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Abstract—In Spectrum-Based Fault Localization (SBFL), when
some failing test cases indicate a bug, a suspicion score for each
program element (e.g., statement, method, or class) is calculated
using a risk evaluation formula based on basic statistics (e.g.,
covering/not covering program element in passing/failing test)
extracted from test coverage and test results. The elements are
then ranked from most suspicious to least suspicious based on
their scores. The elements with the highest rank are believed to
have the highest probability of being faulty, thus, this light-weight
automated technique aids developers to find the bug earlier.
Several SBFL formulas were proposed in the literature, but the
number of possible formulas is infinite. Previously, experiments
were conducted to automatically search new formulas (e.g.,
using genetic algorithms). However, no systematic search for new
formulas were reported in the literature. In this paper, we do
so by examining existing formulas, defining formula structure
templates, generating formulas automatically (including already
proposed ones), and comparing them to each other. Experiments
to evaluate the generated formulas were conducted on Defects4J.

Index Terms—Debugging, automated fault localization,
spectrum-based fault localization, formulas, systematic search.

I. INTRODUCTION

Various automated fault localization techniques have been
proposed over the last few decades including Spectrum-Bbased
Fault Localization (SBFL). In SBFL, the probability of each
program element (e.g., statements) of being faulty is calculated
based on program spectra obtained by executing a number of
test cases and a formula that uses basic statistics of this spectra.
However, automated fault localization using this technique is
not yet widely used in the industry because it poses a number
of issues and challenges [1]. One of such issues is that in
SBFL different formulas produce different results. In SBFL
program elements are ranked in order of their suspicion scores
(calculated by the used formula) from the most suspicious
to the least. To decide whether an element is faulty or not,
programmers examine each element starting from the top of
the ranking list. To help developers discover the faulty element
early in the examination process and with minimal effort, the
faulty element should be put near to the highest place in the
ranking. Often, SBFL formulas do not put faulty program
elements higher in the ranking list to be examined first [1].

In this paper we propose to systematically search for SBFL
formulas, based on formula templates. First, we examine
existing formulas reported in the literature to define formula
templates which describe the structure of the formula. Then,
we systematically generate all possible formulas for these

templates and examine them. To eliminate redundancy in the
work, we sort out useless (constant or duplicate) formulas,
determine equivalent (that produce the same rankings), inverse
(that produce exactly the opposite rankings), and mostly equiv-
alent ones (that only differ from each other in special cases).

To illustrate the concept, we performed a preliminary search
with a simple formula template. We used the generated
formulas on the Defects4J dataset to compute rankings and
determine their effectiveness. While most of our preliminary
expectations about the performance of the formulas are sup-
ported by the results, some numbers indicated that handling
special cases can have strong influence on the effectiveness
of similar formulas. In the future, we plan to analyze more
formula templates and examine how different handling of
special cases influences the performance of formulas.

The main contributions of this paper are as follows:
1) The idea of finding new SBFL formulas via a systematic

search based on formula templates.
2) A formula template based on existing formulas and an

evaluation of formulas derived from it.

II. BACKGROUND ON SBFL

At the beginning of the SBFL process, the execution of
test cases on program elements is recorded to extract the
spectra for the program under test. Program spectra is a two-
dimensional matrix used to represent the relationship between
the test cases and the program elements. Its rows demonstrate
the test cases and its columns represent the program elements.
A cell of the matrix indicates whether the corresponding
program element (column) is covered by the corresponding
test case (row). Test results (passed or failed) are also stored
in the matrix (in an extra column).

The following four basic statistical numbers are calculated
from the spectra for each program element e: (a) ep: number of
passed test cases covering e; (b) ef: number of failed test cases
covering e; (c) np: number of passed test cases not covering
e; (d) nf: number of failed test cases not covering e.

Then, these four basic statistics can be used by an SBFL
formula, e. g., Barinel ( ef

ef+ep ) [2] or Wong II (ef − ep) [2],
to compute the suspicion score for each program element.

Finally, a ranking list based on the scores is produced as
an output. An element ranked the highest in the list is the
most suspicious of containing a fault. Thus, SBFL can help
developers to find the faulty element in a target program easier.



III. RELATED WORKS AND GOALS

This section briefly presents the most relevant works of
improving SBFL by targeting its formulas.

The first approach is to “guess” new SBFL formulas that
outperform the existing ones. For example, the authors in [3]
proposed a new SBFL formula called “DStar”. The proposed
formula has been compared with several widely used formulas
and it showed good performance compared to others.

The second approach is formula modification. The authors
in [4] modified three well-known SBFL formulas based on
the idea that some failed test cases may provide more testing
information than other failed test cases. Therefore, for the
three used formulas, different weights for failed test cases were
assigned and then applied with multi-coverage spectra.

Another way is to combine existing formulas. The authors
in [5] proposed a new SBFL formula by combining 40
different formulas using different voting systems. The results
of the experiments have shown that the formula generated by
their method is better than several existing ones. The authors
of [6] also created a hybrid formula which combines the
advantages of other existing formulas.

The authors in [7] used genetic programming (GP) to evolve
new formulas from a hybrid dataset (i.e., from different bug
benchmarks). They were able to produce several formulas that
outperformed many existing ones. However, their approach, by
the random nature of genetic programming, is not systematic
in the sense that it might miss obvious candidates, thus it does
not guarantee that even a simple formula is examined.

Finally, involving new information to existing SBFL formu-
las can also lead to improvements. For example, the authors
in [8] utilized the method calls frequency during the execution
of failed tests to add new contextual information to existing
formulas. Thus, the ef of each formula was changed to the fre-
quency ef . Their experiments improved SBFL effectiveness.

All the aforementioned studies improved the performance of
SBFL formulas in different ways. However, using systematic
search (in contrast to ad-hoc, intuitive or heuristic methods)
for introducing new formulas is a novel approach which has
not been investigated previously. We are doing this by defining
formula templates (based on existing formulas) and instantiate
them in all possible ways. This approach also has limitations
and arise problems. First, the more generic a template is, the
more combinatorial explosion we will face and more formula
instances we will get. Second, as Naish et al. [9] and Xie et
al. [10] have shown, in theory, several formulas can produce
the same rankings. We can utilize this result when a large
number of new formulas are generated: it is enough to (and
practically we have to) choose a single representative of the
equivalent ones. Our goal is not to show formula equivalences,
but to find completely new formulas.

In this paper, we introduce our preliminary results with a
relatively restricted formula template. Our goal is to find out
how different the generated formulas will be in terms of their
ranking ability, and how we can limit the combinatorial space.

IV. SYSTEMATIC ANALYSIS

Several researchers have been trying to find new and better
formulas and numerous formulas have been proposed in the
literature in the past decades, but no research is known to
us that carried out a systematic search to find new possible
formulas. On the one hand, this is understandable since the
number of possible formulas is infinite.

On the other hand, by examining the reported SBFL for-
mulas, we found that groups of them have similar structures,
so there could be built using patterns, in other words, formula
templates. Using a single formula template, the number of
formulas that can be generated is finite, thus, the formulas
can be systematically produced and examined. Utilizing this
property, we examined the set of already reported formulas
and defined a single linear/reciprocal formula template for this
study that cover several existing formulas. In this template,
BSN will denote the basic statistical numbers, i.e. BSN =
{ef , ep,nf ,np}. The following template can literally yield
in, for example, the Barinel, Jaccard, Kulczynski, Wong (I-II)
formulas, but also covers the ranking of e.g. SBI or OP2 [2].∑

t∈BSN∪{1} ntt∑
t∈BSN∪{1} dtt

=
nef ef + nepep + nnf nf + nnpnp + n1

def ef + depep + dnf nf + dnpnp + d1
,

where {n, d}{ef ,ep,nf ,np,1} ∈ {−1, 0, 1} are the coefficients in
the numerator and denominator. This formula yields 29, 040
valid and usable formulas (division by zero and constant
formulas could be excluded, and a

b = −a
−b are the same).

Among these formulas, there are several groups, within which
all the formulas have the same ranking effect; the most obvious
examples are a

b ≡ a+b
b ≡ a−b

b ≡ a+1
b ≡ a−1

b .

A. Formula template for the experiments

In this paper we illustrate the method using a simplified
version of the first formula template:∑

t∈{ef ,ep} ntt∑
t∈{ef ,ep} dtt

=
nef ef + nepep

def ef + depep
,

where {n, d}{ef ,ep} ∈ {−1, 0, 1} are the coefficients in the
numerator and denominator, and 0ef + 0ep is treated as
constant 1. This template yields 81 formulas. 32 of these
formulas are mathematical duplicates (−a

−a = a
a ), 9 of the

rest are constants (in forms 1
1 , a

a and −a
a ). These can be

excluded from the examination. The remaining 40 formulas
are 20 normal and inverse pairs (ab and −a

b ), which pairs will
produce exactly the reverse rankings.

It is theoretically possible that both formulas of a pair pro-
duce good results for different subsets of bugs, thus, we cannot
leave out either of them from the measurement. However, a
normal and its inverse formula have similar attributes and
relations to other formulas (Note, that it is arbitrary which
element of a pair is treated as normal or inverse).

Formulas in the form a
1 are similar in their rankings with

their 1
−a versions (the latter are denoted by orange background

in Table I). Differences are due to program elements for which



the denominator of the used formula equals zero. This gives
8 formulas (plus 8 inverses).

The remaining 12 formulas have 4 denominators, 3 formulas
sharing each one. The 3 formulas with the same denominator
are equivalent with each other regarding the rankings they
produce (their computed suspicious scores differ only by a
constant from each other), thus, any two of them can be elim-
inated from the measurements. Furthermore, the 4 remaining
formulas (and their inverses, denoted by green background)
are also mostly equivalent with each other as they produce
similar rankings except for elements with zero denominators.

Thus, we have 8+4 formulas and their 12 inverses. The 24
formulas to be measured are shown in Table I, which includes
well known formulas Barinel (F10), Wong I (F2), and Wong
II (F16). Note, if we had no program elements for which ep
or ef is zero or ep = ef , then the formulas in the same row
would produce the same rankings, thus, it would be enough
to measure only 5 different formulas and their 5 inverses.

TABLE I
VARIANTS OF FORMULAS. FORMULAS IN THE SAME ROW ARE

EQUIVALENT TO EACH OTHER UNDER THE CONDITION IN THE COLUMN
HEADER. FORMULAS F13-F24 ARE THE INVERSES OF FORMULAS F1-F12.

conditions → ep ̸= 0 ef ̸= 0 ep + ef ̸= 0 ep ̸= ef

F1 = ep F5 = 1
−ep

F2 = ef F7 = 1
−ef

F3 = ep + ef F9 = 1
−ep−ef

F4 = ep − ef F11 = 1
−ep+ef

F6 = ef
ep

F8 = −ep
ef

F10 = ef
ep+ef

F12 = ef
ep−ef

F13 = −ep F17 = 1
ep

F14 = −ef F19 = 1
ef

F15 = −ep − ef F21 = 1
ep+ef

F16 = −ep + ef F23 = 1
ep−ef

F18 = −ef
ep

F20 = ep
ef

F22 = −ef
ep+ef

F24 = −ef
ep−ef

In the analysis above, we examined the formulas to find
equivalences and similarities. Finding equivalences was not
our goal, but reduced the number of formulas to be evaluated.
However, for a larger number of automatically generated
formulas, this analysis should be performed automatically
as well. This issue seems to be a non-trivial mathematical
problem which we are planning to investigate in future.

V. MEASUREMENTS

An appropriate dataset is required to examine fault local-
ization. In this study, we used the faulty programs of version
v1.5.0 of Defects4J [11]; where 6 open-source Java programs
have 438 real single and multiple faults. We excluded 27 faults
in this study due to instrumentation errors or unreliable test
results. Thus, a total of 411 faults were included in our final
dataset. Table II presents each program and its main properties.

TABLE II
SUBJECT PROGRAMS

Project Number
of bugs

Size
(KLOC)

Number
of tests

Number
of methods

Chart 25 96 2.2k 5.2k
Closure 168 91 7.9k 8.4k

Lang 61 22 2.3k 2.4k
Math 104 84 4.4k 6.4k

Mockito 27 11 1.3k 1.4k
Time 26 28 4.0k 3.6k
All 411 332 22.1k 27.4k

We employed method-level granularity as a program spec-
tra/coverage type. Compared to statement-level granularity,

it has several advantages, e. g. it scales well and provides
users with a more understandable level of abstraction [12].
Nevertheless, there is no theoretical obstacle to investigate
lower levels of granularity in the future.

In this paper, we compare all the generated SBFL formulas
to each other, presented in Table I, in order to measure the
effectiveness of each generated formula.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

A. Achieved improvements in the average ranks

Here, we use the average rank approach, which assigns
to all of the tied elements (those having the same suspicion
score) their average rank. Thus, if there are E pieces of tied
elements having consecutive ranks (in random order) starting
from rank S in the ranked list, we assign the same rank
R = S + (E − 1)/2 to all of these elements.

For handling the exceptional case when the denominator of
the formula is 0 for a program element (the div/0 problem),
we assign the 0 suspicion score to the given element.

Table III presents the average rank of each generated SBFL
formula. It can be noticed that F10 (Barinel) performs the
best, and formulas F2 (Wong I), F6, and F19 also produce
much better average ranks than all other formulas. It is worth
mentioning that according to [9], F6 is equivalent to F10 in
ranking. However, the difference in results shows that div/0
conditions (ef ̸= 0 and ef + nf ̸= 0) makes difference in
practice even for theoretically equivalent formulas. Also, the
result of F19 is a bit surprising at first glance, as it is similar to
F14, which is the inverse of F2 (Wong I). However, F19 fails
to handle program elements that does not fail (ef = 0). We
assign 0 suspicion score to these elements, thus ranking them
lowest in the list, while F2 (Wong I) also ranks them lowest
due to their natural 0 score. This shows how handling special
cases, like div/0, can influence the performance of otherwise
similar formulas.

TABLE III
AVERAGE RANKS OF THE GENERATED SBFL FORMULAS

Name Average rank Name Average rank

F1 1956.0 F13 4129,55

F2 (Wong I) 156.61 F14 6052.76

F3 1751.38 F15 4381.29

F4 2198.84 F16 (Wong II) 3833.54

F5 2963.85 F17 3119.95

F6 216.16 F18 5899.8

F7 6012.12 F19 205.77

F8 5655.43 F20 497.87

F9 3193.56 F21 2940.67

F10 (Barinel) 38.5 F22 6160.15

F11 2674.05 F23 3373.45

F12 614.03 F24 5393.14

B. Achieved improvements in the Top-N categories

The performance of SBFL can also be evaluated by focusing
on the Top-N rank positions, as follows: (a) Top-N: When the
rank of a faulty program element is less or equal to N . (b)
Other: When the rank of a faulty program element is more



than the highest N value used in the categorizations (it is 10
in our experiments). Table IV presents the number of bugs in
the Top-N categories and their percentages for the dataset.

TABLE IV
TOP-N CATEGORIES

Top-1 Top-3 Top-5 Top-10 Other
# % # % # % # % # %

F1 0 0 0 0 0 0 0 0 411 100
F2 10 2 57 14 72 18 110 27 301 73
F3 0 0 0 0 0 0 0 0 411 100
F4 0 0 0 0 0 0 0 0 411 100
F5 0 0 0 0 0 0 0 0 411 100
F6 64 16 142 35 180 44 223 54 188 46
F7 0 0 0 0 0 0 0 0 411 100
F8 0 0 0 0 0 0 0 0 411 100
F9 0 0 0 0 0 0 0 0 411 100

F10 65 16 165 40 201 49 248 60 163 40
F11 15 4 31 8 35 9 38 9 373 91
F12 57 14 124 30 158 38 199 48 212 52
F13 0 0 0 0 0 0 0 0 411 100
F14 0 0 0 0 0 0 0 0 411 100
F15 0 0 0 0 0 0 0 0 411 100
F16 17 4 34 8 36 9 39 9 372 91
F17 0 0 0 0 0 0 0 0 411 100
F18 0 0 0 0 0 0 0 0 411 100
F19 6 0 55 13 71 17 107 26 304 74
F20 13 3 37 9 51 12 74 18 337 82
F21 0 0 0 0 0 0 0 0 411 100
F22 0 0 0 0 0 0 0 0 411 100
F23 0 0 0 0 0 0 0 0 411 100
F24 16 4 32 8 34 8 38 9 373 91

This evaluation also shows that F10 (Barinel), F6 and F12
are the best three formulas from this set. Surprisingly, at least
at first glance, the similar F8 performs very bad. The reason
is again the handling of program elements with ef = 0 value,
to which elements we assign the 0 score. As the other scores
are negative (at most 0), these not failing elements will be
ranked in the top of the list. Other interesting results are those
of F12 and F24. These are inverses of each other, yet F24
also ranks 4% of the buggy elements in the Top-10. We think
the main reason for this (besides the zero denominator, i. e.
when ep = ef ) is that when ef > ep (i. e. more failing tests
cover the element than passing ones), F12 turns the score into
negative, ranking these elements low, while F24 will result
in a positive score (negative numerator divided by negative
denominator), ranking them in the top of the list. The F12, F24
pair is a practical proof that inverse rankings can perform well
on different spectra, thus both of them needs to be examined.

VII. IMPLICATIONS AND FUTURE PLANS

This paper presented formula template based systematic
search for new SBFL formulas. The results of our preliminary
research indicate that the proposed approach deserves further
investigation. Presently, we did not find an automatically
generated formula which is not published in the literature but
it outperforms existing ones.

However, since the template we used was very simple, this
is not surprising. We hope that by extending the template to
e.g. polynomial, exponential, and/or logarithmic, we will be
able to identify new formulas which outperform existing ones.
We also intend to perform the following studies in future work:

• Comparing the effectiveness of the formulas generated
for all the identified templates with each other.

• Combining the best formulas from different templates
into a single formula that has the advantages of others.

• Performing a theoretical analysis of how formula equiv-
alences can be automatically detected.

• Involving other benchmark datasets to measure how much
impact do they have on finding good formulas.

• Finding new ways other than formula equivalences used
in this paper to limit the size of our search space.

• Studying how handling exceptional cases (e.g., division-
by-zero) influences the performance of SBFL formulas.

VIII. CONCLUSIONS

In this paper we proposed a systematic approach to search
for new SBFL formulas using only the four basic statistical
numbers from the spectra. For this purpose, formula templates
are determined and the possible formulas are generated auto-
matically. As a demonstration, we used a formula template
to systematically generate all formulas for that template, then
these were analyzed and their effectiveness was evaluated on
the Defects4J dataset. Interestingly, the analysis has shown that
in theory several formulas generated from the same template
are equivalent to or should similarly rank elements to each
other, while the handling of special cases (like division-by-
zero) can significantly influence the practical performance of
the formulas and thus the relations among them. Summing
up, leveraging systematic search for finding new formulas
automatically is worth investigating in the future.
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