET

where

(f, g) ∈ CALL
(g, f) ∈ RET

⇐⇒

{

f (transitively) calls g

(or g (trans.) returns into f)

(f, g) ∈ SEQ ⇐⇒
∃h : f (transitively) returns into
h, then h (transitively) calls g

It can be more convenient to consider the reflexive closure
of this relation, since every change in a procedure f can affect
any part of f from an impact analysis point of view. This is in
line with slicing methods, where the starting point (criterion)
is contained in the resulting slice.
It can be easily seen that the SEA relation covers all possible

cases when a procedure can be called after the other. From
computation point of view, SEA actually means following all
possible control flow [2] paths from a procedure to the rest of
the system, so in this sense it is much simpler than computing
control- and data-dependencies with slicing [16], which are
subsets of control flow relations.
Our method for computing SEA relations is the following.

We have to build a suitable program representation in order
to determine the subsets (CALL, RET, SEQ) of the SEA
relation. The traditional call graph representation [23] is not
sufficient for this purpose because it tells us nothing about
the order of the procedure calls within a procedure. The
program representation called Interprocedural Control Flow

Graph (ICFG) [20] contains additional information but it is
too detailed for our purposes.
Hence we base our approach on a novel program represen-

tation called Interprocedural Component Control Flow Graph

(ICCFG) [5], which contains sufficient extra information to
extract the required relations, while being much smaller and
simpler than other graphs including the System Dependence
Graph [16] used by slicing. In the ICCFG graph each proce-
dure is represented by a Component Control Flow Graph –

(CCFG) that has an entry node and several component nodes.
Each component in a CCFG represents a strongly connected

subgraph of the control flow graph of the procedure, but we
keep only those subgraphs that contain at least one call site.
The components inside a CCFG are connected by control flow
edges, while the collection of CCFG graphs are connected by
call edges.
The SEA relations are then computed by traversing the

ICCFG program representation and collecting the visited
nodes. Depending on the application, we can compute the
dependencies only for one starting node or for more of them
in parallel. The space/time behavior of the computation of the
SEA relation can be controlled by adjusting the number of
independent call paths a particular algorithm pursues concur-
rently. We consume the least amount of memory by following
a single path at any given moment, but of course this method
takes the longest to execute in the case of multiple passes
for different change sets. At the other extreme, we can try
to pursue as many paths as possible (possibly all), but this
may require a large amount of working memory. In this case,
memory consumption is offset to some extent by gains in
running time, because we can avoid reprocessing of already
visited nodes. Finally, we can also combine the two approaches
and compute the dependencies for a given set of starting nodes
simultaneously.

B. Properties of the SEA sets

In an earlier work [18], we showed that the SEA relations
can be a good approximation of the static slices. In this
experiment we used a suite of C programs by Binkley and
Harman [6], and calculated the precision of our relation com-
pared to the results of the static slicing as the golden standard
of static impact analysis. To this purpose we investigated the
differences in the sizes of the respective dependency sets.
The precision values we found are shown in Figure 1. It
can be seen that the precision is very good, meaning that
there is a comparably small amount of additional dependencies
produced by the SEA method due to its conservative nature.
Since SEA does not produce false negatives, we always get
100% recall.

0%

20%

40%

60%

80%

100%

tim
e

re
pl
ac

e

co
m

pr
es

s
w
di
ff

w
hi
ch
ac

ct

te
rm

ut
ils

ba
rc

od
e

in
de

nt ed

EPW
ICfle

x

by
ac

c

di
ffu

til
s bc

us
er

v

co
pi
a

gn
uc

he
ss

til
e-

fo
rth

li

es
pr

es
so go

ijp
eg

ct
ag

s

se
nd

m
ai
l

fin
du

til
s
a2

ps

gn
ub

g

gn
ug

o

Figure 1. Precision of the SEA sets relative to program slices (recall is
always 100%)

We also showed in another empirical experiment [19] that
the precision of the SEA approximation is acceptable at

procedure or higher level but not at statement level. The
dependencies among the statements computed by the program
slices are assimilated on higher level. Figure 2 shows the
statement level precisions and procedure level precisions for
the same subject programs.

0%

20%

40%

60%

80%

100%

tim
e

re
pl
ac

e

co
m

pr
es

s
w
di
ff

w
hi
ch
ac

ct

te
rm

ut
ils

ba
rc

od
e

in
de

nt ed

EPW
ICfle

x

by
ac

c

di
ffu

til
s bc

us
er

v

co
pi
a

gn
uc

he
ss

til
e-

fo
rth

li

es
pr

es
so go

ijp
eg

ct
ag

s

se
nd

m
ai
l

fin
du

til
s
a2

ps

gn
ub

g

gn
ug

o

Figure 2. Precision of the SEA sets relative to program slices at statement
and procedures levels (statement level precisions (light bars) and procedure
level precisions (dark bars))

IV. SEA TOOLS FRAMEWORK

The original SEA algorithm has been implemented in
different environments and for different purposes. For our
first experiments, we used prototype implementations of the
algorithm, but later our main aim became to be able to
apply it in industrial settings. With the latest implementations
we were able to analyze big systems like OpenOffice or
Mozilla [18]. Computing program slices for these programs
is almost impossible due to their program sizes, but the SEA
computation gives us a possible way to determine impact
relations in such big systems as well. The present paper is
also about this topic but for a different system.
For the application in a real setting it is equally important

to have a good collection of tools and a framework, which we
will overview in the following.

A. The CodeRipple framework

In collaboration with FrontEndART Ltd. [13], a general im-
pact analysis framework and toolset has been developed with
the aim to support the application of different impact analysis
methods in real application scenarios during development and
maintenance. The CodeRipple tool [24] integrates a set of
specific analyses, with the possibility to combine and param-
eterize them to best fit for a specific purpose. The flexible
and rich configuration and programming interface allows its
configuration for different needs, for example regression test
selection, program comprehension, and also as an interactive
tool and programming aid.
The framework applies the SEA method together with

other impact analysis algorithms – both static and dynamic,
and is able to determine dependencies between procedures
in software with heterogenous architecture, including remote
procedure calls, web services and calls to relational databases.

Project sources

Static analysis

Language independent

program representation

Static impact analysis

SEA

Database based

impact analysis

SOAP based

impact analysis

Metrics calculation

Additional

heuristics

Additional

heuristics

Hibrid impact

sets

Cost prediction

Appearance

in

Eclipse Impact analysis

plugin

System Level

Impact Analysis

Appearance

in

SourceInventory

Figure 3. Overall architecture of the CodeRipple framework

These extensions make it possible to analyze the dependen-
cies not only in isolation for a specific technology but in
an integrated manner. The underlying analyzers, including
SEA, support the C/C++ and Java languages. CodeRipple is
composed of a set of specific tools and components that are
interconnected as shown in a high level overview in Figure 3.
The framework can be used in different usage scenarios.

A set of configuration and automatic analysis scripts allows
its integration in many different build environments and other
software quality systems, while there is also a graphical user
interface integrated into the development environment.
The Eclipse-based user interface in form of a plug-in pro-

vides several additional features like change cost estimation,
test selection and test optimization. Using the plug-in users can
configure and combine different impact analysis algorithms
and their different settings. It is possible to display the analysis
results directly on the source code, and some other useful
features are included as well. This type of operation is similar
to some other research impact analysis tools integrated into
the development environment [10]. A screenshot with some
typical windows of the graphical user interface of CodeRipple
can be seen in Figure 4.

B. SEA computation tools and applications

SEA is a major component in the CodeRipple framework.
In it, we use an advanced version based on the Columbus
analysis toolset [11]. Columbus provides some essential anal-
ysis components like the parser front end, and the internal

Figure 4. Screenshot of the CodeRipple tool

program representation infrastructure. Another major benefit
of the toolset is that it is able to integrate into the program
compilation process with the help of a compiler wrapper

environment, and obtain those pieces of static information
that are needed to create the graph representation of the
program [12]. Without using the build process, the accurate
collection of project information would have been extremely
hard if not impossible. In the research of the present article
we also used the wrapper technology to analyze the subject
system.
There are other implementations of the algorithm, which

were used in some other research projects. For our first
experiments [5] we computed the SEA impact sets in parallel
for all methods in a program. This algorithm traversed the
graph that represented the program in one step and was able
to define the impact set of every procedure at the same time
(we call this a global algorithm). The benefit of the algorithm
is that several impact sets could be obtained in one step, which
was useful for experimenting with general sizes of the sets and
similar. However, the downside was that the time and space
costs of the algorithm were not acceptable for really large
systems.
For a number of other applications (like impact analysis

in this paper), it is enough to compute dependencies for a
particular starting point, so we designed a specific algorithm
with this in mind (a demand driven algorithm) [17].
The other property of our early implementation – when

comparing the SEA sets with the program slices – was that we
used the API of a slicing tool to get the representation of the

needed graph. We found that CodeSurfer [14] was not only
the best available program slicing tool, but it also offered the
possibility to compute the information needed to create the
graph for computing SEA. This seemed to be an appropriate
solution since it was easy to compare the SEA sets with the
results of slicing.

V. SEA IN WEBKIT

The SEA algorithm presented in the preceding sections
had not been evaluated in detail on a real size and complex
industrial system earlier. Earlier, we experimented with its
application to big systems like Mozilla and OpenOffice, but in
the present work we quantitatively and qualitatively investigate
the properties of the algorithm on a different but equally com-
plex software system, the WebKit open source web browser
engine [26]. It is a layout engine that renders web pages in
some of the leading web browsers and other applications [25].
In the current stage of the experimentation, we solved a

number of technical issues to be able to analyze the system
automatically in a regular manner. Furthermore, we started to
investigate the actual prediction capability of the algorithm of
the required change propagation, which we verified by com-
puting impact sets of actual revision changes where regression
errors have been introduced, and compared them to the actual
changes where the regression errors have been fixed. In this
section, we overview this experiment, while the next section
deals with our findings.

A. Overview

Test case(j)

Test case(i)

Test case(k)

revision revision revision revision

Passed PassedFailed Failed... Failed ...

?

Changed procedures

Impact set

Changed procedures

m m + 1 n n + 1

Figure 5. Change propagation experiment

Figure 5 serves as a guide to summarize our approach
to evaluate the SEA method in the WebKit environment.
Revisions of the system are represented from left-to-right as
vertical lines. We can examine the differences in subsequent
revisions to arrive at a set of procedures (we use this term for
C functions and C++ methods in this paper) that were modified
from one revision to the next. In the figure we depict these sets
between two pairs of revisions, revisionm and revisionm+1,
then later between revisionn and revisionn+1.

Next, the test cases of the system under examination are
illustrated by long horizontal lines that belong to the common
test suite, one line for each test case, which are all executed
at each revision. All test cases are run on every revision to
find out whether any regression errors have been introduced
by the latest modifications. The outcome of running a test
case can be either Passed or Failed. Let us consider a
scenario in which there is a test case tcj that produces
the following outcomes: Passed in revisionm, then Failed

a number of times from revisionm+1 up until revisionn,
then Passed again in revisionn+1. In this scenario we can
assume that some of the changes made between revisionm

and revisionm+1 are responsible for the failed test case tcj .
The error that was introduced in revisionm+1 is worked
on, then it is corrected in revisionn+1, when test case tcj

passes again. Our hypothesis is that the impact set of the
modified procedures at the time the error was introduced
in revisionm+1 contains the procedures that were modified
between revisionn and revisionn+1. If that is true, then we
would have an evidence that impact analysis in general and the
SEA algorithm in particular is useful in predicting the required
change propagation.

B. Analysis of WebKit

In our experimental study we analyzed WebKit across 781
revisions. WebKit contains about 1.8 million lines of C/C++
code and it has a relatively big collection of regression tests,
which helps developers to keep code quality. The regression
test suite consists of more than 20 thousand test cases. The
aims of the regression tests are to maintain compatibility,
standards compliance gains, and some stability, performance,
security, portability, usability, hackability issues. Theoretically
the layout regression tests must pass before patches can land
in the repository. Unfortunately this requirement is not met
in many cases. Due to the amount of regression tests and
platforms, the developers often skip the full testing process
before the commits. The above mentioned features make the
WebKit system suitable for our experimental study.
We verify our hypothesis about the prediction capability

of the algorithm by comparing the impacts of changes of a
revision with a failed test and the changed procedures of the
revision which corrects the test. The comparison is made on
procedure level, meaning that the changes, impact sets and
test information is analyzed on the granularity of functions
and methods. The information about changes in the system
are taken from the version control system, and about failing
and passing test cases from the regression test suite logs.
The main steps of the experiment are shown in Figure 6.

First we analyze the selected revisions of WebKit and build up
the ICCFG graph representations of each version. At the same
time we determine the modified procedures with the help of the
Subversion version control system logs and the ICCFG graphs
using path/line information. Since we need the information
on procedure level we calculate the corresponding procedures
from the path/line information.

Table I
AVERAGE EXECUTION TIMES OF THE ANALYSES

Build time: 20 min
Build time with static analysis: 1.5 - 2 hours
Regression tests running time: 16 - 20 min
SEA computation time: 1 - 10 min

In our measurements we used the Qt port of WebKit called
QtWebKit on x86_64 Linux platform. For the compilation we
used Qt 4.7.4, the latest stable version of Qt. In revisions where
there were no source code changes or the changes affected
other ports of WebKit, it was not necessary to compute the
ICCFG, it was enough to run the regression tests to determine
the states of the tests after applying the modification of the
revision.
If one of the regressions tests of revisionx failed, we

searched for the first n, where the regression test passed in
revisionx+n. Hence we obtained a pair of revisions: a failure
inducing revision, and a fixing revision. If any member of a
pair was a revision without changes in our port, we did not
take that pair into account.

VI. RESULTS OF WEBKIT ANALYSIS

In this section, we present our results about the experiment
with the WebKit system for impact set calculation. First,
we present our experiences with applying the tools to the
subject system. We will see that the analysis incurs some
time overhead compared to the original build process. Then we
provide some data about the WebKit revisions we analyzed,
and the corresponding impact sets. Finally, we overview our
findings about the comparison of the impact sets with the
actual changes at the regression test pairs we investigated.

A. Performance of the measurement tools

The basis of our experiment is the analysis of the relevant
revisions of the system, and the computation of the corre-
sponding impact sets. This means those revisions that contain
relevant changes at procedure level. In parallel to the build
process, we compute the ICCFG graph, as we have seen in
Figure 6. Additionally, we need to execute the regression tests
as well. In Table I, we can see the times typically required for
the mentioned steps for one revision (on an Intel Xeon X5670
(12 core 2.93 GHz) machine with 96 GB RAM).
As can be seen, the time required to compute the static

information increases the build time, but it is still much
better than any more accurate analysis method like computing
program slices based on a dependence graph [1]. In fact,
many other algorithms or tools would be probably unable to
complete the analysis at all.
The time required for computing the SEA sets varies in a

wide range, which is obviously due to the different number
of changed procedures per revision. The whole analysis also
includes the execution of additional tools like the extraction
of the changed procedure names, but these additional costs are
negligible.

Project sources

svn diff

Regtest results

Analysis

Collect

modified methods

List of

modified procedures

ICCFG graph SEA computation
Impact sets based

 on SEA relations

Revision x

Empirical comparisions

Project sources

svn diff

Regtest results

Analysis

Collect

modified methods

ICCFG graph SEA computation
Impact sets based

 on SEA relations

Revision x+n
List of

modified procedures

Figure 6. The steps of the WebKit experimental study

Table II
REVISIONS ANALYZED

Number of the investigated revisions: 781
Number of revisions without source code changes: 360
Number of revisions built and analyzed: 421
Number of revisions with changed procedures: 196

B. Revision and test information

We investigated revisions from 96590 to 97370, which
corresponds to a development period of 9 days. Some relevant
information about the revisions can be seen in Table II.
360 revisions contained no changes in the source code but
some other files like configuration scripts, test inputs, new test
cases, etc. The remaining revisions were all built and analyzed
individually. Out of these versions, further 225 revisions could
not be taken into account, because the source code changes
affected a different port of WebKit. Since our graph represen-
tation about the system is built up during the compilation, we
only analyzed and investigated the sources connected to the
Qt platform. So we ended up with 196 useful revisions for
further analysis.
The next step was to identify the relevant test pairs to our

experiment out of the relevant revisions. As already discussed
earlier, we were interested in pairs of revisions in which
there was a change in the Passed/Failed and Failed/Passed

status of one of the tests (see Figure 5). To compute these pairs
we used our helper tool that processes the testing result logs
of the regression test suite.
Unfortunately, we could not use all of the initial pairs in

our experiments due to the following reasons. Table III shows
some statistics about the revision pairs. Initially, we found an
overall of 161 revision pairs based on test case statuses. We
had to exclude those pairs in which there was no change in
the source code at all (in either element of a pair), as well as
those which we could not uniquely relate to C/C++ procedures
of the examined Qt platform. The former issue was typically

Table III
TEST PAIRS INVESTIGATED

Number of test pairs: 161
Number of test pairs without source code changes: 118
Number of test pairs without changed procedures: 31
Number of test pairs with changed procedures: 12

due to the changes of the layout tests, while the latter can be
usually attributed to those changes in C/C++ files that involve
global scope outside of any functions or methods or changes
on a different platform than we used.
So, we could investigate 12 revision pairs in more detail.

Since this number was smaller than we expected at the
beginning of the experiment, we decided to follow a more
qualitative than a quantitative evaluation as presented in the
following. We have to note, though, that due to the so-called
flakey tests this pairing may still include some false pairs.
Flakey tests are those tests whose outcomes are dependent on
the testing environment. For example in layout tests, they are
most often caused by use of delays that become brittle when
test conditions change.

C. Impact sets

We analyzed the sizes of the impact sets computed for the
changed procedures for the relevant revisions. We wanted to
find out how much the distribution of the set sizes resembles
our earlier findings [18].
The WebKit systems consists of about 71000 procedures on

average (this number varies from revision to revision but stays
around this number for the investigated revisions). On average,
in the investigated revisions 10 procedures have been modified.
This is a relatively low number but it can be justified with
the fact that the development process in this system involves
frequent commits. A detailed distribution of the changed set
sizes can be seen in Figure 7.
The sizes of the impact sets vary over a wide range. There

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 21 22 23 25 27 28 32 33 34 35 37 38 39 40 41 43 53 58 62 96 97 106

Number of the changed procedures

N
u

m
b

e
r

o
f

re
v
is

io
n

s

Figure 7. Histogram of the number of the changed procedures

are sets consisting of only the changed procedure, while the
biggest sets we investigated included more than half of the
total procedures. This is similar to what we found in earlier
research for other software systems [18], and we expect that
these impact sets bear the same properties as the more accurate
traditional dependency based sets, namely that they are not
much less precise. We investigated the overall size distribution
of the different sets using a Monotone Size Graph [7] (see
Figure 8). It was interesting to observe that there were a
number of cases when the dependence set was of the same
size, which was more than half of the program. This is
probably caused by a big dependence cluster.

0%

20%

40%

60%

80%

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191

Impact sets

R
e
la

ti
v
e
 i
m

p
a
c
t

s
iz

e
s

Figure 8. MSG graph of impact set sizes relative to the program size.

The size of the impact set is crucial to the successful
application of the method. In certain applications, like guided
code review, the smaller the better, but in other application
like regression test selection even a modest size reduction can
mean a lot of saving. In Figure 9, we can observe the overall
distribution of the impact set sizes for the whole WebKit
system. It can be seen that there is a significant number of sets
with a small number of elements, usually below 100. This is
plausible since in those cases the change propagation can be
effective. However, even in the case when the sets contain
30000–40000 elements, we could achieve an improvement
since this size is half of the system size.
However, from the point of view of our experiment, those

impact sets are most important that were computed at the
revisions taking part in the measurements. Furthermore, it is
interesting to see what the distribution of those changes that
were assumed to cause regression faults is. In Figure 10, we
can see a similar histogram as the previous one but only for the
196 analyzed revisions, and those changed procedures in them

0

15000

30000

45000

0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

40
00

0

45
00

0

50
00

0

55
00

0

Impact set sizes

N
u

m
b

e
r

o
f

m
e

th
o

d
s

Figure 9. Histogram of the impact set sizes for the whole system

that caused failed tests. As expected, the layout is similar, but
we can make an interesting observation that in this case there
were relatively fewer procedures with small impact sets. We
can speculate from this that if a change has a larger impact
set, it will be more probable to result in a failure.

0

150

300

0
50

00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

40
00

0

45
00

0

50
00

0

55
00

0

Impact set sizes

N
u

m
b

e
r

o
f

m
e

th
o

d
s

Figure 10. Histogram of the impact set sizes for the failure inducing changed
procedures only

D. Change propagation prediction

As mentioned earlier, there were 12 revision pairs in the
revision interval investigated that contain modified procedures
at both ends.
In our final investigation, we manually reviewed all 12

revision pairs to find out the rate at which the impact sets at
failure inducing changes include procedures at failure fixing
places, and also to see the causes when the hit was missed.
Unfortunately 8 revision pairs from the 12 were paired due to
flakey tests, so they were dropped.
The remaining 4 pairs were the following:

• rev. 96996 – rev. 97006
• rev. 97121 – rev. 97123
• rev. 97282 – rev. 97289
• rev. 96779 – rev. 96789

We investigated these revision pairs manually. Revisions
97006 and 97123 reverted the modifications of the failed
revisions, so these pairs are not so good in our investigations
either.
Table IV summarizes our final results. In the remaining 2

revision pairs the impacts of the modifications of the Failed

revisions covered 75% of the modifications of the Passed

revisions. There are many factors that prevented to get a
complete hit in all cases:

Table IV
HIT RATE OF THE IMPACT SETS

Revision pairs
rev. 97282
– rev. 97289

rev. 96779
– rev. 96789

Changed procedures at
Failed revision 28 11
Passed revision 3 1

Covered by impact 2 1
Hit rate 66,67 % 100 %

• Introduction of new procedures. If the introduction of a
new procedure is part of the fixing revision (or any of the
revisions after the failed revision), naturally they could
not be parts of the impact sets. In our measurement that
was the reason of the partial hits.

• Deficiencies due to changes in a procedure name only.
The connection of the changed procedures and the impact
set members was done based on their names, parameters
and return types, which was unsuccessful in some cases.

• Weaknesses due to imperfect analysis and representation.
Like any other analysis, SEA also suffers from different
problems that can be related to imperfect analysis and
underlying program representation, most notably due to
procedure call edges. Particularly, the ICCFG graph had
deficiencies in some cases handling certain types of calls,
for example, calls to operator functions.

• It is possible that other technical or algorithmic problems
are responsible for missing hits, among them are those
cases that can be attributed to hidden dependencies be-
tween program elements that even SEA could not find,
but are probably causing incomplete change propagation.

E. Discussion

Although the final results of our experiment about the
comparison of impact sets with the failed and fixed tests are
somewhat different from what we expected, we think that
the presented results are very useful, and provide a basis for
further research. First, in applications like automatic regression
testing any reduction in test size is beneficial. Second, the
advantages of the method may be exploited to improve the
manual change propagation process even if only small impact
sets could be taken into account. In this case, large impact sets
could be simply ignored, but with small impact sets we would
get an increased defect detection probability.
The applicability of the SEA approach for a real size system

is further supported. First, we implemented a complex analysis
framework for our algorithm implementation that is integrated
into the regular build and test process of the WebKit system.
The algorithm is capable of calculating the dependencies for
this big and complex system in a reasonable time compared
to the original build process. This tool setup is now suitable
for continuous measurement of each occurring revision and
producing up to date information, and of course, we are now
able to perform an arbitrary number of measurements for past
revisions.
The impact set sizes show similar distribution to our earlier

findings, though we still need to investigate ways to further

reduce the impact set sizes to be more suitable for specific
applications using, for example, weighting of the relations.
Finally, the experiences from manually investigating the

relevant cases of the experiment we could identify further
possibilities for the perfection of the algorithm and measure-
ment method. With these enhancements we would probably
get much higher hit rate, and that is what we plan to verify in
the future.

F. Threats to validity

There are several threats to the validity of the presented
method and experiment, apart from the weaknesses mentioned
in the previous section.
When verifying the hit rate of the impact analysis, we could

not precisely know which atomic changes caused the failure
and the fix since

1) we aggregated the changes and the dependencies to
procedure level, and

2) we could not take into account that a revision may
implement more than one functionality at the same time.

This means that we assumed that all changes at a given
revision belong to a failure inducing change or a fix.
Our method for finding suitable revision pairs neglects the

fact that the fix can be done in more steps within the middle
of the failing period and the final fix made when the status
changes to passed. Our method however, is conservative in
the sense that in both of these last two cases it verifies more
possibilities than actually needed. And, as mentioned above,
there could be some errors in the pairing also due to the so-
called flakey tests.
We relied on the results of the testing environment, and did

not take into account other sources of defect information like
the bug database.
We verified only whether the impact set contains the actual

required change, and did not discuss whether it would be
actually possible to use the impact set for a specific review
or regression testing activity. This could be hindered by, for
example, the size of the impact set. Therefore we will conduct
experiments in the future to find ways to reduce the size of the
sets by applying some heuristics to prioritize the dependencies.
Finally, as with all other static code analysis techniques, our

method still cannot guarantee complete coverage of possible
dependencies due to various problems related to the dynamic
nature of the languages, and other semantic, conceptual or
logical dependencies in the software system. However, we be-
lieve that it is safe in a sense that all discoverable dependencies
captured by more accurate methods are captured by SEA as
well.

VII. CONCLUSIONS

In this work we summarized the algorithmic properties
and existing implementations of our static impact analysis
method Static Execute After and demonstrated its application
to a large open source system WebKit. The algorithm bears
several properties that make it suitable for the analysis of

dependencies in large systems, which was impossible with
more accurate dependency based methods, while not being
significantly less precise.
Earlier, properties of the algorithm had been verified on

a set of small to medium benchmark programs, but recently
we applied the implementation to large systems like Mozilla,
OpenOffice and WebKit. The latter was used as a case study
in this work. It was difficult to arrive at the point where the
tool can be executed regularly for each revision integrated into
the build process. Using the set up tools we then performed
a series of experiments to find out the size properties of the
impact sets computed for a series of revisions, and to verify
the traditional hypothesis of impact analysis that applying
the impact set we can actually predict the required change
propagation. We know of very few case studies verifying this
using real change and regression test data.
Although we have already invested a significant amount of

work into the implementation of the algorithm, we think we
are still in the middle towards its regular industrial application.
In this work we presented its applicability to large systems but
it still remains to be checked how will it perform for a larger
set of revision data and, eventually, in real situations. We are
working toward applying it for real maintenance problems of
the WebKit developers and see the actual gains in terms of
reduced failure rate.
We also plan to perform more experiments with some

relaxed variants of the algorithm that consider the most
important dependencies first by, for instance, weighing the
dependence edges according to their distance or multiplicity.
Finally, it will also be interesting to perform a similar exper-
iment using code coverage information of the tests, by which
we could identify the failure inducing tests more reliably.

ACKNOWLEDGMENTS

The authors would like to thank György Hegedűs and Péter
Siket for their help with the experiments. This research was
supported by the Hungarian national grant OTKA K-73688.

REFERENCES

[1] M. Acharya and B. Robinson, “Practical change impact analysis based
on static program slicing for industrial software systems,” in Proceedings
of the 33rd ACM SIGSOFT International Conference on Software

Engineering (ICSE), May 2011, pp. 746–765.
[2] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers. Principles, Techniques

and Tools. Addison Wesley, 1986.
[3] T. Apiwattanapong, A. Orso, and M. J. Harrold, “Efficient and precise

dynamic impact analysis using execute-after sequences,” in Proceed-
ings of the 27th International Conference on Software Engineering

(ICSE’05), May 2005, pp. 432–441.
[4] Á. Beszédes, T. Gergely, Sz. Faragó, T. Gyimóthy, and F. Fischer, “The

dynamic function coupling metric and its use in software evolution,” in
Proceedings of the 11th European Conference on Software Maintenance
and Reengineering (CSMR 2007). IEEE Computer Society, Mar. 21–23,
2007, pp. 103–112.

[5] Á. Beszédes, T. Gergely, J. Jász, G. Tóth, T. Gyimóthy, and V. Ra-
jlich, “Computation of static execute after relation with applications to
software maintenance,” in Proceedings of the 2007 IEEE International
Conference on Software Maintenance (ICSM’07). IEEE Computer
Society, Oct. 2007, pp. 295–304.

[6] D. Binkley and M. Harman, “A large-scale empirical study of forward
and backward static slice size and context sensitivity,” in Proceedings

of the International Conference on Software Maintenance (ICSM’03),
Sep. 2003, pp. 44–53.

[7] ——, “Locating dependence clusters and dependence pollution,” in Pro-
ceedings of the 21st International Conference on Software Maintenance

(ICSM’05). IEEE Computer Society, Sep. 2005, pp. 177–186.
[8] S. A. Bohner and R. S. Arnold, Eds., Software Change Impact Analysis.

IEEE Computer Society Press, 1996.
[9] L. C. Briand, J. Wüst, and H. Lounis, “Using coupling measurement

for impact analysis in object-oriented systems,” in Proceedings of the

International Conference on Software Maintenance (ICSM’99), Sep.
1999, pp. 475–482.

[10] J. Buckner, J. Buchta, M. Petrenko, and V. Rajlich, “JRipples: A tool
for program comprehension during incremental change,” in IWPC, 2005,
pp. 149–152.

[11] R. Ferenc, F. Magyar, Á. Beszédes, Á. Kiss, and M. Tarkiainen,
“Columbus – Tool for Reverse Engineering Large Object Oriented Soft-
ware Systems,” in Proceedings of the 7th Symposium on Programming
Languages and Software Tools (SPLST 2001). University of Szeged,
Jun. 2001, pp. 16–27.

[12] R. Ferenc, I. Siket, and T. Gyimóthy, “Extracting Facts from Open
Source Software,” in Proceedings of the 20th International Conference

on Software Maintenance (ICSM 2004). IEEE Computer Society, Sep.
2004, pp. 60–69.

[13] “The FrontEndART Homepage,”
http://www.frontendart.com/.

[14] “Homepage of GrammaTech’s CodeSurfer,”
http://www.grammatech.com/products/

codesurfer, GrammaTech, Inc.
[15] A. E. Hassan and R. C. Holt, “Predicting change propagation in software

systems,” in ICSM ’04: Proceedings of the 20th IEEE International

Conference on Software Maintenance. Washington, DC, USA: IEEE
Computer Society, 2004, pp. 284–293.

[16] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using
dependence graphs,” ACM Transactions on Programming Languages

and Systems, vol. 12, no. 1, pp. 26–61, 1990.
[17] J. Jász, “Static execute after algorithms as alternatives for impact

analysis,” Peryodica Politechnica, pp. pp. 163–176, 2008.
[18] J. Jász, Á. Beszédes, T. Gyimóthy, and V. Rajlich, “Static execute

after/before as a replacement of traditional software dependencies,” in
Proceedings of the 2008 IEEE International Conference on Software

Maintenance (ICSM’08). IEEE Computer Society, Oct. 2008, pp. 137–
146.

[19] J. Jász, “Dependence-based static program slicing and its approxima-
tions,” PhD dissertation, University of Szeged, May 2009.

[20] W. Landi and B. G. Ryder, “Pointer-induced aliasing: a problem taxon-
omy,” in POPL ’91: Proceedings of the 18th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages. ACM Press, Jan.
1991, pp. 93–103.

[21] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, “An Information
Retrieval Approach to Concept Location in Source Code,” in The 11th

IEEE Working Conference on Reverse Engineering (WCRE’04), 2004.
[22] G. Rothermel and M. J. Harrold, “Analyzing regression test selection

techniques,” IEEE Trans. Softw. Eng., vol. 22, 1996.
[23] B. G. Ryder, “Constructing the call graph of a program,” IEEE Trans.

Softw. Eng., vol. SE-5, no. 3, pp. 216–226, May 1979.
[24] G. Tóth, C. Nagy, J. Jász, Á. Beszédes, and L. Fülöp, “CIASYS – change

impact analysis at system level,” in Proceedings of the 14th European

Conference on Software Maintenance and Reengineering (CSMR’10),
Mar. 2010, pp. 203–206.

[25] “The WebKit Wiki Homepage,”
http://trac.webkit.org/wiki/Applications using

WebKit.
[26] “The WebKit Homepage,”

http://www.webkit.org.
[27] M. Weiser, “Program slicing,” IEEE Trans. Softw. Eng., vol. SE-10,

no. 4, pp. 352–357, 1984.
[28] F. G. Wilkie and B. A. Kitchenham, “Coupling measures and change

ripples in C++ application software,” Journal of Systems and Software,
vol. 52, no. 2–3, pp. 157–164, 2000.

[29] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller, “Mining version
histories to guide software changes,” IEEE Trans. Softw. Eng., vol. 31,
no. 6, pp. 429–445, 2005.

