
Experimental Evaluation of A New Ranking
Formula for Spectrum based Fault Localization

Qusay Idrees Sarhan1, 2 and Árpád Beszédes1

1 Department of Software Engineering, University of Szeged, Szeged, Hungary
2 Department of Computer Science, University of Duhok, Duhok, Iraq

{sarhan, beszedes}@inf.u-szeged.hu

Abstract—Spectrum-Based Fault Localization (SBFL) uses a
mathematical formula to determine a suspicion score for each
program element (such as a statement, method, or class) based
on fundamental statistics (e.g., how many times each element
is executed and not executed in passed and failed tests) taken
from test coverage and results. Based on the calculated scores,
program elements are then ordered from most suspicious to least
suspicious. The elements with the highest scores are thought to
be the most prone to error. The final ranking list of program
elements aids developers in debugging when looking for the
source of a fault in the program under test.

In this paper, we present a new SBFL ranking formula that
enhances a base formula by ranking code elements slightly higher
than others that are executed by more failed tests and less passing
ones. Its novelty is that it breaks ties between the elements that
share the same suspicion score of the base formula. Experiments
were conducted on six single-fault programs of the Defects4J
dataset to evaluate the effectiveness of the proposed formula.
The results show that our new formula when compared to three
widely-studied SBFL formulas, achieved a better performance in
terms of average ranking. It also achieved positive results in all
of the Top-N categories and increased the number of cases where
the faulty element became the top-ranked element by 13–23%.

Index Terms—Debugging, fault localization, spectrum-based
fault localization, formulas, ranking list.

I. INTRODUCTION

Software still has a long way to go before being flawless.
Software faults may result in serious undesirable events,
including the loss of life. So, during the past few decades, a
variety of strategies for locating software faults have been pre-
sented, such as Spectrum-based fault localization (SBFL) [1]–
[3]. According to SBFL, program spectra produced by running
tests are used to determine the likelihood that each program
element will be faulty. However, due to the problems it raises,
SBFL is not yet utilized substantially [4]. One of such issues
is that in SBFL program elements are ranked in order of their
suspicion scores from the most suspicious to the least, and it
is not guaranteed that the faulty element is easy to find in this
list. Programmers evaluate each program element starting at
the top of the ranking list to see whether it is faulty or not.
The faulty element should be placed close to the top of the
ranking with no shared suspicion scores with other elements,
so that developers may easily and quickly identify it early on
in the examination process.

SBFL algorithms are based on suspiciousness formulas that
statistically compare the number of failing and passing test
cases that cover a particular code element, and the number of

failing and passing test cases not covering the element. There
have been numerous formulas proposed in the literature, but
the issue of ties remains with all of them. This is the situation
where two elements are equally suspicious.

In this paper, we present a new SBFL formula that addresses
the issue of ties by emphasizing the high number of failing test
cases and the low number of passing ones for a particular code
element. This way, typical situations of ties can be handled
very simply. Our approach is to add a small enhancement
component to the base formula, which slightly modifies the
resulting value, only sufficiently to produce different suspicion
values, hence effectively breaking the ties.

Experimental results of our study show that our proposed
formula achieved a better performance in terms of average
ranking compared to three widely-studied SBFL formulas.
Buggy element rankings reduced by an average of ten po-
sitions. Also, it achieved positive improvements in the Top-N
categories and in particular, increased the number of cases
where the buggy method was the highest ranked element in
the ranking list by 13–23%.

This paper’s main contributions are as follows:

1) A new SBFL formula that improves the performance of
SBFL in many cases, which is a good candidate for tie
breaking in combination with other formulas as well.

2) The analysis of the impact of the new SBFL formula on
the overall SBFL effectiveness is discussed.

While the Research Questions (RQs) are as follows:

• RQ1: What level of average ranks improvements can we
achieve using the proposed SBFL formula?

• RQ2: What is the overall effect of the proposed formula
on SBFL effectiveness in terms of Top-N categories?

The remaining sections of the paper are structured as fol-
lows. Section II concisely explains the SBFL and its core idea.
Section III provides a summary of relevant works. Section IV
introduces our novel approach of enhancing SBFL formulas.
Section V provides an overview on the used subject pro-
grams, data collection, and the evaluation baselines. Section VI
presents the experimental results of this study and provides
some analysis about the effectiveness of our proposed formula.
Finally, we offer our conclusions and potential directions for
future research in Section VIII.

II. BACKGROUND OF SBFL
In software debugging, fault localization takes a lot of time.

Therefore, automating it is crucial for software developers to
easily find the location of a faulty element (e.g., statement,
method, or class) in their programs during the debugging
process. Several approaches were proposed to perform soft-
ware fault localization process automatically [2]. Because
SBFL is straightforward but effective—it simply relies on tests
coverage and their results—we concentrate on it.

To obtain the spectra (i.e., tests coverage and tests results)
for the subject program, tests execution on program elements is
recorded. Program spectra represents the relationship between
tests and program elements. It is represented as a matrix where
its rows demonstrate the program elements and its columns
represent the tests. An element of the matrix is 1, if it is
covered by a test, otherwise it is 0. The matrix stores the test
results as well, where 0 indicates a passed test and 1 indicates
a failed test. For each program element e in the matrix, the
following four statistical values are computed:

• ep: represents the number of passed test cases covering
the program element e.

• ef : represents the number of failed test cases covering
the program element e.

• np: represents the number of passed test cases not cov-
ering the program element e.

• nf : represents the number of failed test cases not covering
the program element e.

Then, these four basic statistics can be used by an SBFL
formula such as Tarantula [5], [6] in Equation 2 to produce
a ranking list of program elements. Whichever element came
in first on the list is the one that is most likely to have a
fault. Therefore, SBFL can make it simpler for developers to
identify the problematic code in the target program.

III. RELATED WORKS

There are many approaches proposed in the literature to
enhance the performance of SBFL. One enhancing approach
is to improve SBFL formulas to more accurately guide
and pinpoint faults in the fault localization process. This
is achieved by introducing new SBFL formulas, modifying
currently used SBFL formulas, or combining exiting ones. The
most important efforts that aim to improve SBFL by modifying
its formulas are briefly presented in this section. Thus, we
classify these previous approaches into several main categories
as follows.

A. Modifying existing SBFL formulas

The authors in [5] improved the performance of the Taran-
tula formula by modifying some part of it to amplify its scores.
However, the improved Tarantula does not make any im-
provements in the ranking. Also, the authors did not evaluate
the improved Tarantula using well-known evaluation metrics.
Based on the hypothesis that some failed test cases may
yield more testing information than other failed test cases,
the authors in [7] updated three well-known SBFL formulas.
Different weights for failed test cases were therefore allocated

and then used for each of the three formulas, thus; improving
the performance.

B. Combining existing SBFL formulas

The authors in [8] proposed a method for generating a new
SBFL formula tailored to a certain program by combining 40
different formulas. The proposed method extracts information
from the program using mutation testing and then combines
multiple formulas based on the gathered information using
different voting systems to generate a new formula. Their
findings demonstrate that the formula they produced is su-
perior to a number of existing ones. The fact that different
SBFL formulas can be combined into a single new formula
is important to note. A hybrid formula, which combines the
benefits of other existing formulas that have been employed in
the combination, is the end product. A hybrid formula should
therefore perform better than the others [9]

C. Adding new information to existing SBFL formulas

The authors in [10] utilized the method calls frequency of
the subject programs, in call stack instances, during the exe-
cution of failed test cases to add new contextual information
to the standard SBFL formulas. As a result, the frequency ef
was substituted for the ef in each formula. Their test results
demonstrated that the efficacy of SBFL might be increased by
incorporating this new knowledge into the formulas already in
use. This method can only be used with formulas that have
the ef numerator, though. Additionally, it is regarded as heavy
due to the requirement to trace each method call in failed test
cases, whether the caller or callee.

Our proposed approach improves the SBFL performance by
introducing a new SBFL formula. The main advantage of our
proposed formula over others is that it ranks program elements
that are executed in more failed test cases and less passed
test cases higher that other elements, and at the same time it
effectively breaks ties in many cases.

IV. THE PROPOSED SBFL FORMULA

In this section, we present a new SBFL formula to enhance
the effectiveness of SBFL and we show advantage over other
SBFL formulas. Then, we present its effectiveness when
applied on a motivation example.

A. The proposed SBFL formula

Our proposed formula is a sum of two parts: a base compo-
nent and a tie-breaking enhancement part. At present, we use
the simplest possible SBFL formula ef for the base part, but
this can be replaced in theory by any other existing formula.
The second component serves the purpose of modifying the
base part by a slight amount, thus breaking ties with higher
probability, and giving higher scores to elements with more
failing tests and/or less passing tests:

New Formula = ef +

(
ef − nf

ef + nf + ep

)
(1)

TABLE I
MOTIVATION EXAMPLE’S BASIC STATISTICS

ef ep nf np
M1 ..chart.util.SerialUtilities.readShape() 1 121 1 1759
M2 ..chart.util.SerialUtilities.writeShape() 1 121 1 1759
M3 ..chart.util.SerialUtilities.class$() 1 147 1 1733
M4 ..chart.util.ObjectUtilities.<clinit>() 1 221 1 1659
M5 ..chart.util.ObjectUtilities.equal() 2 683 0 1197
M6 ..chart.util.HashUtilities.hashCode(I) 1 47 1 1833
M7 ..chart.util.HashUtilities.hashCode(II) 1 54 1 1826
M8 ..chart.util.AbstractObjectList.<init>() 2 522 0 1358
M9 ..chart.util.AbstractObjectList.<init>(I) 2 522 0 1358

M10 ..chart.util.AbstractObjectList.<init>(II) 2 522 0 1358
M11 ..chart.util.AbstractObjectList.get() 2 237 0 1643
M12 ..chart.util.AbstractObjectList.set() 2 240 0 1640
M13 ..chart.util.AbstractObjectList.size() 2 429 0 1451
M14 ..chart.util.AbstractObjectList.equals() 2 259 0 1621
M15 ..chart.util.AbstractObjectList.hashCode() 1 47 1 1833
M16 ..chart.util.AbstractObjectList.writeObject() 1 78 1 1802
M17 ..chart.util.AbstractObjectList.readObject() 1 78 1 1802
M18 ..chart.util.ShapeList.<init>() 2 429 0 1451
M19 ..chart.util.ShapeList.getShape() 1 21 1 1859
M20 ..chart.util.ShapeList.setShape() 2 25 0 1855
M21 ..chart.util.ShapeList.equals() 2 221 0 1659
M22 ..chart.util.ShapeList.hashCode() 1 0 1 1880
M23 ..chart.util.ShapeList.writeObject() 1 65 1 1815
M24 ..chart.util.ShapeList.readObject() 1 65 1 1815
M25 ..chart.util.junit.ShapeListTests.testEquals() 1 0 1 1880
M26 ..chart.util.junit.ShapeListTests.testSerialization() 1 0 1 1880

The intuition behind the effect of the modification part is
explained in the following. The resulting value of the formula
will be dominated by ef because typically only a small value
between [0−1] will be added to or removed from it. Since all
four basic counters are positive, ef + nf is bigger than their
difference, and ep is typically much bigger than zero, the result
of this modification component will be probably closer to 0
than 1. Element scores are often tied because they share the
same ef and nf numbers, so the tie will be broken by ep
which is more likely different in the two cases. Furthermore,
if the two elements differ in ef and nf , and since ef + nf is
constant, the element for which ef −nf is bigger (more failing
tests that cover the element) will be ranked higher. This will
help also in the situation where ep is the same with the two
elements.

B. An illustrative example from Defects4J

To show how our proposed approach works and how it
achieves improvements, several bugs from the used Defects4J
dataset were carefully examined. Bug 6 from the “Chart”
project was one of the more interesting cases we looked into1.
Thus, we will illustrate on the basic statistics extracted from
the spectra of 26 methods (M1-M26), including the faulty
method M21, as presented in Table I.

Tarantula formula was applied on the extracted execution
information to compute the suspicion score of each method
as presented in Table II. It can be seen that Tarantula formula
cannot put the faulty method M21 near the top of the ranking
list suggested by the formula (it is ranked 13 based on
Equation 5). The reason is that Tarantula assigned higher
scores to other 11 methods (i.e., M6, M7, M15-M17, M19, and
M22-M26) that have been executed by less number of failed

1http://program-repair.org/defects4j-dissection/#!/bug/Chart/6

test cases (i.e, one failed test). As a result, these methods got
higher ranks in the ranking list and will be examined before
the actual faulty method M21.

In our example, the faulty method M21 was executed by
two failed test cases. As the method M21 was executed by
more failed test cases compared to the other 11 methods, it
should be the most suspicious method and it should get a
higher rank than the other 11 methods. After applying our
proposed formula, the faulty method M21 has the second most
suspicion score and thus ranked the nearest top in the list.

This example clearly shows the working of the proposed
formula. It can be observed that the obtained scores are only
a slight modifications of the respective ef values. It is intuitive
that code elements which have two failing tests rather than one
should be more suspicious. However, from the 11 elements
having ef = 2, the ones which have less passing tests will be
ranked higher (smaller ep). This makes element M20 first and
M21, the faulty one, second in the ranked list.

TABLE II
MOTIVATION EXAMPLE – SCORES AND RANKS

Tarantula score Tarantula rank Proposed Formula score Proposed Formula rank
M1 0.886 16.5 1.000 19
M2 0.886 16.5 1.000 19
M3 0.865 19 1.000 19
M4 0.810 22 1.000 19
M5 0.734 26 2.003 11
M6 0.952 6.5 1.000 19
M7 0.946 8 1.000 19
M8 0.783 24 2.004 9
M9 0.783 24 2.004 9

M10 0.783 24 2.004 9
M11 0.888 14 2.008 3
M12 0.887 15 2.008 4
M13 0.814 20.5 2.005 6.5
M14 0.879 18 2.008 5
M15 0.952 6.5 1.000 19
M16 0.923 11.5 1.000 19
M17 0.923 11.5 1.000 19
M18 0.814 20.5 2.005 6.5
M19 0.978 5 1.000 19
M20 0.987 4 2.074 1
M21 0.895 13 2.009 2
M22 1.000 2 1.000 19
M23 0.935 9.5 1.000 19
M24 0.935 9.5 1.000 19
M25 1.000 2 1.000 19
M26 1.000 2 1.000 19

V. EVALUATION

A. Subject programs
Here, we used the single faulty programs (i.e., 302 faults)

of the dataset Defects4J v1.5.0 [11]. However, 5 faults were
excluded due to instrumentation issues. Thus, the final dataset
used contained a total of 297 faults. Table III presents the
subject programs.

TABLE III
SUBJECT PROGRAMS

Project Number
of bugs

Size
(KLOC)

Number
of tests

Number
of methods

Chart 16 96 2.2k 5.2k
Closure 113 91 7.9k 8.4k

Lang 47 22 2.3k 2.4k
Math 77 84 4.4k 6.4k

Mockito 25 11 1.3k 1.4k
Time 19 28 4.0k 3.6k
All 297 332 22.1k 27.4k

http://program-repair.org/defects4j-dissection/#!/bug/Chart/6

B. Granularity of data collection

The program coverage type used in this study was method-
level granularity. It has several advantages [12]: it can handle
large-scale programs (i.e., scales well to them), it provides
more thorough contextual information about the program ele-
ment under inquiry, and, in accordance with some research, it
also gives users a more intelligible degree of abstraction [13],
[14]. However, there is no theoretical barrier preventing the
study of lower granularity levels.

C. Evaluation baselines

In this paper, several widely-studied SBFL formulas [6]:
Tarantula, Ochiai, and Barinel; which are presented in Equa-
tions (2-4) respectively; were used as the baselines of com-
parison.

Tarantula =

ef
ef+nf

ef
ef+nf + ep

ep+np

(2)

Ochiai =
ef√

(ef + nf) ∗ (ef + ep)
(3)

Barinel =
ef

ef + ep
(4)

VI. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents and discusses the overall impact of the
proposed formula on SBFL effectiveness. We use evaluation
metrics that have been used also by other researchers in the
literature for this purpose [15], [16].

A. Achieved improvements in the average ranks

Average rank, calculated using Equation 5, ranks program
elements based on their shared (tied) suspicion scores by
taking into account the average of their places after being
sorted, descendingly.

MID = S +

(
E - 1

2

)
(5)

where S denotes the tie’s starting position and E denotes its
size.

Table IV presents the average ranks of each SBFL formula
compared to our proposed formula and it shows the difference
between the average ranks too. If the difference is negative, it
indicates that our proposed formula is better.

We can see that our proposed formula achieved improve-
ments, providing lower average ranks, compared to all the
selected SBFL formulas: the average rank reduced by about
10 positions in overall, which corresponds to 2.4–3.7% with
respect to the total number of program elements (i.e., meth-
ods), demonstrating that our proposed formula can provide
significant improvements.

TABLE IV
AVERAGE RANK OF FAULTY ELEMENTS OF SBFL FORMULAS COMPARED

TO OUR PROPOSED FORMULA

Average rank

Tarantula 83.05
New Formula 72.01

Diff. -11.04

Ochiai 79.25
New Formula 72.01

Diff. -7.24

Barinel 83.05
New Formula 72.01

Diff. -11.04

RQ1: The effectiveness of SBFL could be improved by
using the proposed formula: the average improvement of
rank positions in the used benchmark was about 10 positions
overall. This indicates that the proposed formula could have
a positive impact and enhances the results.

It is worth mentioning that only using average ranks as an
evaluation metric for SBFL effectiveness has its own set of
drawbacks: (a) outlier average ranks could distort the overall
information on the performance of any proposed approach. (b)
It tells nothing about the distribution of the rank values and
their changes before and after applying a proposed approach.
Therefore, the Top-N categories will also be evaluated as
presented next.

B. Achieved improvements in the Top-N categories

In this study, we used Top-1, Top-3, Top-5, Top-10, and
Other (e.g., rank > 10) as a performance evaluation metric.
The well-performing formula should put as much as possible
bugs in the higher ranks categories [17]. Table V presents
the number of bugs in the Top-N categories (cumulative) as
well as their percentages for the entire dataset, of the baseline
formulas and our proposed one, as well as the differences
between them. There has been improvement if there are fewer
bugs in the Other category and more bugs in any Top-N
category.

TABLE V
TOP-N CATEGORIES

Top-1 Top-3 Top-5 Top-10 Other
% # % # % # % # %

Tarantula 48 16.2 111 37.4 137 46.1 167 56.2 130 43.8
New Formula 59 19.9 124 41.8 148 49.8 178 59.9 119 40.1

Diff. 11 22.9 13 11.7 11 8.0 11 6.6 -11 -8.5
Ochiai 52 17.5 118 39.7 143 48.1 171 57.6 126 42.4

New Formula 59 19.9 124 41.8 148 49.8 178 59.9 119 40.1
Diff. 7 13.5 6 5.0 5 3.5 7 4.1 -7 -5.6

Barinel 48 16.2 111 37.4 137 46.1 167 56.2 130 43.8
New Formula 59 19.9 124 41.8 148 49.8 178 59.9 119 40.1

Diff. 11 22.9 13 11.7 11 8.0 11 6.6 -11 -8.5

It is clear that by relocating many bugs to higher categories,
our new formula improves all Top-N categories. 7–11 bugs
were moved from the Other category with rank > 10 into
one of the higher Top-N categories. This is important as it
gives a “new hope” that a bug will be discovered with our
proposed formula while without it, it was not very likely. A
significant number of improvements are also visible in higher

categories; for example, about 10 bugs were located in the Top-
1 category. Note that the percentages of bugs in each category
for each formula were computed based on the number of faults
in Defect4J. While the difference percentages were computed
based on the number of faults before applying our proposed
formula.
RQ2: Every Top-N category showed successful outcomes.
Additionally, we were able to raise the proportion of in-
stances in which the faulty method was the highest-ranked
element by 13–23%. Another interesting finding is that in
some cases we were able to achieve 11% enabling improve-
ment by moving 7–11 bugs from the Other category into
one of higher-ranked categories. Such cases are now more
likely to be discovered than before.

VII. IMPLICATIONS AND FUTURE PLANS

We presented the evaluation of a new SBFL formula.
According to the findings of our preliminary research, the
proposed formula merits further investigation. In addition, we
plan to do the following research in the future:

• Extending the benchmark to the new Defects4J programs
(i.e., version 2.0), to programs written in other program-
ming languages, etc.

• Involving other existing SBFL formulas in the evaluation.
• Trying the enhancement component of the proposed

formula together with other base formulas instead of only
using ef .

• Investigating in more detail the effect of our formula, for
instance statistics about how many ties are broken, how
many times did ep helped, and so on.

VIII. CONCLUSIONS

We proposed a new SBFL ranking formula to automatically
lead developers to the locations of faults in programs. It is
based on the intuition that ties often happen because of shared
ef and nf values, and in this case more failing tests (larger
ef) and/or less passing ones (smaller ep) will determine the
outcome.

Via an evaluation across 297 different single-fault programs
of Defects4J, the proposed formula is shown to be more
effective than all the selected SBFL formulas in this study. It
approves the average rank and the Top-N categories as well.

IX. ACKNOWLEDGEMENTS

The research was supported by the Ministry of Innovation
and Technology NRDI Office within the framework of the
Artificial Intelligence National Laboratory Program (RRF-
2.3.1-21-2022-00004) and the project no. TKP2021-NVA-09
which was implemented with the support provided by the
Ministry of Innovation and Technology of Hungary from
the National Research, Development and Innovation Fund,
financed under the TKP2021-NVA funding scheme.

REFERENCES

[1] P. Agarwal and A. P. Agrawal, “Fault-localization techniques for
software systems: A Literature Review,” ACM SIGSOFT Software
Engineering Notes, vol. 39, no. 5, pp. 1–8, sep 2014. [Online].
Available: https://dl.acm.org/doi/10.1145/2659118.2659125

[2] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A Survey
on Software Fault Localization,” IEEE Transactions on Software
Engineering, vol. 42, no. 8, pp. 707–740, aug 2016. [Online].
Available: http://ieeexplore.ieee.org/document/7390282/

[3] H. A. de Souza, M. L. Chaim, and F. Kon, “Spectrum-based Software
Fault Localization: A Survey of Techniques, Advances, and Challenges,”
pp. 1–46, jul 2016. [Online]. Available: http://arxiv.org/abs/1607.04347

[4] Q. I. Sarhan and A. Beszedes, “A survey of challenges in spectrum-based
software fault localization,” IEEE Access, vol. 10, pp. 10 618–10 639,
2022.

[5] X. Liang, L. Mao, and M. Huang, “Research on improved the tarantula
spectrum fault localization algorithm,” in Proceedings of 2nd Interna-
tional Conference on Information Technology and Electronic Commerce,
2014, pp. 60–63.

[6] Neelofar, “Spectrum-based Fault Localization Us-
ing Machine Learning,” 2017. [Online]. Avail-
able: https://findanexpert.unimelb.edu.au/scholarlywork/
1475533-spectrum-based-fault-localization-using-machine-learning

[7] Y.-S. You, C.-Y. Huang, K.-L. Peng, and C.-J. Hsu, “Evaluation and
analysis of spectrum-based fault localization with modified similarity
coefficients for software debugging,” in 2013 IEEE 37th Annual Com-
puter Software and Applications Conference, 2013, pp. 180–189.

[8] B. Bagheri, M. Rezaalipour, and M. Vahidi-Asl, “An approach to gener-
ate effective fault localization methods for programs,” in International
Conference on Fundamentals of Software Engineering, 2019, pp. 244–
259.

[9] J. Kim, J. Park, and E. Lee, “A new hybrid algorithm for software
fault localization,” in Proceedings of the 9th International Conference
on Ubiquitous Information Management and Communication, 2015, pp.
1–8.

[10] B. Vancsics, F. Horvath, A. Szatmari, and A. Beszedes, “Call frequency-
based fault localization,” in 2021 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER), 2021, pp.
365–376.

[11] “A Database of Real Faults and an Experimental Infrastructure to
Enable Controlled Experiments in Software Engineering Research,”
https://github.com/rjust/defects4j/tree/v1.5.0, accessed: 2021-07-01.

[12] G. Shu, B. Sun, A. Podgurski, and F. Cao, “Mfl: Method-level fault
localization with causal inference,” in 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation, 2013, pp.
124–133.

[13] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, “An empirical
study of fault localization families and their combinations,” IEEE
Transactions on Software Engineering, vol. 47, no. 2, pp. 332–347, 2021.

[14] T.-D. B. Le, D. Lo, C. Le Goues, and L. Grunske, “A learning-
to-rank based fault localization approach using likely invariants,” in
Proceedings of the 25th International Symposium on Software Testing
and Analysis, ser. ISSTA 2016. New York, NY, USA: Association
for Computing Machinery, 2016, p. 177–188. [Online]. Available:
https://doi.org/10.1145/2931037.2931049

[15] J. Jiang, R. Wang, Y. Xiong, X. Chen, and L. Zhang, “Combining
spectrum-based fault localization and statistical debugging: An empirical
study,” in 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2019, pp. 502–514.

[16] A. Beszédes, F. Horváth, M. Di Penta, and T. Gyimóthy, “Leveraging
contextual information from function call chains to improve fault local-
ization,” in IEEE 27th International Conference on Software Analysis,
Evolution and Reengineering (SANER), 2020, pp. 468–479.

[17] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on
automated fault localization,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, ser. ISSTA 2016. New
York, NY, USA: Association for Computing Machinery, 2016, p.
165–176. [Online]. Available: https://doi.org/10.1145/2931037.2931051

https://dl.acm.org/doi/10.1145/2659118.2659125
http://ieeexplore.ieee.org/document/7390282/
http://arxiv.org/abs/1607.04347
https://findanexpert.unimelb.edu.au/scholarlywork/1475533-spectrum-based-fault-localization-using-machine-learning
https://findanexpert.unimelb.edu.au/scholarlywork/1475533-spectrum-based-fault-localization-using-machine-learning
https://github.com/rjust/defects4j/tree/v1.5.0
https://doi.org/10.1145/2931037.2931049
https://doi.org/10.1145/2931037.2931051

	Introduction
	Background of SBFL
	Related Works
	Modifying existing SBFL formulas
	Combining existing SBFL formulas
	Adding new information to existing SBFL formulas

	The proposed SBFL formula
	The proposed SBFL formula
	An illustrative example from Defects4J

	Evaluation
	Subject programs
	Granularity of data collection
	Evaluation baselines

	Experimental Results and Discussion
	Achieved improvements in the average ranks
	Achieved improvements in the Top-N categories

	Implications and Future Plans
	Conclusions
	Acknowledgements
	References

