
Effective Spectrum Based Fault Localization
Using Contextual Based Importance Weight⋆

Qusay Idrees Sarhan1,2[0000−0001−8708−0063] and Árpád
Beszédes1[0000−0002−5421−9302]

1 Department of Software Engineering, University of Szeged, Szeged, Hungary
2 Department of Computer Science, University of Duhok, Duhok, Iraq

{sarhan, beszedes}@inf.u-szeged.hu

Abstract. In Spectrum-Based Fault Localization (SBFL), a suspicion
score for each program element (e.g., statement, method, or class) is cal-
culated by using a risk evaluation formula based on tests coverage and
their results. The elements are then ranked from most suspicious to least
suspicious based on their scores. The elements with the highest scores
are thought to be the most faulty. The final ranking list of program
elements helps testers during the debugging process when seeking the
source of a fault in the program under test. In this paper, we present
an approach that gives more importance to program elements that are
executed by more failed test cases and appear in different contexts of
method calls (both as callees and as callers) in these tests compared to
other elements. In essence, we are emphasizing the failing test cases factor
because there are comparably much less failing tests than passing ones.
We multiply each element’s suspicion score obtained by a SBFL formula
by this importance weight, which is the ratio of covering failing tests
over all failing tests combined with the so-called method calls frequency.
The proposed approach can be applied to SBFL formulas without mod-
ifying their structures. The experimental results of our study show that
our approach achieved a better performance in terms of average ranking
compared to the underlying SBFL formulas and comparable approaches.
It also improved the Top-N categories and increased the number of cases
in which the faulty method became the top-ranked element.

Keywords: Debugging · fault localization · spectrum-based fault local-
ization · importance weight · method calls.

1 Introduction

Many aspects of our daily lives are automated by software. They are, however,
far from being faultless. Software bugs can result in dangerous situations, in-
⋆ The research was supported by the Ministry of Innovation and Technology NRDI

Office within the framework of the Artificial Intelligence National Laboratory Pro-
gram (RRF-2.3.1-21-2022-00004) and the project no. TKP2021-NVA-09 which was
implemented with the support provided by the Ministry of Innovation and Tech-
nology of Hungary from the National Research, Development and Innovation Fund,
financed under the TKP2021-NVA funding scheme.

2 Qusay Idrees Sarhan and Árpád Beszédes

cluding death. As a result, various software fault localization techniques, such as
spectrum-based fault localization (SBFL) [14], have been proposed over the last
few decades. SBFL calculates the likelihood of each program element of being
faulty based on program spectra collected from executing test cases and their
results. SBFL, on the other hand, is not yet widely used in the industry due to
a number of challenges and issues [11].

One of such issues is that program elements are ranked from most to least
suspicious in order of their suspicion scores. Testers check each element starting
at the top of the ranking list to determine whether it is faulty or not. Thus, the
faulty element should be placed near the top of the ranking list to aid testers in
discovering it early in the evaluation process and with least effort. Many times,
SBFL formulas place the faulty elements far from the ranking list top.

In this paper, we are addressing this issue by presenting an approach that
gives more importance to program elements that are executed by more failed test
cases and appear in different contexts of method calls (both as callees and as
callers) in these tests compared to other elements. The intuition is the following.
A typical SBFL matrix is unbalanced in the sense that there are much more
passing tests than failing ones, and many SBFL formulas treat passing and
failing tests similarly. Also, program elements might behave differently when
appearing in different calling contexts. We propose to emphasize the factor of
the failing tests in the formulas, which is achieved by introducing a multiplication
factor to any SBFL formula. This factor is called the importance weight, and is
given as the ratio of executed failing tests for a program element with respect
to all failing tests combined with the so-called method calls frequency. In other
words, a program element will be more suspicious if it is affected by a larger
portion of the failing tests and appears in a variety of calling contexts during
such test cases. The proposed approach can be applied to any SBFL formula
without modifying it.

The experimental results of our study show that our approach achieved a
better performance in terms of average ranking and Top-N categories compared
to well-known underlying SBFL formulas and Vancsics et al’s approach in [12].

The following are the main contributions of the paper:

1. A new approach that successfully improves the performance of SBFL in
many cases is proposed.

2. The analysis of the impact of the new approach on the overall SBFL effec-
tiveness is discussed.

We defined the following Research Questions (RQs) for this paper:

– RQ1: What level of average ranks improvements can we achieve using the
proposed enhancing approach?

– RQ2: What is the impact of the proposed approach on SBFL effectiveness
across the Top-N categories?

The rest of the paper is structured as follows: Section 2 introduces SBFL’s
work and its key concepts in a nutshell. Section 3 provides a summary of the most

Effective Spectrum Based Fault Localization Using Contextual Based Importance Weight 3

relevant works. Section 4 introduces our approach of enhancing SBFL formulas.
Section 5 provides an overview on the used subject programs, data collection,
and the evaluation baselines. Section 6 presents the experimental results of this
study compared to the existing approaches and provides some analysis about the
effectiveness of our proposed approach. Section 7 reports the potential threats
to validity. Finally, we present our conclusions and potential future works in
Section 8.

2 Background of SBFL

This section explains SBFL and how it can be used to find software faults by
ranking program elements according to their likelihood of being faulty.

2.1 SBFL process

Many techniques have been proposed in the literature to automate the process of
software fault localization [14]. However, SBFL is the most dominant because of
its straightforward but potent nature, i.e. it only uses test coverage and results
to calculate the suspiciousness of each program element of being faulty.

The execution of test cases on program elements is recorded to extract the
spectra (i.e., tests coverage and test results) for the program under test. Program
spectra information is a two-dimensional matrix that demonstrate the relation-
ship between test cases and program elements. Its columns depict the test cases,
while its rows depict the program elements. If a test case covers an element
in the matrix, it is assigned a value of 1; otherwise, it is assigned a value of 0.
The test results are also stored in the matrix, where 0 means the test case is
passed and 1 when it is failed. For each program element e, the following four
basic statistical numbers are frequently calculated from the program spectra: (a)
ef: number of failed tests executing e; (b) ep: number of passed tests executing
e; (c) nf: number of failed tests not executing e; (d) np: number of passed tests
not executing e.

Then, these four basic statistics can be used by a SBFL formula to output a
ranked list of program elements. Whichever element is at the top of the list is
the most likely to be buggy. As a result, SBFL can assist testers in locating the
faulty element in the target program’s code.

2.2 Code example

To demonstrate SBFL’s work, consider a Java program, adopted from [12],
which consists of four main methods (a, b, f , and g), and its four test cases
(t1, t2, t3, and t4) as shown in Figure 1. It can be noted that there is a fault
in method g (the correct statement is _x+=i) and only t1 and t4 execute that
faulty method.

4 Qusay Idrees Sarhan and Árpád Beszédes

Fig. 1. Running example – program code and test cases

2.3 Program spectra and basic statistics

Assume the tests were run on the program and the program spectra (i.e., infor-
mation on how the four program methods were executed in passed and failed
test cases) were captured. This data is presented in Table 1.

Table 1. Program spectra and four basic statistics

t1 t2 t3 t4 ef ep nf np

a 1 1 1 1 2 2 0 0
b 1 1 1 1 2 2 0 0
f 1 0 0 1 1 1 1 1
g 1 1 1 1 2 2 0 0

Results 1 1 0 0

Effective Spectrum Based Fault Localization Using Contextual Based Importance Weight 5

A 1 in the cell corresponding to the method a and the test case t1 indicates
that t1 has covered the method a, while a 0 indicates that the method a has
not been covered. A 1 in the “Results” row indicates that the relevant test case
failed, and a 0 indicates that it passed. The t2 test case, for example, calls the
methods a, b, and g, but it fails because the output of this calls sequence should
be 3, not 4.

Table 1’s last four columns represent the four basic statistics (i.e., ef, ep, nf,
and np) that are calculated from the program spectra. For example, the value of
ef of the method a is 2 because it has been executed by two failed tests t1 and t2.

2.4 SBFL formulas

A SBFL formula is a mathematical expression that often uses these four basic
statistics to compute the suspicion score of each program element of being faulty.
We apply various popular formulas [9] for the experimental evaluation in this
paper, as shown in Table 2.

Table 2. SBFL formulas used in the study

Name Formula

Jaccard (J) ef
ef+nf+ep

Barinel (B) ef
ef+ep

SorensenDice (S) 2∗ef
2∗ef+nf+ep

DStar (DS) ef∗ef
ep+nf

Dice (D) 2∗ef
ef+nf+ep

Interest (I) ef
(ef+nf)∗(ef+ep)

Kulczynski1 (K) ef
nf+ep

Cohen (C) 2∗(ef∗np)−2∗(nf∗ep)
(ef+ep)∗(ep+np)+(nf+np)∗(ef+nf)

2.5 Suspiciousness scores

We can get the suspiciousness score for each method in Table 3 by applying
some formulas to the spectra of our Java program example in Table 1. It is
worth noticing that for several methods in this example, each SBFL formula
returns the same suspiciousness score. To put it another way, SBFL formulas in
this circumstance are unable to distinguish the techniques just on the basis of
their pure scores. Thus, the buggy method g is hardly distinguishable from the
other methods. As a result, in this scenario, the SBFL effectiveness is reduced
by the tie problem among program methods [11].

6 Qusay Idrees Sarhan and Árpád Beszédes

Table 3. Program example scores and average ranks

Method J Rank B Rank S Rank

a 0.5 2 0.5 2.5 0.67 2
b 0.5 2 0.5 2.5 0.67 2
f 0.33 4 0.5 2.5 0.5 4
g 0.5 2 0.5 2.5 0.67 2

2.6 Suspiciousness ranking

We use the average rank approach in Equation 1, where S denotes the tie’s
starting position and E denotes the tie’s size, to analyze SBFL efficiency in
general. Here, the program elements with the same suspicion score are ranked
using the average rank, such elements are called tied elements, by taking the
average of their positions after they get sorted, in descending order, based on
their scores.

MID = S +

(
E - 1

2

)
(1)

Table 3 presents the average ranks of the sample program using the SBFL
formulas that were chosen. Ranks that are part of a tie are highlighted in gray.
It can be noted that based on the ranks, Barinel (B) is unable to distinguish the
methods from each other, while the other formulas result in a tie-group of three
methods.

As a result, such methods are grouped together in the ranking and cannot be
distinguished from one another in terms of which one should be investigated first.
Therefore, additional information besides the basic hit-spectra are required to
break these ties. For example, with a satiable additional information, the buggy
method can be moved to a higher place in the ranking list.

3 Related Works

This section summarizes the most important efforts to improve SBFL by focusing
on its formulas.

One strategy to improve SBFL is to create new SBFL formulas that out-
perform the current ones. The authors of [13] presented a new SBFL formula
named "DStar", for example. The proposed formula was compared to a number
of commonly used formulas, and it outperformed them all. Using Genetic Pro-
gramming (GP), SBFL formulas can also be created automatically. The authors
in [1] employed GP to create SBFL formulas automatically based on program
spectra. The authors were able to come up with a total of 30 formulas. Accord-
ing to their findings, the GP is a good strategy for producing effective SBFL
formulas.

Effective Spectrum Based Fault Localization Using Contextual Based Importance Weight 7

Improvements can also be achieved by modifying existing SBFL formulas.
The authors in [16] also tweaked three well-known SBFL formulas to account
for the possibility that some failed tests yield more information than others. As
a result, different weights for improving SBFL performance for failed tests were
allocated to the three formulas and then used using multi-coverage spectra.

Combining existing SBFL formulas with one another is a different technique.
The authors in [3] developed a method for mixing 40 distinct SBFL formulas
to create a new SBFL formula suitable to a certain program. The suggested
method pulls information from the program via mutation testing, and then uses
different voting systems to merge numerous formulae depending on the acquired
information to build a new formula. Experiments reveal that the formula created
by their method is superior to a number of current formulas. It is worth noting
that researchers attempted to combine multiple formulas in order to build new
ones. The new formula is regarded as a hybrid formula since it combines the
benefits of multiple previous formulations. As stated in [7,10], the performance
of a hybrid formula should be superior to that of existing formulas.

Another way is to supplement existing SBFL formulas with new data. The
authors in [12] added new contextual information to the underlying SBFL for-
mulas by using the method calls frequency of the subject programs during the
execution of failed tests. In each formula, the frequency ef was substituted for
the ef . Their findings showed that incorporating additional data from method
calls into the underlying formulas can boost SBFL effectiveness. In addition, the
authors in [17] proposed a method for improving SBFL by applying the PageR-
ank algorithm to differentiate tests. Their method takes the original program
spectrum information and recomputes it using PageRank, taking into account
the contributions of various test cases. The standard SBFL formulas on the
recomputed spectrum information can be used to improve fault localization.

SBFL can also be improved by breaking ties. Ties in SBFL are dominant; thus
it is unlikely that any of the known SBFL formulas will generate distinct scores
for all program elements. The authors in [5] proposed an approach, also based
on method calls frequency, to break tied program elements. Their experimental
results showed that employing information from method calls frequency in failed
tests cases for tie breaking can improve the effectiveness of SBFL.

SBFL’s performance was improved in several ways as a result of the afore-
mentioned studies. Our proposed approach improves the SBFL performance by
giving more importance to program elements that are executed by more failed
test cases and appear in different contexts of method calls (both as callees and
as callers) in these tests. The advantages of our proposed approach over others
are: (a) It does not modify the existing SBFL formulas. Thus, it can be applied
to any SBFL formula to enhance its effectiveness. This is very important as
it makes the proposed approach more applicable than other approaches. (b) It
solves the issue of unbalanced SBFL matrix in the sense that there are much
more passing tests than failing ones, and many SBFL formulas treat passing and
failing tests similarly. (c) Finally, it also involves information outside the regular
SBFL matrix, namely the calling context information.

8 Qusay Idrees Sarhan and Árpád Beszédes

4 The proposed SBFL enhancing approach

In this section, we present the concept of our proposed approach to enhance
the effectiveness of the underlying SBFL formulas and how it works. Then, we
present its effectiveness when applied on our motivational example.

4.1 The frequency-based ef (ϕ)

To obtain the frequency-based ef (ϕ), we first create the frequency-based SBFL
matrix, which replaces the traditional hit-based one. As a result, instead of
{0, 1}, each element will receive an integer reflecting the number of occurrences
of the given element in the unique call stacks while running in various calling
contexts. In other words, unique call stacks are data structures that store call
stack state information during test case execution and count the number of
method occurrences within these structures [12].

Table 4 presents the frequency-based matrix for our Java example. The
unique call stacks of t1, for example, are (a, f), (a, g), and (b, g), hence the
frequency of g for test t1 will be 2.

Table 4. Frequency-based matrix

a b f g Results

t1 2 1 1 2 Failed
t2 1 1 0 2 Failed
t3 1 1 0 1 Passed
t4 3 1 1 2 Passed
ϕ 3 2 1 4

ϕ is determined by adding the frequency-based values for the failing test cases
in the matrix. The greater the value of ϕ for a method, the more suspicious is.
For instance, adding the frequency-based values of the faulty method g (i.e., 2
and 2) in the matrix for the failing test cases (i.e., t1 and t2) will yield 4 as the
value of ϕ for the method g, which is the biggest ϕ value compared to others.

4.2 The proposed approach

Using the selected SBFL formulas on the program spectra, we calculate the sus-
picion scores of program methods. The output are the initial suspicion scores of
methods. Then, we multiply each initial score of each method by its importance
weight which is computed via Equation 2.

Importance Weight =
(

ef * ϕ

ef + nf

)
(2)

Effective Spectrum Based Fault Localization Using Contextual Based Importance Weight 9

The order of methods in the initial ranking list will be rearranged based
on the value of each method’s importance weight, resulting in a final improved
ranking list. From Table 5, it can be seen that the faulty method g will get the
rank 1 after applying our proposed approach instead of 2 (in case of J and S)
or 2.5 (in case of B) as its weight is greater than others. The rationale behind
using the ϕ is that if a method appears in a lot of calls during a failed test, it
will be considered more suspicious and will be given a higher rank than other
methods. We combine the ϕ with ef/(ef + nf) because the later emphasizes
the failing test cases factor because there are comparably much less failing tests
than passing ones.

Table 5. Program example scores and average ranks after applying our approach

Method J** Rank B** Rank S** Rank

a 1.5 2 1.5 2 2.0 2
b 1.0 3 1.0 3 1.33 3
f 0.17 4 0.25 4 0.25 4
g 2.0 1 2.0 1 2.67 1

5 Evaluation

5.1 Subject programs

In this study, we used the faulty programs of version v1.5.0 of Defects4J [6]; where
6 open-source Java programs had 438 actual faults found in their repositories3.
However, due to instrumentation issues or incorrect test results, 27 defects were
eliminated from this analysis. As a result, the final dataset used contained a total
of 411 faults. Each program’s primary characteristics are presented in Table 6.

Table 6. Subject programs

Project Number
of bugs

Size
(KLOC)

Number
of tests

Number
of methods

Chart 25 96 2.2k 5.2k
Closure 168 91 7.9k 8.4k
Lang 61 22 2.3k 2.4k
Math 104 84 4.4k 6.4k

Mockito 27 11 1.3k 1.4k
Time 26 28 4.0k 3.6k
All 411 332 22.1k 27.4k

3 https://github.com/rjust/defects4j/tree/v1.5.0

https://github.com/rjust/defects4j/tree/v1.5.0

10 Qusay Idrees Sarhan and Árpád Beszédes

5.2 Granularity of data collection

Method-level granularity was used as a program spectra/coverage type in this
work. It provides users with a more understandable level of abstraction [2, 18].
However, in terms of the proposed approach, there is no theoretical barrier to
investigate other granularity levels as well.

5.3 Evaluation baselines

Several well-studied SBFL formulas were utilized as baselines in this paper, as
presented in Table 2, to evaluate and compare our proposed approach to. It is
worth mentioning that Vancsics et al’s approach proposed in [12] is comparable
to ours; thus, we will compare our results to it too.

6 Experimental Results and Discussion

6.1 Achieved improvements in the average ranks

Table 7 presents the average ranks before (column 2) and after (column 3) using
our proposed approach (denoted with **) and Vancsics et al’s approach in [12]
(denoted with *), as well as the difference between them (column 4). If the
difference is negative, it indicates that the used approach has the potential to
improve.

Table 7. Average ranks comparison

Diff. Diff.

J = 38.51 J* = 23.58 J** = 21.83 J-J* = -14.93 J-J** = -16.68
B = 38.5 B* = 23.66 B** = 21.7 B-B* = -14.84 B-B** = -16.8
S = 38.51 S* = 23.77 S** = 21.96 S-S* = -14.74 S-S** = -16.55

DS = 149.03 DS* = 150.59 DS** = 136.67 DS-DS* = 1.56 DS-DS* = -12.36
D = 38.51 D* = 23.58 D** = 21.83 D-D* = -14.93 D-D** = -16.68
I = 38.5 I* = 23.66 I** = 21.7 I-I* = -14.84 I-I** = -16.8

K = 153.34 K* = 138.26 K** = 136.66 K-K* = -15.08 K-K** = -16.68
C = 38.54 C* = 20.76 C** = 17.87 C-C* = -17.78 C-C** = -20.67

We can see that our proposed approach achieved improvements with all of
the selected SBFL formulas: the average rank reduced by about 17 overall, which
corresponds to 8–54% with respect to the total number of methods in the used
dataset. It can be noted that the Cohen formula reduced the average rank more
than the others. Considering the formulas that have the lower average ranks
after applying our proposed approach, Cohen, Barinel, and Interest are the best
ones, respectively.

Vancsics et al’s approach also achieved improvements in the average ranks
of all the selected formulas except in the case of DS** formula, disimprovement
was observed. However, the average rank reduced by this approach was about
13 overall. The difference is 4 positions between the two approaches. In other
words, our approach outperformed Vancsics et al’s approach by 4 positions in
terms of reducing the average rank.

Effective Spectrum Based Fault Localization Using Contextual Based Importance Weight 11

RQ1: Our proposed approach enhanced all the SBFL formulas compared to
Vancsics et al’s approach. The improvement of average ranks by our approach
in the used benchmark was about 17 positions overall while in Vancsics et
al’s approach was about 13. In terms of average ranks, our approach reduced
more positions. This indicates that using an importance weight could have
a positive impact and enhances the SBFL results. Also, it encourages us to
investigate other forms of importance weights in the future and measure their
impacts on the effectiveness of SBFL.

It is worth mentioning that only using average ranks as an evaluation metric
for SBFL effectiveness has its own set of drawbacks: (a) outlier average ranks
could distort the overall information on the performance of any proposed ap-
proach. (b) it tells nothing about the distribution of the rank values and their
changes before and after applying a proposed approach. Therefore, there is a
more important category of evaluation than average ranks: improvements in the
Top-N ranks, where the advantages are more obvious, as presented below.

6.2 Achieved improvements in the Top-N categories

According to [8] and [15], testers believe that examining the first five program
elements in an SBFL ranking list is acceptable, with the first ten elements being
the highest limit for inspection before the list is dismissed. Thus, the success of
SBFL can also be measured by concentrating on these rank positions, which are
collectively known as Top-N, as follows: (a) Top-N: When the rank of a faulty
program element is less or equal to N . (b) Other: When the rank of a faulty
program element is more than the highest N value used in the categorizations
(it is 10 in our experiments).

Figure 2 shows the number of bugs in the Top-N categories for each approach.
Here, improvement is defined as a decrease in the number of cases in the “Other”
category and an increase in any of the Top-N categories.

It is evident that by relocating many bugs to higher-ranked categories, our
proposed approach and Vancsics et al’s approach improved all Top-N categories.
However, our approach placed more bugs (i.e., 19–25 bugs) into one of the Top-
N categories from the “Other” category (with rank > 10) compared to Vancsics et
al’s approach (i.e., 16–21 bugs). This is significant since it raises the possibility of
finding a bug with our approach while it was not very probable without it. This
kind of interesting improvements is also known as enabling improvements [4].
Table 8 presents the enabling improvements achieved by each approach.

It can be noted that each new formula achieves enabling improvements, the
average enabling improvements was about 5% of the total number of faults in
the used dataset by our approach. In these cases the basic SBFL formulas ranked
the faulty method in the other category, but our proposed approach managed to
bring it forward into the Top-10 (or better) categories. Note that, the formulas
B**, I**, and C** are the best in this aspect. Overall, each formula based on our
proposed approach was able to achieve enabling improvements in the possible
cases. It can be noted that Vancsics et al’s approach improvements was about

12 Qusay Idrees Sarhan and Árpád Beszédes

Fig. 2. Top-N categories

Table 8. Enabling improvements

Rank > 10 (%) Enab. impr. (%) Enab. impr. (%)

J vs. J* vs. J** 161 (39.2%) 19 (4.6%) 21 (5.1%)
B vs. B* vs. B** 163 (39.7%) 21 (5.1%) 25 (6.0%)
S vs. S* vs. S** 161 (39.2%) 16 (3.9%) 20 (4.9%)

DS vs. DS* vs. DS** 179 (43.6%) 10 (2.4%) 19 (4.6%)
D vs. D* vs. D** 161 (39.2%) 19 (4.6%) 21 (5.1%)
I vs. I* vs. I** 163 (39.7%) 21 (5.1%) 25 (6.0%)

K vs. K* vs. K** 181 (44.0%) 18 (4.4%) 21 (5.1%)
C vs. C* vs. C** 161 (39.2%) 20 (4.9%) 22 (5.4%)

Effective Spectrum Based Fault Localization Using Contextual Based Importance Weight 13

4% of the total number of faults in the used dataset with the formulas B*, I*,
and C* as the best ones. Here, this improvement seems modest considering the
fact that only an importance weight was used. Other, more complex weights may
yield much more improvement which will be investigated in the future. Higher
categories have significant improvements as well, with roughly 8–15 bugs moving
to Top-1 by our approach compared to Vancsics et al’s approach with 1–11 bugs,
for example. Here also, our approach outperformed Vancsics et al’s approach by
moving more bugs to the Top-1 category.
RQ2: We were able to raise the number of cases when the faulty method was
ranked first by 11–23%. While Vancsics et al’s approach moved less number
of bugs to Top-1 category. Another interesting finding is that our approach
achieved more enabling improvement compared to Vancsics et al’s approach
by moving 19–25 bugs from the Other category into one of higher-ranked
categories. These cases are now more likely to be discovered and then fixed
than before.

7 Threats to validity

In software engineering, each experimental study has some threats to its validity.
In this work, the following actions were considered to avoid or mitigate the
threats of validity:

– Selection of evaluation metrics: to be certain that our findings and conclu-
sions are correct, we selected well-known evaluation metrics (i.e., average
ranks and Top-N categories) that have been utilized in prior studies too.

– Correctness of implementation: a code review was performed numerous times
to guarantee that our experiment implementation was correct. Furthermore,
we have executed our proposed strategy multiple times to ensure that it is
properly implemented.

– Selection of subject programs: we used Defects4J as a benchmark dataset
in our study. Therefore, our findings cannot be generalized to other Java
programs. However, we believe that the programs of Defects4J are represen-
tative and contain real faults of varied types and complexity. Defects4J is
also extensively utilized in other software fault localization research.

– Exclusion of faults: due to technical limits, we had to eliminate 27 faults from
the Defects4J dataset (about 6% of the total number of faults). The question
is whether or not other researchers working with the same dataset will be
able to reproduce our results. Our findings were not influenced in any way
by this exclusion and the excluded faults were scattered almost uniformly
throughout the dataset, thus we believe that this threat is very low.

– Selection of SBFL formulas: we used a collection of well-known SBFL formu-
las in our experiment to evaluate the effectiveness of our proposed approach,
which represents only a small percentage of the reported formulas in the
literature. The results demonstrate that all of them have improved. How-
ever, we cannot guarantee that using other different formulas would yield

14 Qusay Idrees Sarhan and Árpád Beszédes

the same results. We used the formulas which are extensively used in other
software fault localization research to limit the effect of this issue.

8 Conclusions

This paper presents the use of importance emphasis on the failing tests that
execute the program element under consideration in SBFL. We rely on the in-
tuition that if a code element gets executed in more failed test cases and appear
in more calling contexts in such tests compared to other elements, it will be
more suspicious and gets a higher rank position. This is achieved by multiplying
the initial suspicion score, computed by underlying SBFL formulas, of each pro-
gram method by an importance weight that represents the rate of executing a
method in failed test cases combined with the so-called method calls frequency.
The following are the primary characteristics of the proposed approach: (a) it
can be used to any SBFL formula without changing the structure or notion of
the formula. (b) it overcomes the problem of an unbalanced SBFL matrix since
there are far more passing tests than failing tests, and many SBFL formulas
treat passing and failing tests in the same way. The findings of this study’s ex-
periments reveal that relocating many bugs to the top Top-N rankings improved
the average ranks for all formulas studied and surpassed previous approaches.

We would like to evaluate the effectiveness of our approach at different levels
of granularity in the future, such as at the statement level. Incorporating other
SBFL formulas into the study to determine which formulas produce the great-
est results and classifying them into groups would be fascinating to investigate
further. We would also like to use other expressions of importance weights and
see how they affect SBFL efficacy.

References

1. Ajibode, A.A., Shu, T., Ding, Z.: Evolving suspiciousness metrics from hybrid data
set for boosting a spectrum based fault localization. IEEE Access 8, 198451–198467
(2020)

2. B. Le, T.D., Lo, D., Le Goues, C., Grunske, L.: A learning-to-rank based fault
localization approach using likely invariants. In: Proceedings of the 25th Inter-
national Symposium on Software Testing and Analysis. p. 177–188. ISSTA 2016,
Association for Computing Machinery, New York, NY, USA (2016)

3. Bagheri, B., Rezaalipour, M., Vahidi-Asl, M.: An approach to generate effective
fault localization methods for programs. In: International Conference on Funda-
mentals of Software Engineering. pp. 244–259 (2019)

4. Beszédes, A., Horváth, F., Di Penta, M., Gyimóthy, T.: Leveraging contextual infor-
mation from function call chains to improve fault localization. In: IEEE 27th Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER).
pp. 468–479 (2020)

5. Idrees Sarhan, Q., Vancsics, B., Beszedes, A.: Method calls frequency-based tie-
breaking strategy for software fault localization. In: 2021 IEEE 21st International
Working Conference on Source Code Analysis and Manipulation (SCAM). pp. 103–
113 (2021). https://doi.org/10.1109/SCAM52516.2021.00021

https://doi.org/10.1109/SCAM52516.2021.00021
https://doi.org/10.1109/SCAM52516.2021.00021

Effective Spectrum Based Fault Localization Using Contextual Based Importance Weight 15

6. Just, R., Jalali, D., Ernst, M.D.: Defects4J: a database of existing faults to en-
able controlled testing studies for Java programs. In: International Symposium on
Software Testing and Analysis (ISSTA). pp. 437–440. ACM Press (2014)

7. Kim, J., Park, J., Lee, E.: A new hybrid algorithm for software fault localization.
In: Proceedings of the 9th International Conference on Ubiquitous Information
Management and Communication. pp. 1–8 (2015)

8. Kochhar, P.S., Xia, X., Lo, D., Li, S.: Practitioners’ expectations on automated
fault localization. In: Proceedings of the 25th International Symposium on Soft-
ware Testing and Analysis. p. 165–176. ISSTA 2016, Association for Computing
Machinery, New York, NY, USA (2016)

9. Neelofar: Spectrum-based Fault Localization Using Machine Learn-
ing (2017), https://findanexpert.unimelb.edu.au/scholarlywork/
1475533-spectrum-based-fault-localization-using-machine-learning

10. Park, J., Kim, J., Lee, E.: Experimental Evaluation of Hybrid Algorithm in Spec-
trum based Fault Localization. International conference on Software Engineering
Research and Practice (SERP) (2014)

11. Sarhan, Q.I., Beszedes, A.: A survey of challenges in spectrum-based software fault
localization. IEEE Access 10, 10618–10639 (2022). https://doi.org/10.1109/
ACCESS.2022.3144079

12. Vancsics, B., Horvath, F., Szatmari, A., Beszedes, A.: Call frequency-based fault
localization. In: 2021 IEEE International Conference on Software Analysis, Evolu-
tion and Reengineering (SANER). pp. 365–376 (2021)

13. Wong, W.E., Debroy, V., Gao, R., Li, Y.: The dstar method for effective software
fault localization. IEEE Transactions on Reliability 63(1), 290–308 (2014)

14. Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A Survey on Software Fault
Localization. IEEE Transactions on Software Engineering 42(8), 707–740 (aug
2016)

15. Xia, X., Bao, L., Lo, D., Li, S.: “automated debugging considered harmful” consid-
ered harmful: A user study revisiting the usefulness of spectra-based fault local-
ization techniques with professionals using real bugs from large systems. In: 2016
IEEE International Conference on Software Maintenance and Evolution (ICSME).
pp. 267–278 (2016)

16. You, Y.S., Huang, C.Y., Peng, K.L., Hsu, C.J.: Evaluation and analysis of
spectrum-based fault localization with modified similarity coefficients for software
debugging. In: 2013 IEEE 37th Annual Computer Software and Applications Con-
ference. pp. 180–189 (2013)

17. Zhang, M., Li, X., Zhang, L., Khurshid, S.: Boosting spectrum-based fault local-
ization using pagerank. In: Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis. p. 261–272 (2017)

18. Zou, D., Liang, J., Xiong, Y., Ernst, M.D., Zhang, L.: An empirical study of fault
localization families and their combinations. IEEE Transactions on Software En-
gineering 47(2), 332–347 (2021)

https://findanexpert.unimelb.edu.au/scholarlywork/1475533-spectrum-based-fault-localization-using-machine-learning
https://findanexpert.unimelb.edu.au/scholarlywork/1475533-spectrum-based-fault-localization-using-machine-learning
https://doi.org/10.1109/ACCESS.2022.3144079
https://doi.org/10.1109/ACCESS.2022.3144079
https://doi.org/10.1109/ACCESS.2022.3144079
https://doi.org/10.1109/ACCESS.2022.3144079

	Effective Spectrum Based Fault Localization Using Contextual Based Importance Weight

