
Poster: Software Fault Localization as a Service
(SFLaaS)

Qusay Idrees Sarhan1, 2, Hassan Bapeer Hassan3, and Árpád Beszédes1

1 Department of Software Engineering, University of Szeged, Szeged, Hungary
2 Department of Computer Science, University of Duhok, Duhok, Iraq

3 Department of Medicine, University of Duhok, Duhok, Iraq
{sarhan, beszedes}@inf.u-szeged.hu, hassan.bapeer@uod.ac

Abstract—any tools for enabling developers locating faults
in their programs have been proposed in the literature. The
majority of the programs they target are those created in the
C/C++ and Java languages. In this paper, we offer a tool
named “SFLaaS” for locating faults in programs written in
Python, a popular programming language, and is provided as
a service rather than as a plugin or a command-line tool to
be installed. Thus, our tool can be accessed anytime and from
anywhere. The tool employs Spectrum-based fault localization
(SBFL) to help Python developers automatically analyze their
programs and generate useful data at run-time to be used to
produce a ranked list of potentially faulty program elements
(i.e., statements). Our proposed tool supports different important
features in fault localization such as supporting about 80 SBFL
formulas, different tie-breaking methods, showing code elements
with different colors, ranging from most suspicious (red) to not
suspicious (green) based on their suspicious scores, allowing the
user to define his/her own formula, etc. Using our tool could help
developers to efficiently find faults in their programs.

Index Terms—Debugging, fault localization, Python, SFLaaS.

I. INTRODUCTION

Programs play an important role in our day-to-day activities.
Nonetheless, errors and faults still exist in most of them. Some
of them are critical that may lead to serious consequences.
Thus, several software fault localization approaches have
been implemented, such as Spectrum-based fault localization
(SBFL) [1]. In SBFL, the level of suspiciousness from being
faulty for each program entity is computed depending on the
program spectra acquired by performing a set of test cases.
However, It is not widespread in the industry sector as it has
some issues [2]. One of the issues is that most of the SBFL
tools focus on C/C++ and Java programs. Therefore, it lacks
the support for developers to debug their software for other
popular programming languages such as Python.

In this paper, we implement a software tool named
“SFLaaS” as a service to enable the software fault localization
process, which can be used anywhere and anytime. This tool is
useful for Python developers to easily analyze their software
by generating data to produce a list of suspicious elements
at runtime. To mark an element as suspicious, the element
should be examined by the developer from the top of the
list to the bottom (from most suspicious element to the least
one). The tool is a cloud-based service which means that the
Python program needs to be uploaded to the server, and the
results can be observed on the website. This enables quick

experimentation with the SBFL method, instant debugging in
simple cases, but also it can be used effectively in education.

II. BACKGROUND OF SBFL
To obtain the spectra of the targeted program, test case

executions on the program elements are stored at the be-
ginning of the SBFL process. This enables generating a
two-dimensional spectrum that demonstrates the connection
between program elements and its test cases. Elements and
tests are presented by their rows and columns, respectively. A
matrix cell demonstrates if the related element (row) is covered
by the related test (column). In addition, the matrix contains
an extra row for the test results, whether it is passed or failed.

Then, for each program element e, four statistical numbers
could be computed: (a) ep: number of passed test cases
covering e; (b) ef: number of failed test cases covering e;
(c) np: number of passed test cases not covering e; (d) nf:
number of failed test cases not covering e. Then, these four
basic statistics can be used by an SBFL formula [3], e.g.,
Tarantula, Ochiai, or Barinel, to compute the suspicion score
for each program element.

Eventually, the output will be generated as a ranking list
based on the scores. The highest element in the ranking list is
the most suspicious to contain a fault. Therefore, it is easier
for the developers to discover faults in a target program.

III. RELATED WORKS

The literature contains several fault localization tools which
will be shortly presented here. A standalone software fault
localization tool called “Tarantula” implemented by Jones et
al. [4] to assist C programmers in debugging their programs. It
classifies each program statement based on its suspiciousness
and uses multiple colors ranging from red to green (From most
suspicious to not suspicious). Also, the brightness levels are
an indication of how often the tests execute a statement.

An Eclipse plug-in tool called “Crisp” is proposed by
Chesley et al. [5] which identifies the reasons for a program
to fail due to code changes. It constructs intermediate versions
of the program that is being edited. For instance, when a test
case fails, the changed parts of the program will be identified
which are caused by the failing test.

Ko and Myers [6] implemented “Whyline” a standalone
debugging tool for Java programs. It constructs why and not-
why questions by employing the combination of static and



dynamic slicing, then the results are shown to the developers
graphically and interactively which is easier to comprehend the
program under test. In addition, it records program execution
traces and the status of each class whether it is executed or
not. It focuses on supporting the exploration of a program and
how it executes. The program execution trace under a test case
could be loaded by developers and then a program element at a
specific point during its execution could be selected. Then the
data values collected during the execution and the information
about the properties of the selected element will be shown to
the user as a set of questions.

Hao et al. [7] proposed “VIDA”, an Eclipse plug-in tool
for Java programs. It determines a set of suspicious elements
based on the statistical analysis. It runs JUnit tests, and the
suspiciousness is computed based on the test outcome. The
ten most suspicious elements are delivered as potential break-
points, including the history of breakpoints such as the previ-
ous estimates of the correctness of the breakpoints and their
current suspiciousness. Moreover, to classify the developers’
estimations, the different colors have been applied from red
(incorrect) to green (correct). And for suspiciousness, it uses
colors varying from black to light gray (most suspicious to less
suspicious). Moreover, to extend the help for developers, static
dependency graphs are generated to explore their estimations
and understand the connections among program elements.

Janssen et al. [8] and Campos et al. [9] proposed “Zoltar”
a command-line tool, which is a fault localization tool that
adopts SBFL and it is Eclipse version is called “Gzoltar”.
It provides a complete framework to automatically generate
runtime data from the source code of the tested programs, as
a result, return faulty locations in a ranked list. It also scores
suspiciousness of entities from red to green.

Wang et al. [10] proposed “FLAVS” a fault localization
tool for Microsoft Visual Studio. It supports manual and
automatic marking (success or fail) of results for each test.
Also, it monitores the environmental conditions of the running
program such as the number of threads, CPU utilization, and
memory usage. For instance, the developer will be aware of
the CPU when the CPU time reaches zero and the test is
still running. Moreover, various classes of granularities are
provided such as predicate, statement, and procedure . The
source code is highlighted in different colors and provides
the suspicious units in clickable elements that direct to the
position in the source code. The features and functionalities
of “FLAVS” have been improved by Chen and Wang [11] in a
tool called “UnitFL” where program slicing is used to reduce
the execution time. Similarly, it delivers fault elements based
on the suspiciousness, with ranging colors from green to red.

Ribeiro et al. [12] proposed a SBFL tool for Java developers
called “Jaguar”. It is a command line tool for Eclipse. The
tool supports the data- and control-flow spectra types. The
former delivers more information. However, data-flow is not
widely adopted in SBFL due to the high execution costs.
To address this, the tool employs a coverage tool called
“ba-dua” as a lightweight data-flow spectrum. It tests large-
scale programs at affordable execution costs. Additionally, the

suspicious elements of programs are visualized.
The aforementioned tools are only available for programs

written in Java and C/C++. The literature has not offered
many tools for Python programs yet to aid them in debugging
phase. In our previous work in [13], we provided a fault
localization plugin for the PyCharm IDE. In this study, we
propose a completely different tool as a service to be accessed
anytime and from anywhere, also it supports more formulas
and allows the user to define his/her own formula with many
other features. Thus, the current tool has many more features
compared to the others.

IV. FAULT LOCALIZATION AS A SERVICE

A. SFLaaS’s Architecture

The architecture of our tool is shown in Figure 1.

Fig. 1. Architecture of SFLaaS

We run the test cases on the target program using “Pytest”1

to fetch the results. To collect the program’s spectra on
statements level, code coverage measurement is required. The
program has to be instrumented in order to generate the
code coverage. Therefore, the Python coverage measuring
framework, called “Coverage.py” 2 has been used in our tool.

Next, the tool constructs coverage and test results from the
gathered data [4]. Then, based on the specified SBFL formulas,
it scores the suspiciousness of each program element. It
is worth mentioning that all the aforementioned steps are
performed on the server side. Also, there is no mandatory
elements (other than a Python code and its tests to be given)
for using the tool. For instance, if the developer writes/uploads
a piece of code, it is not mandatory to install/upload the
Pytest, Coverage.py, or Python as all the necessary elements
for running the tool are already installed on the server side.
Figure 2 shows the technical details about how our tool works.

The frontend interface allows users to submit their Python
programs to be debugged. Upon submission, the PHP backend
stores the program files and user settings into an MySQL

1https://docs.pytest.org/en/7.1.x/
2https://coverage.readthedocs.io/en/6.4.2/

 https://docs.pytest.org/en/7.1.x/
 https://coverage.readthedocs.io/en/6.4.2/


Fig. 2. Technical details of SFLaaS

database. The frontend then waits for the response. A C# appli-
cation constantly listens for new program submissions. When a
new submission is detected, the C# application downloads the
program files and user settings from the MySQL database to
the server. The C# application then runs the SBFL algorithm.
After the program has completed executing, the results are
stored in the database, and the files are deleted from MySQL
and server. The frontend of the application retrieves the results
and displays them to the user.

B. SFLaaS’s User Interface

The user interface of SFLaaS is shown in Figure 3. It can
be noted that many options are provided for the user to start
the software fault localization process.

Fig. 3. Main user interface of SFLaaS

The main features of SFLaaS are listed below:
1) Accessibility: Unlike a plugin, command-line, or stan-

dalone tools; our tool can be accessed anytime and from
anywhere as it is provided as a service. Thus, the user only
needs a browser and an Internet connection.

2) Easy upgrades: It does not require manual installation,
configuration, or updating on the user’s side as the service
provider deals with hardware and software updates; thus
removing this workload and responsibility from the user.

3) Code Editor: It enables the user to write the code of
his/her Python program and its test cases directly into an editor
provided by the SFLaaS. This is useful especially when the
tool is used for educational purposes.

4) Tie-breaking methods: It enables the user to select a tie
breaking method (e.g., MIN, MAX, or MID), see below, and
apply it to the elements sharing the same score in the list.

• minimum (MIN): it refers to the top-most position of the
statements sharing the same suspicious score.

• maximum (MAX): it refers to the bottom-most position of
the statements sharing the same suspicious score.

• average (MID): it refers to the middle position of the
statements sharing the same suspicious score.

MID is the most used method of measuring effectiveness
of SBFL and it is presented as (MID = S+ E−1

2 ); where S is
the tie’s starting position and E is the tie’s size.

5) Formulas selection: It enables the user to select one or
more SBFL formulas. In our tool, we have implemented about
80 formulas (including the most prominent formulas such
as Tarantula, Ochiai, and Barinel) that have been proposed
in the literature. This is especially important for researchers
who would like to compare the efficiency of different SBFL
formulas with each other.

6) User-defined formulas: This enables the user to define
his/her own formula either by combining existing formulas or
by introducing new formulas via combining different statistical
numbers (i.e., ef, ep, nf, np). This is crucial when comparing
newly proposed formulas to the existing ones.

7) High-lighted code elements: When the SBFL is per-
formed, the corresponding code elements are highlighted with
different colors, red (most suspicious) to green (not suspi-
cious), based on the suspicious scores as shown in Figure 4.

8) Navigation: The SBFL results in Figure 4 present the
program elements with their positions in the source code,
ranks, and scores. Clicking on an element in the SBFL results
table puts the cursor at the element’s location in the source
code in order to be easily examined by the user.

C. How to use SFLaaS

In this section, we will describe how our tool can be used to
locate faults in Python programs with an applicability scenario.
The user has two options to submit his/her program and its
tests to the tool: (a) The user uploads a Python program
file and its related tests file using the buttons made for this
purpose. (b) The user writes his/her program and its tests in
a specific editing area specified for this purpose. Then, he/she
starts the fault localization process by clicking on the “Submit”



Fig. 4. Highlighted statements based on suspicious scores

button as shown in Figure 3. The tool then provides the ranking
list of suspicious statements of the uploaded program. The user
clicks on the first statement in the list with the highest score,
and the tool redirects the user to the statement location in the
source code for investigation. If it is a bug, then the user can
fix it. Then, the user re-runs the tests and notices the pass state
of all the test cases. This indicates that the bug is fixed and the
task terminates. If the statement, however, did not lead to the
error, the user may go on to the following statement in the list
based on the ranks. The user goes through the statements one
by one until he/she finds the one that is causing the fault. It
is worth mentioning that each uploaded program gets deleted
after its execution in the server side; this is very important to
ensure privacy. Only the top ten elements from the ranking list
are explored by the developers because after that, they begin
to lose the desire to follow up the fault localization tools [14],
[15]. Thus, any tool could be considered successful, if the
most faulty elements are listed on the top-10 ranks.

We tested the tool in lab settings with researchers and
students, but we do not have much practical experience about
its usefulness among professional programmers. Hence, with
this paper we would also like to draw the attention of the
developers and research communities, and invite them for test-
ing the tool to understand its benefits and provide constructive
feedback about enhancing its usability and user experience.

V. CONCLUSIONS

This paper describes “SFLaaS”3, a fault localization tool
for Python programs which is provided in form of software as
a service. It is implemented with many helpful and practical
characteristics to aid developers in debugging their programs.
Various seeded Python programs have been executed to assess
the functionality of the tool and the results showed that it
can be easily used to locate the existing faults in the subject
programs. However, the validation of the tools use cases and
usability in general should be performed in real life scenarios,
with real bugs and development projects.

3https://sflaas.daxazi.com/

We would like to add interactivity for the developer to
comment on the results, which would enhance results re-
ranking. This would advance the process of fault localization.
In addition, other characteristics would be added such as using
various techniques to visualize the results. It would also be
interesting to study how developers do debug, how they think
about the error, what steps they do, and then try to follow the
behavior such that the tool will help during the process of fault
localization. This would enhance the tool’s practical usability.
Additional technical improvements are also planned such as to
detect what libraries are required to run an uploaded program
properly and then install them.

REFERENCES

[1] C. Gouveia, J. Campos, and R. Abreu, “Using html5 visualizations
in software fault localization,” in First IEEE Working Conference on
Software Visualization (VISSOFT), 2013, pp. 1–10.

[2] Q. I. Sarhan and A. Beszedes, “A survey of challenges in spectrum-based
software fault localization,” IEEE Access, vol. 10, pp. 10 618–10 639,
2022.

[3] Neelofar, “Spectrum-based Fault Localization Us-
ing Machine Learning,” 2017. [Online]. Avail-
able: https://findanexpert.unimelb.edu.au/scholarlywork/
1475533-spectrum-based-fault-localization-using-machine-learning

[4] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test informa-
tion to assist fault localization,” in Proceedings of the 24th International
Conference on Software Engineering (ICSE), 2002, pp. 467–477.

[5] O. C. Chesley, X. Ren, B. G. Ryder, and F. Tip, “Crisp - A fault local-
ization tool for Java programs,” Proceedings - International Conference
on Software Engineering, pp. 775–778, 2007.

[6] A. J. Ko and B. A. Myers, “Debugging reinvented: Asking and answer-
ing why and why not questions about program behavior,” Proceedings -
International Conference on Software Engineering, pp. 301–310, 2008.

[7] D. Hao, L. Zhang, T. Xie, H. Mei, and J. S. Sun, “Interactive Fault
Localization Using Test Information,” Journal of Computer Science and
Technology, vol. 24, no. 5, pp. 962–974, 2009.

[8] T. Janssen, R. Abreu, and A. J. Van Gemund, “Zoltar: A spectrum-based
fault localization tool,” SINTER’09 - Proceedings of the 2009 ESEC/FSE
Workshop on Software Integration and Evolution at Runtime, pp. 23–29,
2009.

[9] J. Campos, A. Riboira, A. Perez, and R. Abreu, “Gzoltar: An eclipse
plug-in for testing and debugging,” 2012 27th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2012 - Proceed-
ings, pp. 378–381, 2012.

[10] N. Wang, Z. Zheng, Z. Zhang, and C. Chen, “FLAVS: A fault localiza-
tion add-in for visual studio,” Proceedings - 1st International Workshop
on Complex Faults and Failures in Large Software Systems, COUFLESS
2015, pp. 1–6, 2015.

[11] C. Chen and N. Wang, “UnitFL: A fault localization tool integrated
with unit test,” Proceedings of 2016 5th International Conference on
Computer Science and Network Technology, ICCSNT 2016, pp. 136–
142, 2017.

[12] H. L. Ribeiro, H. A. De Souza, R. P. A. De Araujo, M. L. Chaim,
and F. Kon, “Jaguar: A Spectrum-Based Fault Localization Tool for
Real-World Software,” Proceedings - 2018 IEEE 11th International
Conference on Software Testing, Verification and Validation, ICST 2018,
pp. 404–409, 2018.

[13] Q. I. Sarhan, A. Szatmari, R. Toth, and A. Beszedes, “Charmfl: A fault
localization tool for python,” in 2021 IEEE 21st International Working
Conference on Source Code Analysis and Manipulation (SCAM), 2021,
pp. 114–119.

[14] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on
automated fault localization,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, New York, NY, USA,
2016, p. 165–176.

[15] X. Xia, L. Bao, D. Lo, and S. Li, “Automated debugging considered
harmful: A user study revisiting the usefulness of spectra-based fault
localization techniques with professionals using real bugs from large
systems,” in 2016 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME), 2016, pp. 267–278.

 https://sflaas.daxazi.com/
https://findanexpert.unimelb.edu.au/scholarlywork/1475533-spectrum-based-fault-localization-using-machine-learning
https://findanexpert.unimelb.edu.au/scholarlywork/1475533-spectrum-based-fault-localization-using-machine-learning

	Introduction
	Background of SBFL
	Related Works
	Fault Localization as a Service
	SFLaaS's Architecture
	SFLaaS's User Interface
	Accessibility
	Easy upgrades
	Code Editor
	Tie-breaking methods
	Formulas selection
	User-defined formulas
	High-lighted code elements
	Navigation

	How to use SFLaaS

	Conclusions
	References

