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Abstract—Spectrum-Based Fault Localization (SBFL) is a
semi-automated debugging technique that gained popularity in
the last decades due to its intuitive approach and relatively simple
implementability. Despite this, the performance of practical SBFL
techniques in terms of fault localization capability does not reach
the threshold that would enable their acceptance by professional
programmers. Almost all modern SBFL approaches are based
on the code coverage-based spectrum, and on the assumption
that a code element covered by failing tests should be treated
as suspicious. However, it is easy to see that this is an over-
approximation because many code elements may be executed that
do not contribute to the test output, hence serving as noise in the
process. A possible solution is to use backward dynamic program
slices as program spectra computed from the output statement
as the criterion, instead of the coverage. There are very few
theoretical and practical results about this approach, so in this
work we revisit the method and show how much more inferior
coverage-based spectra are compared to slice-based spectra, both
on theoretical and practical levels. We argue that code coverage-
based SBFL is currently in a research pit due to this inherent
approximation, and research on slice-based spectra should once
more attain a much higher focus.

Index Terms—Spectrum-Based Fault Localization, Automated
Debugging, Assertions, Backward Dynamic Program Slice.

I. INTRODUCTION

In Spectrum-Based Fault Localization (SBFL) [1], [2], [3],
[4], [5], test executions are recorded to produce the program
spectrum. It includes dynamic information about test cases
with respect to the code executed. It might be simply the code
coverage (hit-based spectrum), or more elaborated (count-
based spectrum). Code elements can be treated at different
levels of granularity. The spectrum also includes test outcomes,
often simply as pass or fail. The spectrum is then used to infer
statistical information about the probability of code elements
being faulty.

The precursor works to SBFL are a couple of decades
old [6], [7], and the technique attained popularity in the
software maintenance, testing, and automated program repair
communities due to its relative ease of implementation and low
computation cost in the basic case. Although there have been
different types of program spectra proposed over the years [1],
[8], [9], [10], [11], [12], [13], the prevalent approach is still
the simplest one, the hit-based spectrum. It simply records the
binary coverage information of code elements upon test case
execution.

Coverage-based SBFL is straightforward to implement us-
ing existing profiling tools, and the corresponding algorithms
to calculate faultiness are simple, hence this provided a fruitful
ground for a large set of SBFL techniques proposed in the

literature. A crucial element with these algorithms is the
suspiciousness formulas that rely on four basic statistical
measures on the matrix (the spectrum metrics), which count
the number of passing and failing test cases that do or do not
execute the code element in question, respectively [3], [14].
The formulas themselves use these numbers to rank the code
elements according to their suspiciousness [15], [16], [17],
[18], [19], [20], [21].

Researchers experimented with various techniques to come
up with new formulas, such as combining existing ones [22],
applying genetic programming [23], [24], or using systematic
search [25] to automatically infer new ones. Xie et al. [26]
examined the equivalence and hierarchy between a number of
formulas, while Yoo et al. [24] showed that there does not exist
a perfect scoring formula that outperforms known techniques
found by humans or even by automatic search-based methods.

Yet, it seems that we are still struggling to find an SBFL
technique using the coverage spectrum that produces good
enough results in practical situations. The average ranking
positions relative to the program size in various popular bench-
marks are 4%–20.6% for Defects4J [4], around 1.2%–21.1%
for SIR [27], and 0.5%–13.5% for BugsJS [28]. Although
these are seemingly good results, their absolute values can
be unacceptably bad (around 88–1978 for Defects4J, 1–35
for SIR, and 2–81 for BugsJS, on average). Recent user
studies report that developers tend to investigate only the top
5 or at most the top 10 elements in the recommendation list
provided by localization methods before giving up [29], [30].
Hence, any improved rank position which is beyond these
thresholds will probably be less useful, no matter how much
relative improvement they can achieve. Not to mention the
application of SBFL for automated program repair, where the
top positions are implicitly expected [31], [32].

So, it seems that we reached the limit when it comes to
coverage-based SBFL approaches, and any additional variation
of the technique could only bring modest improvement over
the state-of-the-art. One possibility is to include information
external to the spectrum into the process and thus aid the
localization process [33], [34], [35], but these are beyond
the scope of this paper. We instead concentrate on the pure
spectrum-based approaches, and in particular, we would like to
find out how suitable the prevalent coverage-based spectra
are for the task in the first place.

An important insight about coverage-based spectra is that
these techniques are based on the assumption that a code ele-
ment covered by failing tests should be treated as suspicious.
However, it is easy to see that this is an over-approximation of



the original intent to look for the code responsible for the fault.
The faulty code element must be executed in a failing run,
but it also needs to cause a failure-inducing chain toward the
output [36]. If a statement is executed but it is not participating
in the corresponding computation responsible for the failure,
it causes noise in the SBFL process.

In other words, instead of the simple coverage information,
only its subset should be used, which takes part in the compu-
tation. This is, precisely, the concept of the program slice [37].
In particular, we are interested in the backward dynamic
program slice [38] computed from the output statement as the
criterion, and use this information in the program spectra. If
computed properly, a dynamic program slice will be a subset
of the coverage information and in the spectrum, it will provide
exactly the information that is needed by SBFL formulas. A
further advantage of program slicing is that most practical
approaches are able to provide structural information about
the computation path as well, not just the program subset.

The question then is: how big is the influence of the
over-approximation caused by the coverage-based spectrum
compared to the slice-based? This depends on the relative size
of the slices with respect to the coverage information, and the
way superfluous elements affect the SBFL algorithm. In other
words, what is the effect of the executed code elements that
are not in the slice on the final ranking lists?

The idea of combining program slices and SBFL is not new,
and there are various approaches to do the same (overviewed
later in this paper). Surprisingly, relatively few studies among
these utilize backward dynamic slices in place of the coverage
in the program spectrum [39], [40], [41]. Also, these studies
do not elaborate on the relationship of the coverage-based
and slice-based spectra, typically only high-level measurement
results are provided. The main reason for this modest visibility
could be very pragmatic: computing precise slices requires
difficult algorithms, and the computation costs can be very
high compared to simply using the coverage.

With this paper, we aim at filling this gap and providing
more insight into “how bad is the coverage spectrum?” when
compared to the slice-based spectrum, and what are the typical
situations where the deficiencies manifest. Given the fact that
dynamic slices can be quite small (about 33% [42] to 50%
[43] of the executed instructions on average), we expect a
large impact on the overall algorithm effectiveness.

It is not the aim of this paper to discuss concrete slicing
techniques and their effect on SBFL, just the conceptual rela-
tionship backed up by an empirical case study to illustrate the
differences. The contributions of this paper are the following:

1) We provide a theoretical analysis of why coverage-based
spectra necessarily produce suboptimal results compared
to dynamic slice-based spectra.

2) We implemented a dynamic slice-based SBFL method
using a precise yet feasible approach.

3) In a case study using a well-known subject program
and real faults, we found that slice-based spectra out-
performed traditional coverage-based spectra by a large
margin in terms of the faulty element’s rank position.

4) We thoroughly analyzed every fault in the case study
to understand the most typical causes of suboptimal
performance of the coverage-based approach.

II. DYNAMIC SLICE AS PROGRAM SPECTRA

In this paper, we will use the following notations and rep-
resentations of SBFL and slicing concepts. Note that different
articles may use different representations and notations of
the same concepts. This section is also intended to introduce
the concept of dynamic slice as program spectra and related
implementations.

A. Background on Spectrum-based Fault Localization

Let P denote the program under investigation, T the set of
test cases that test P , and E the set of code elements in P
according to the chosen granularity level.

In the SBFL approach, the dynamic information from
running test cases is contained in the program spectrum,
which consists of two parts, the spectrum matrix M of size
|T | × |E| and the results vector R of size |T |. Columns of
the spectrum matrix represent elements of E while the rows
contain elements of T . The basic form of the spectrum matrix
is the hit-based matrix in which each cell can be either 1
or 0 denoting if there is a dynamic relationship between an
element e ∈ E and t ∈ T upon its execution or not. Thus,
in the coverage-based spectrum matrix, mi,j = 1 if the i-th
test covers the j-th element and 0 otherwise. In the rest of
the paper, we will use M to denote the hit-based coverage
spectrum matrix, and C(t) ⊆ E for the set corresponding to
the t-th row, i.e., the set of covered elements by test case t.

Elements of the results vector R are defined as ri = 0 if
the i-th test was completed without failure and 1 otherwise. In
addition, to evaluate the fault localization effectiveness, infor-
mation about the known faults will be used from benchmark
programs. It will be represented by the faults vector F of
size |E| in which fj = 1 if the j-th code element contains
a fault. For simplicity, we will also use the same notations
M , R, and F to represent not only the matrix/vectors but the
corresponding sets and functions as well, depending on the
context.

The next step in the fault localization process is calculating
the four spectrum metrics on the matrix, which count the num-
ber of passing and failing test cases that do or do not include
the code element e in question, in various combinations. The
following four sets provide the basis for these numbers:

ef (e) = {t ∈ T | M(t, e) = 1 ∧R(t) = 1}
nf (e) = {t ∈ T | M(t, e) = 0 ∧R(t) = 1}
ep(e) = {t ∈ T | M(t, e) = 1 ∧R(t) = 0}
np(e) = {t ∈ T | M(t, e) = 0 ∧R(t) = 0}

For the sake of simplicity, we will use the notations ef , nf ,
ep, and np to denote the sizes of these sets, respectively.

Suspiciousness formulas use some or all of these values
to calculate the score for each code element in the program,



giving their final ranking as the output to the user (by conven-
tion, a bigger score means more suspicion). As mentioned,
the literature has provided a large number of formulas. In
this paper, we will rely on several well-known ones, that are
defined in Table I.

TABLE I
DETAILS OF THE SBFL FORMULAS USED IN OUR EXPERIMENT

Barinel- Bar, DStar- Dst, Jaccard- Jac, Ochiai- Och, Sørensen-Dice- Sor
AND Tarantula- Tar

Bar [44]:
ef

ef + ep
Dst [20]:

ef 2

ep + nf

Jac [16]:
ef

ef + nf + ep
Och [16] :

ef√
(ef + nf ) · (ef + ep)

Sor [21] :
2 · ef

2 · ef + nf + ep
Tar [45] :

ef
ef+nf

ef
ef+nf

+ ep
ep+np

B. Background on Dynamic Program Slicing

Program slicing [46] is a classical code analysis technique,
which aims to determine a subset of a program P , called the
program slice, by omitting the irrelevant code elements, such
as statements, with respect to a specific calculation and from
a specific perspective. Every slice is related to a tuple named
the slicing criterion, which can be written as Cr = ⟨P, v, l⟩
where v is a variable at program position l for which the
slice needs to be computed. Generally speaking, a slice of
program P with respect to a slicing criterion Cr includes only
computations that are related to variable v at program point
l. Slicing approaches can be categorized by the direction of
computation, i.e., forward or backward, depending on whether
the result contains those lines which depend on the value
of the criterion variable, or affect it, respectively. The other
classification of slicing approaches is according to whether the
slice includes information computed for all possible executions
of the program (static slicing), or only for a specific program
input, i.e., a test case (dynamic slicing).

This paper deals with backward dynamic program slicing
with the slicing criterion being the “output statement” of the
test case. In practice, the output statement may correspond to
an assertion point in the test case with the asserted variable. In
the following chapters, we will use DS (t) ⊆ E to denote the
backward dynamic program slice corresponding to test case t.

C. Dynamic Slices as Program Spectra

In fault localization literature, several works explore the
possibilities of combining the spectrum-based approach with
program slicing. Various strategies are possible to this end,
and the most important ones are overviewed in Section VI.

In this work, we concentrate on the class of methods in
which the traditional SBFL method based on code coverage is
modified by replacing the spectrum matrix with slice informa-
tion. Several variations are possible at this point – which we
will discuss later in this section –, but for illustration purposes,

we define the slice-based spectrum as the spectrum matrix M ′

whose rows include the backward dynamic slices computed
from the corresponding test cases instead of their coverages
(each C(t) is replaced by DS (t)).

1 public class Circle {
2 private double area;
3 private double perimeter;
4 public Circle(double radius) {
5 area = radius * radius * Math.PI;
6 perimeter = radius * Math.PI; // faulty statement
7 }
8 double getArea() {
9 return area;

10 }
11 double getPerimeter() {
12 return perimeter;
13 }
14 }

Listing 1. Faulty code example

1 public class CircleTest extends TestCase {
2 static Circle circle = new Circle(0);
3 public void t1() {
4 assertEquals(Math.PI, new Circle(1).getArea(),

1e-10);
5 }
6 public void t2() {
7 assertEquals(2.0*Math.PI, new

Circle(1).getPerimeter(), 1e-10);
8 }
9 public void t3() {

10 assertEquals(0, circle.getPerimeter(), 1e-10);
11 }
12 }

Listing 2. Tests for the faulty code

The benefit of a slice-based SBFL over a coverage-based
one can be easily illustrated in a simple example. Listing 1
includes a Java snippet of a circle implementation with
methods for calculating the area and perimeter, along with
three associated unit tests in Listing 2. The execution of the
tests results in t2() failing due to the bug in line 6 for
calculating the perimeter, and the other two passing. The
coverage-based spectrum, along with the spectrum metrics,
and the suspiciousness scores computed by the Barinel formula
are shown in Table II.

TABLE II
COVERAGE-BASED SPECTRUM AND FAULT LOCALIZATION RESULT

4 5 6 8 9 11 12 R

C(t1) 1 1 1 1 1 0 0 0
C(t2) 1 1 1 0 0 1 1 1
C(t3) 0 0 0 0 0 1 1 0

ef 1 1 1 0 0 1 1
ep 1 1 1 1 1 1 1
nf 0 0 0 1 1 0 0
np 1 1 1 1 1 1 1

Bar 0.5 0.5 0.5 0.0 0.0 0.5 0.5

The SBFL formula cannot distinguish between code lines
5 and 6 as the simple coverage is over-approximating the



actual calculation chains: both constructor lines are included in
all passing and failing tests. The slice-based spectrum differs
from the coverage one exactly at these two critical lines.
The backward dynamic slices computed from the test cases
correctly include only the appropriate lines setting the area
or perimeter fields, respectively (see Table III). The result
is that the faulty line 6 is now correctly localized at the first
ranking position with the score 1 (ef = 1 and ep = 0), while
the non-faulty line 5 gets a score 0 with ef = 0 and ep = 1).

TABLE III
SLICE-BASED SPECTRUM AND FAULT LOCALIZATION RESULT

4 5 6 8 9 11 12 R

DS(t1) 1 1 0 1 1 0 0 0
DS(t2) 1 0 1 0 0 1 1 1
DS(t3) 0 0 0 0 0 1 1 0

ef 1 0 1 0 0 1 1
ep 1 1 0 1 1 1 1
nf 0 1 0 1 1 0 0
np 1 1 2 1 1 1 1

Bar 0.5 0.0 1.0 0.0 0.0 0.5 0.5

As mentioned, there are only a handful of researchers who
utilized this concept to develop a combined SBFL and slicing
approach. Mao et al. [40] presented an approach that used
slices to construct more precise program spectra, and they
experimented with various slicing algorithms including Ap-
proximate Dynamic Backward Slicing and Relevant Slicing.
The algorithm called Tandem-FL was proposed by Reis et
al. [39], which is able to locate and reduce the suspiciousness
of those components that are mostly involved in failing tests
but seldom covered by passing ones. Their idea uses SBFL to
calculate the suspiciousness of each element, then select the
top k from the list. Thus there is no need to slice the whole
program, which is great because slicing is expensive. Alves et
al. [41] use the basic slice-based approach but introduce
variations to accommodate for change-based analysis.

None of these reports deal with analyzing the differences
between the coverage and the slice information nor seek to
understand how much the former one is over-approximated.
Furthermore, the other related research we are aware of (see
Section VI) combines the two techniques differently.

III. COVERAGE VS. SLICE SPECTRA

The purpose of this section is to analyze in more detail the
relationship between the coverage-based and slice-based spec-
tra and the influence of this difference on the fault localization
effectiveness. We do this first on a theoretical level in order to
assess the expected effects in actual implementations. Then,
we summarize our findings and motivate the remaining parts
of the study with a set of research questions.

A. Theoretical Analysis of Coverage and Slice

We will use notations M ′, ef ′, nf ′, ep′, and np′ to denote
the slice-based spectrum matrix, and the associated spectrum
metrics. For this theoretical analysis, we assume the following:

1) Program P includes exactly one fault which can be
identified at a single code location, i.e., |F | = 1.
The faulty code element will be denoted by f in the
following (n will be used for all other elements).

2) All coverages include at least one code element, i.e.,
∀t ∈ T : |C(t)| > 0

3) The faulty code element is executed by all failing test
cases, i.e., ∀t ∈ T : R(t) = 1 ⇒ M(t, f) = 1

4) Each test case t can be associated with exactly one
slicing criterion, which means that rows of matrices M
and M ′ are compatible.

5) The backward dynamic slice is computed correctly,
meaning ∀t ∈ T : DS(t) ⊆ C(t) ⊆ E, furthermore

6) f contributes to the slicing criterion in all failing test
cases, implying that

7) f is included in all slices for failing test cases, i.e., ∀t ∈
T : R(t) = 1 ⇒ M ′(t, f) = 1 .

8) All slices include at least one code element, i.e., ∀t ∈
T : |DS(t)| > 0.

Following the dynamic slice’s property of being the subset
of the code coverage, we can look at how much more precise
it is. We can express this in terms of the slice size with respect
to the coverage size for each test case t in a program P . The
average slice size will be used as a proxy to the probability
p ∈ (0, 1] that a covered code element e will be also in the
slice:

p =

∑
t∈T

|DS(t)|
|C(t)|

|T |

Based on the assumptions above, we can make the following
observations. For the faulty element f , ef ′(f) = ef (f) and
nf ′(f) = nf (f) because each failing test’s slice must include
f and both M and M ′ have the same T set of tests. Regarding
the passing tests, there are no such requirements, so ep′(f) ⊆
ep(f) and np′(f) ⊇ np(f). In the case of any other non-
faulty element n, the subset relationship will be the same for
all four sets. We can then calculate the expected values of the
four spectrum metrics for the slice-based spectrum as follows.

For f :

ef ′ = ef

nf ′ = nf

ep′ = p · ep
np′ = (1− p) · ep + np

For any n:

ef ′ = p · ef
nf ′ = (1− p) · ef + nf

ep′ = p · ep
np′ = (1− p) · ep + np

We can now investigate how values of the suspiciousness
formulas relate to each other for the same program P but
computed on M and M ′. For the faulty element, the value
of ef does not change while the others get smaller, and since
many of the formulas include ef in the numerator and the
others in some form in the denominator, the score value will
usually be bigger in the slice-based spectrum. For the non-
faulty element, the score will typically either be the same or



smaller.1 Let us look at the formulas we work with in this
paper in more detail (the slice-based spectrum metrics are
simply substituted to form the slice-based formulas):

Bar′(f) =
ef

ef + p · ep
≥ Bar(f)

Bar′(n) =
p · ef

p · ef + p · ep
= Bar(n)

Tar′(f) =
ef

ef+nf

ef
ef+nf + p·ep

ep+np

≥ Tar(f)

Tar′(n) =
p·ef

ef+nf

p·ef
ef+nf + p·ep

ep+np

= Tar(n)

Och′(f) =
ef√

(ef + nf ) · (ef + p · ep)
≥ Och(f)

Och′(n) =
p · ef√

(ef + nf ) · (p · ef + p · ep)
=

√
p · Och(n) ≤ Och(n)

Jac′(f) =
ef

ef + nf + p · ep
≥ Jac(f)

Jac′(n) =
p · ef

p · ef + (1− p) · ef + nf + p · ep

=
ef

ef
p + nf

p + ep
≤ Jac(n)

Sor′(f) =
2 · ef

2 · ef + nf + p · ep
≥ Sor(f)

Sor′(n) =
2p · ef

2p · ef + (1− p) · ef + nf + p · ep

=
2 · ef

p+1
p ef + nf

p + ep
≤ Sor(n)

Dst′(f) =
ef 2

p · ep + nf
≥ Dst(f)

Dst′(n) =
p2 · ef 2

p · ep + (1− p) · ef + nf

=
ef 2

ep
p + nf

p2 + 1−p
p2 ef

≤ Dst(n)

We could show that, in all investigated cases, the suspi-
ciousness score of the faulty element is the same or bigger
in the slice-based spectrum than for the coverage-based one,
while all non-faulty elements’ scores are either smaller or the

1It is worth noting that this shows the average case and the expected values
based on the average slice size, but in reality, the final scores for the individual
elements can change in either direction because the individual n elements can
have various slice ratios for passing and failing cases.

same for the slice-based spectrum. We checked several other
published formulas if they exhibit this property and found that
they do, but we cannot rule out the possibility that there are
some counter-examples. However, we expect that any formula
that has a meaningful combination of the spectrum metrics
will behave similarly.

We can also observe from the above that the smaller p is
the bigger the difference will be between the two methods.
The effect is that, with these assumptions, the coverage-based
SBFL necessarily produces a worse ranking than the slice-
based SBFL, due to the over-approximation of the real
dynamic dependencies using the coverage, and the bigger
this over-approximation the worse the result will be.

B. The Need for More Research

The assumptions from above will not necessarily hold for
realistic situations, but we believe that they are good approxi-
mations of reality. Furthermore, the benchmarks typically used
in related research often aim at achieving these ideal situations.
Slicing tools are not perfect either, and they may violate one or
more of the assumptions. Nevertheless, we believe that further
research is necessary to understand what the performance of
realistic implementations and real programs and faults is. Also,
the imprecision of coverage-based SBFL with respect to slice-
based SBFL should be measured in practice by looking at the
slice sizes (p) since this turns out to be an essential parameter.

In the remaining parts of the paper, we present the case
study that we performed with the goal to verify the above
concepts in practice and serve as a motivation for further
research. In particular, we seek to answer the following
Research Questions:

RQ1 How do the coverage-based and slice-based spectra com-
pare to each other in practice?
With this question, we seek to find out what the typical
slice sizes are compared to coverage size, and whether
the parameter p is really small enough to warrant the
suboptimal performance of traditional SBFL.

RQ2 What is the overall performance of slice-based SBFL to
the coverage-based one in terms of ranking effectiveness?
A typical assessment of SBFL is the average rank position
of the faulty element, which should be as close to the 1st
place as possible.

RQ3 What are the typical explanations of the differences
between the two types of SBFL results?
This is a qualitative evaluation of the findings. Since we
are working with a small number of concrete examples
in this case study, we are able to manually assess each
case and find out the actual reasons for (both positive
and negative) differences between the slice-based and
coverage-based SBFL.

IV. CASE STUDY

The goal of our case study was to verify the relationship
between the coverage-based and slice-based spectra in depth.
Instead of performing an extensive empirical evaluation in-
volving multiple programs and bugs and reporting overall



high-level results, we selected one subject program from a
benchmark suite and evaluated each fault separately in detail.
Our goal with the case study was to implement the basic
method outlined in Section II as closely as possible, i.e., we
did not want to use approximate slicing algorithms or other
optimizations on the matrix. There were several difficulties,
however, including the imperfection of the slicer tool we
selected, and the way test cases, slicing criteria, and code
elements could be matched, as discussed in the rest of the
paper.

A. Creating Slice-Based Spectra

Coverage-based program spectra might include statements
that do not affect the tested value. These additional but
irrelevant statements can lower the effectiveness of the method.
The solution already proposed by previous works is to compute
the spectrum from slices [40]. We use this kind of “test-slice”
spectrum in our evaluation.

In an ideal case, a test should check only one value, and
there are test environments where this is ensured. For example,
sometimes the output of the program under test is written to
the standard output or a file (using a single statement) for
later comparison with a reference output. However, in practice,
especially in unit test frameworks, a single test usually checks
multiple values. In unit tests, this is implemented as multiple
assertions in a single test case, and from the execution logs of
a test case, it can be determined which assertion has failed.

Decomposing the tests and creating the spectrum for asser-
tions instead of tests might produce more detailed information
on the position of the fault. In other words, we create one row
to the slice-based spectrum matrix for each assert rather than
for each test case. To be able to compare the slice-based results
to the traditional coverage-based ones, we then merge assert-
slices for each test case by calculating the union of assertion
slices per test case.

B. Slicing Tool

During the preparation of our experiments, we tested several
tools that are capable of creating dynamic backward slices,
Slicer4J [47], [48], JavaSlicer [49], and Java SDG Slicer [50]
amongst others. However, most of the publicly available tools
are not well-maintained, and they have deprecated or unavail-
able dependencies. Finally, we decided to use the open-source
dynamic slicing tool Slicer4J to collect the slices. It uses low-
overhead instrumentation to collect a runtime execution trace;
it then constructs a thread-aware, inter-procedural dynamic
control-flow graph, and a set of pre-constructed data-flow
summaries to compute the slice.

C. Determining the Slicing Criteria

Determining the slicing criterion is relatively straightfor-
ward in the case of unit tests. We have asserts in the test
cases that check some actual computed values against some
expected values. We should simply slice for the actual values
used in the assert statements. As the slicer we used is able to
slice for a source code line (i.e., it is enough to give a line

number as a slicing criterion and it will compute slices for
all appropriate variables of that line), we first simply selected
those lines of the test cases that contained asserts and passed
these lines to the slicer. At the same time, we had to employ
some workarounds to specific exception-handling constructs
found in the subject program.

D. Spectrum Matrices and Fault Localization

Since we used the traditional coverage-based SBFL ap-
proaches as the baseline of our evaluation, we had to calculate
the corresponding results as well. To extract the coverage-
based program spectra and calculate the results based on them,
we used the approach published by Pearson et al. [4].

The slicer and coverage tools identified the tests and instruc-
tions in a mostly similar but slightly different way. The basis
of the instruction ID we used is the fully qualified name of the
Java class and the line number. For the test cases, we used the
fully qualified Java method name (without return value and
parameter specification). The asserts were also identified by
test case name and an additional absolute line number of the
assert in the file. While the two dimensions of our proposed
spectra are asserts and instructions, in the case study, we
aggregated our slices by test cases. Thus, we computed the
slices of all asserts of a given test case and assigned their
union to the test case as its slice set. We used our own scripts
to calculate the slice-based spectrum matrix from the raw data
produced by the slicer, the spectrum metrics, and the ranks.

E. Subject Program

In this paper, we focus on the qualitative evaluation of the
differences among traditional coverage-based and slice-based
program spectra, hence we used a subset of the bugs of the
program Time from the Defects4J (v2.0.0) [51] benchmark.
We chose Time as our subject because its domain is fairly easy
to understand and this gives us the opportunity to demonstrate
the effects of the different approaches more easily. In addition,
the complexity of the program, the tests, and the faults is
medium and could be regarded as typical for this benchmark.
There are 26 bugs (program versions) in this benchmark item
with 12.9k-14.1k executable statements and 3.7k-4.0k tests
depending on the version. There are 1-8 faulty statements in
each version.

V. RESULTS AND EVALUATION

A. Data Preparation

TABLE IV
PROPERTIES OF THE INVESTIGATED BUGS

Inc. Reason Bugs

Bad Slice {1, 2, 7, 8, 11, 13, 19, 20}
Omission {3, 6, 14, 15, 18, 24, 25, 27}
Exception {5}

- {4, 9, 10, 12, 16, 17, 22, 23, 26}

The subject program has 27 buggy versions, but bug 21
is marked as deprecated, resulting in 26 bugs we could



work with. Table IV shows whether the bug was included
or excluded in our examination (column “Inc.”), as well as,
the reason behind the exclusion (column “Reason”), which is
described in detail below.

We excluded 8 bugs because their fix contains only added
statements (Omission). These statements are missing from the
buggy versions, i.e., neither the coverage-based nor the slice-
based spectra can point to them. Another reason was that the
slice did not contain the faulty element, but the test cases
covered it (Bad Slice). In one case, the test failed before the
assertions due to an exception (Exception), which made the
dynamic slice computation impossible. In 7 cases, we could
not find out why the slice did not contain the faulty (and
covered) statements. In two cases the faulty statements were
spread across multiple lines, and the reported location of the
fault (determined from change sets) did not match the location
reported by the slicer (the first line of the multiline statements).
We corrected these two computations by hand. As a result, we
had 9 bugs for which we could compute meaningful slices.

B. Comparing Spectra

As discussed above, in theory, the slice spectra should be a
subset of coverage spectra. Unfortunately, with our toolset, this
turned out to not hold in about 60% of the slices. We checked
the reasons why slices can be inaccurate in this sense, and
we found two main reasons. One is that the slicer does not
slice into Java library methods, and while losing dependencies
through them it also follows some false dependencies. The
other cause is that the slicer and the coverage tool can report
different source code lines for multiline expressions.

To approximate the theoretical parameter p from Section III
on our subject program, we had to deal with this inaccuracy
of the slicing tool. We simply ignored statements that are not
covered but are part of the slice, hence we computed the size
of the intersection of the coverage and slice sets and divided it
with the coverage size. We then averaged this value for every
test case. Table V shows the resulting values along with some
other statistics.

TABLE V
MEASURED AVERAGE SLICE SIZES WITH RESPECT TO THE COVERAGE ON

THE SUBJECT PROGRAMS

Bug Avg. Med. Min. Max. Std.dev.

4 0.4259 0.4167 0.0 1.0 0.2834
9 0.4321 0.4286 0.0 1.0 0.2847

10 0.4321 0.4286 0.0 1.0 0.2849
12 0.4335 0.4344 0.0 1.0 0.2836
16 0.4369 0.4378 0.0 1.0 0.2828
17 0.4345 0.4357 0.0 1.0 0.2811
22 0.4444 0.4463 0.0 1.0 0.2796
23 0.4442 0.4463 0.0 1.0 0.2798
26 0.4634 0.4706 0.0 1.0 0.2750

Answer to RQ1: The average slice size varies between
42.5% and 46.4% of the coverage. However, we expect that
the correct values would be even lower because the slicer
seems to be over-approximating as was the case with the
not covered elements. Looking at the relationship between the

expected fault localization scores for the two types of matrices
in Section III, we see this value to be a significant factor
responsible for the differences in the final rankings.

C. Comparison of SBFL Effectiveness

There are different ways to compare the effectiveness of
SBFL algorithms. One of the most popular methods is to
compare the absolute average rank [16] of faulty elements.
This metric represents the number of statements the developers
have to investigate before finding the first faulty element. Ties
are dealt with by assigning the average rank for each element
sharing the same score. If there are multiple faulty statements
for a bug, we use the rank of the first buggy element.

Table VI shows the results in terms of absolute average rank
for different formulas on the included bugs for both kinds of
spectra. We can see that in most cases the slice-based results
are better, sometimes notably. There were a couple of cases
where the results were the same, and in two cases (bugs 9 and
16) the coverage-based method performed better. For bugs 4
and 17, the faulty element was placed on the highest rank
position by the slice-based approach but since it was tied with
several other elements, the value shown is not 1.

The last row of Table VI represents the overall average
ranks, from which we can infer the degree of improvement
in general. The difference is notable in all cases (between 10
and 32), i.e., the slice-based method ranks the faulty statement
higher in the suspiciousness list by 10-32 positions. Overall,
DStar performed best (9.5), followed by Ochiai (10.1) but the
other formulas have very similar results as well.

In two cases, the slice-based spectra produced worse results
than the coverage-based because the slicer could not slice into
Java library methods and thus it followed false dependencies.

Answer to RQ2: Although we cannot draw definitive
conclusions from the results due to the small sample size,
we can say that the overall performance of slice-based SBFL
compared to coverage-based one is positive: on this subject
program it improved the ranking position of the faulty el-
ements notably, in many cases achieving the top positions.
Only two bugs showed negative results, and we attribute these
to inaccuracies in the slicing tool.

D. Qualitative Evaluation

We examined each investigated bug in detail to find out why
coverage-based SBFL produced sub-optimal results compared
to slice-based SBFL (in the cases when the result was negative,
the reasons for it as well). The focus of the comparison was
primarily on the spectrum metrics, rather than the score and
rank values. (In the following section, the item names are
relative to the org.joda.time package.)

time-4: Test TestPartial Basics.textWith3 fails here because
no exception is thrown. The reason for this is that the
Partial.with(DateTimeFieldType, int) method calls a wrong
constructor (in line 464). The slice of the test case contains 4
statements (lines 430, 431, 464, 466), while the coverage has
24 additional ones. In addition, 3 utility statements are covered
by only the faulty test case. This resulted in the score of



TABLE VI
RANKS OF FAULTY STATEMENTS

Bug Bar Dst Jac Och Sor Tar
cov. slice cov. slice cov. slice cov. slice cov. slice cov. slice

4 23.5 1.5 20.5 1.5 23.5 1.5 23.5 1.5 23.5 1.5 23.5 1.5
9 3 11 2 11 3 11 3 11 3 11 3 11

10 21.5 9 11.5 10 19.5 10 15.5 10 19.5 10 21 9
12 2.5 2.5 29.5 2.5 8 2.5 5 2.5 8 2.5 2.5 2.5
16 8 10 8 11 8 11 8 11 8 11 8 10
17 5 5 5 5 5 5 5 5 5 5 5 5
22 23.5 14.5 23.5 13.5 23.5 14.5 23.5 13.5 23.5 14.5 23.5 14.5
23 25.5 20.5 25.5 20.5 25.5 20.5 25.5 20.5 25.5 20.5 25.5 20.5
26 270.5 20.5 60.5 10.5 132.5 19.5 71.5 15.5 132.5 19.5 156.5 20.5

avg 42.6 10.5 20.7 9.5 27.6 10.6 20.1 10.1 27.6 10.6 29.8 10.5

the faulty statement ranking at 23.5 on average, together with
14 other statements. As the mentioned utility and additional
statements are omitted by the slicer, their ef ′ values were
reduced, allowing the formulas to rank lines 464 and 466 in
the first position with the same score.

time-9: Here DateTimeZone:264 has a slice-based rank
11 with ef ′=1 and ep′=5, and shares these values with 8
statements including DateTimeZone:604. However, DateTime-
Zone:604 was covered by not 5 but ep=11 passed tests. For
example, the slice of TestDateTimeZone.testSerialization2 does
not include the above-mentioned statement but covers it.

The computed slice of the test contains only the statements
of the test except for the 1011th, 1006th, and 1000th instruc-
tions. As oos is of a stock Java class type, the slicer does not
analyze its method call in line 1004 but seems to treat it as a
definition of a zone instead of treating it as a use. This can be
the reason why line 1000 is (incorrectly) not included in the
slice, so the ep′ values of the statements accessible through it
(e.g. DateTimeZone:604) are not increased by the test result
of testSerialization2, thus, the scores are not decreased, i.e.
statements are ranked as more suspicious. Due to cases like
this, the results of the (passed) tests will not be counted
for certain statements and, therefore, it is possible that the
coverage-based result will be better than the slice-based one.

time-10: The second assert fails in both failing test cases.
While the bug is covered by both test cases, it is con-
tained only in the slice of the first, not failing assert of test
case TestDays.testFactory daysBetween RPartial MonthDay.
We could not find the reasons for this omission, it is probably
due to a slicer issue.

time-12: We found that the slices of the asserts contain
only a few statements, so there is a non-negligible difference
between the slice-based and coverage-based spectrum metrics.
The reason for the difference is that statement LocalDate-
Time:612 (in the isSupported() method) has ef =4, which
makes it among the most suspicious elements according to
the coverage-based algorithm, while the ef ′=0, which puts
it in the bottom of the suspicion ranking of the slice-based
approach. The ef , ep, and nf values of the faulty statement
LocalDate:211 are the same in the two spectra, so it precedes
several statements in the ranking that are more suspicious than
it according to the coverage-based algorithm but ranked lower

by their slice-based spectra.
time-16: We examined the tests related to the faulty state-

ment format.DateTimeFormatter:709 in method parseInto().
In the case of the coverage-based measurement, test Test-
DateTimeFormatter.testParseInto monthOnly covers the buggy
statement, however, the slice-set belonging to the assert in
line 869 includes only the first line of the parseInto() method
(line 698). This is interesting because the return value of
f.parseInto(result, ”5”, 0) function call (and the other state-
ments affecting it) was omitted due to a probable slicer
problem and this misled the slice-based FL algorithms.

time-17: Bug 17 has 9 instructions with the same highest
score and average rank of 5. These 9 instructions belong to 3
methods, 2 of which (DateTime.withEarlierOffsetAtOverlap()
and DateTime.withLaterOffsetAtOverlap()) are simple sequen-
tial methods, and DateTimeZone.adjustOffset(long, boolean)
is a bit longer having a decision. All instructions but the
alternative return of the last method are both covered and
part of the slices. These 9 instructions are always executed
together. As a result, their two spectra are identical, resulting
in the same scores and ranks.

time-22: 8 passed tests have incorrectly computed
slices, e.g., the slice of the assert in line TestMutablePe-
riod Basics:451 contains only 1 statement, and does not
include the constructor of class MutablePeriod and thus (in-
correctly) could not reach the buggy line base.BasePeriod:222.
Yet, the scores and ranks of the faulty instruction improve,
because its ep′ < ep due to the bad computations.

time-23: Test TestDateTimeZone.testForID String old fails
when it checks the contents of a map previously filled by the
DateTimeZone.getConvertedID(String) method. The coverage-
based calculations rank DateTimeZone:314 to first place as
it is executed by the failing and a single passing test case.
Then a tie with 48 elements follows, including the faulty
lines, lines filling the map, and other lines of the DateTime-
Zone.getDefault() method. All of these are covered by the
sole failing and multiple passing tests. The slicer is unable to
decompose which items in the map are used in the failing test,
keeping the whole map filling section in the slice. However, it
is able to omit the lines of the getConvertedID(String) method
from all test cases except for the passing one (and it does the
same for two additional instructions of getDefault()), while



keeping them in the slice of the failing test case. This reduction
of ep′ results in a tie of 40 elements, including all faulty lines,
in the first place (with an average rank of 20.5).

time-26: There are 8 failing test cases and 8 modified
lines for fixing the same bug. The fix replaces the call
to convertLocalToUTC(long, boolean) with the newly added
convertLocalToUTC(long, boolean, long). However, only one
buggy line, chrono.ZonedChronology:467 is exercised by the
tests. It is covered by all faulty test cases but contained only
in 4 of their slices, while 175 passing tests also cover the line
but only 49 slices of passing tests do the same. Thus, while
ef is higher than ef ′, ep is much higher than ep′, causing our
metrics to give a higher score to the faulty instruction. The
slicer also eliminates many instructions from the spectrum of
faulty test cases. While coverage shows 1615 instructions with
non-zero ef , there are only 872 instructions with non-zero ef ′.
This also helps improve the rank of the faulty statement.

Answer to RQ3: The cases when slice-based SBFL did
not overtake coverage-based SBFL were due to imperfections
or defects in the slicer. In one case (Bug 10) the slicer seemed
to miscalculate slices for the faulty test, yet the ranks were still
able to improve. In all other cases, the slice-based spectrum
worked as expected, and either raised the score of the faulty
element or lowered the score of non-faulty statements.

E. Discussion

1) Main Concern: We argue with this paper that using code
coverage in the SBFL spectrum is such an over-approximation
that it could impair the achievable effectiveness of SBFL to a
level that makes it not useful in practice. Code coverage is, in
essence, a proxy to the dynamic backward program slice which
captures the code elements with an actual influence on the
defective behavior. In Section III, we showed that, in principle,
the coverage-based SBFL will necessarily produce worse code
element ranking compared to the slice-based spectrum because
a correctly computed backward dynamic slice is a subset
of the coverage. Furthermore, it is expected that the rate
of imprecision of the coverage will directly and severely
influence the performance of the suspiciousness formulas.

2) Theory and Empirical Results: The preconditions set in
Section III will not hold in many practical situations, but as our
experiment study showed, even under imperfect conditions, the
benefits of slicing are clearly visible over coverage. In fact,
the case study showed that the slice is less than half of the
coverage (RQ1) and that the overall localization effectiveness
is typically much better with the slice-based SBFL than with
the coverage-based one (RQ2). The study also highlighted
several deficiencies in the slicing tool used, but despite of these
the results were positive. We cannot rule out the possibility
that the coverage-based measurement had flaws too, but since
we used a well-established technique and mature tools, we
attribute these errors mostly to the slicer tool. Finally, through
real examples, the qualitative evaluation (RQ3) showed why
the coverage-based spectrum was detrimental. So, the question
is, why are we still using code coverage as the basis for SBFL?

3) Difficulty of Program Slicing: One part of the answer
is that computing coverage is simple using existing tools, and
the SBFL implementations are straightforward. But, despite its
several decades-long history, program slicing is still a difficult
area, and practically usable tools are not easy to develop.
Slicers that produce more precise results often require huge
computation resources, while sub-optimal and approximate
slicing algorithms may be very imprecise. Another challenge
with the slicing approach is that a slicing criterion is needed
for each test case, which is often not trivial to determine in
practice. Our case study dealt with unit tests, and there the
assertions could serve this purpose, but when the tests are
higher level or more complex, this can be a challenge.

Furthermore, there are many technical limitations of practi-
cal program slicing tools, which increases the risk of their use
in fault localization, and this risk is much higher than with the
coverage-based tools. If we fail to tell whether an instruction
is covered, it will affect only that particular instruction; but
when a dependency is missed or falsely added during slicing,
it can affect a significant amount of dependent instructions.
Difficulties often relate to special features like multi-threading
or exception handling, dependencies from 3rd party or mixed
language components, or unobservable artifacts e.g., files and
databases. Many practical tools either miss dependencies,
leading to false results, or employ a conservative approach
and imprecise slices, the very essence of the disadvantage of
the coverage-based approach discussed in this paper.

4) Additional Benefits of Slicing: On the positive side, it
must be noted that program slicing also carries structural
information about the program and the computation paths.
In a simple SBFL approach, the programmers need to walk
down the list of suspicious elements that often do not have
any relationship to each other. However, when using program
slicing, the dependencies can be followed, which reflects the
actual computations, and this information may be a huge
aid during debugging [52]. A hybrid approach, such as the
one proposed by Soremekun et al. [53], could be considered
as well. Section VI lists other approaches to take advantage
of the additional information in slicing for fault localization
and debugging in general. We leave it for a future work to
investigate the relation of various slicing approaches to SBFL.

5) Takeaway Message: We are convinced that this area
needs more research. From our literature study, we found
a surprisingly low number of SBFL implementations that
employ slicing. A good alternative would be to experiment
with hybrid or approximate slicing algorithms, as some related
techniques did [40]. With modern-day computing power, new
slicers could replace traditional coverage-based SBFL soon.

VI. RELATED WORK

A. Spectrum-Based Fault Localization

SBFL has a rich literature, including surveys that summarize
the actual state of SBFL [1], [2], [5] and evaluate the effective-
ness of existing approaches [3], [54], [15]. Many papers have
also been published on the application of SBFL [55], [56],
[57], [58]. Other than fault localization, SBFL-like approaches



were used in many areas, e.g., flaky test localization [59],
and mutation-based fault localization techniques [60], [61].
Others aimed to improve the test suites to increase efficiency
by monitoring program executions to generate differential unit
tests [62] or to automatically optimize the test suite [63].

B. Program Slicing

Program slicing (PS) is a well-researched code analysis
technique. Some of its main application areas are fault local-
ization and debugging [46], [37], [64], [65], [43]. PS is used
for many tasks, e.g., aiding debugging processes [66], [67],
[68], and optimizing testing [69]. Implementations and appli-
cations are available for different languages, operating sys-
tems [70], [71], [72], [73], and even for neural networks [74].

C. Combining SBFL and Program Slicing

The most closely related works to the approach presented
in this paper are the following. Mao et al. [40] showed that
with a backward slice-based spectrum, an SBFL algorithm can
achieve 14.8%-70.5% cost savings in terms of the number
of code elements that need to be examined. The evaluation
was carried out on three UNIX utilities (flex, grep, and
sed), the Siemens suite, and space, which are part of the
SIR benchmark [75]. Regarding execution cost, compared to
traditional SBFL methods, their approach required around 1.07
(in the case of small programs) to 2.56 (in the case of large
programs like space, flex, grep, and sed) more time to run.

Reis et al. [39] examined a DS-SBFL approach called
Tandem-FL. This approach showed promising results on the
Defects4J benchmark. The amount of eliminated code was
1.40%-59.30% depending on the subject and the chosen cut-
off point. The effectiveness was also good as it was able to find
87.3% of faulty statements on average at n=5 and 91.2% when
n=10. This technique also outperformed the traditional SBFL
approaches. It captured more faults both at n=5 (on average
86.5% compared to 79.6%) and n=10 (90.4% and 83.5%),
and SBFL had better results in only one case out of five.
Alves et al. [41] use variations of the slice-based approach to
accommodate for change-based analysis. They evaluated the
impact of omitting unrelated statements on fault localization.

Other approaches to combine SBFL and PS include the
following. Wotawa et al. [76] combined dynamic slicing with
model-based diagnosis. They extracted additional information
from the slices for erroneous variables to compute fault
probabilities. Hofer et al. [77] focused on improving existing
fault localization techniques. They combined slicing-hitting-
set-computation (SHSC) with SBFL in order to create a more
fine-grained analysis than SBFL. Parsa et al. [78] proposed a
technique called Fuzzy-Slice, which computes the full back-
ward dynamic slice of variables used in output statements in
several failing and passing executions. Then, different program
execution paths are identified and the fault-relevant statements
are ranked according to their presence in different clusters.

Soremekun et al. [53] used SBFL to enhance the effective-
ness of Dynamic Slicing (DS) and compared it to the original
automated fault localization techniques. The idea behind this

approach is that programmers should examine only a few top-
ranked elements suggested by SBFL and then switch to slicing.
They showed that the hybrid approach is able to find 98% of
bugs in case of the programmer inspecting at most 20 lines of
code, which is far better than statistical fault localization or
dynamic slicing. On average, this hybrid FL requires checking
58%-75% of statements compared to the other two techniques.

Shu et al. [79] improved the accuracy of SBFL by combin-
ing it with Failed Execution Slices (FES) i.e., execution slices
belonging to failing tests. The main idea is to reduce the num-
ber of statements that need to be examined by removing highly
suspicious statements from the original ranked list based on
an optimal FES. They showed that when the developer checks
10% of the code, the FES-based approach can find more than
65% of the bugs in contrast to the traditional ones’ 47%-59%.

Ju et al. [80] combined Program Slicing and SBFL by
computing Full Slices for each failing test case, and Execution
Slices for the passing ones. The intersection of these two gives
the Hybrid Spectrum Slice (HSS). They showed that HSS
can reduce the average fault-localization cost (percentage of
examined code) by 2.98-31.79% compared to SBFL methods.

VII. CONCLUSIONS AND FUTURE WORK

Although not a new idea, using dynamic slices in the SBFL
spectrum deserves more focus because the currently prevalent
use of simple code coverage can introduce a lot of imprecision.
We believe that the literature review, theoretical analysis, and
experimental evaluation presented in this paper support this
view. Also, there is very little evidence of successfully using
program slices in the SBFL spectrum, let alone of practically
usable tools of this type. The reason is pragmatic: computing
precise slices is very costly compared to the coverage, which
is cheap but, as it turns out, not good enough in many cases.

This paper’s main message is that code coverage-based
SBFL is currently in a research pit due to its inherent approxi-
mation, and research on slice-based spectra should once more
attain much higher focus, such as research on more efficient
approximate or hybrid slicing. One of the open questions to be
addressed is to investigate the actual performance of various
slicing algorithms and tools, and how they could be improved
to better serve this application. On a more conceptual level,
one should consider specific aspects of the SBFL process and
slicing, such as the issues of multiple faults, ranking ties, the
impact of various slice concepts, as well as the question of
the slicing criterion in different types of tests.

The interested reader can find more information about the
results of this paper, as well as the data and the tools used,
on the following website: https://slicefl.github.io
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