
Assessing the Test Suite of a Large System Based
on Code Coverage, Efficiency and Uniqueness

László Vidács∗, Ferenc Horváth†, Dávid Tengeri†, Árpád Beszédes†
∗MTA-SZTE Research Group on Artificial Intelligence

University of Szeged, Szeged, Hungary
†Department of Software Engineering

University of Szeged, Szeged, Hungary
{lac, hferenc, dtengeri, beszedes}@inf.u-szeged.hu

Abstract—Regression test suites of evolving software systems
play a key role in maintaining software quality throughout
continuous changes. They need to be effective (in terms of
detecting faults and helping their localization) and efficient
(optimally sized and without redundancy) at the same time.
However, test suite quality attributes are usually difficult to
formalize and measure. In this paper, we rely on a recent
approach for test suite assessment and improvement that utilizes
code coverage information, but at a more detailed level, hence it
adds further evaluation aspects derived from the coverage. The
basic idea of the method is to decompose the test suite and the
program code into coherent logical groups which are easier to
analyze and understand. Several metrics are then computed from
code coverage information to characterize the test suite and its
constituents. We extend our previous study and employ derived
coverage metrics (which express efficiency and uniqueness) to
analyze the test suite of a large scale industrial open source
system containing 27 000 test cases.

Keywords-code coverage, regression testing, test suite evalua-
tion, test suite quality, test efficiency, test metrics

I. INTRODUCTION

The key player in regression testing is the regression test
suite, which needs constant maintenance just as the software
itself, otherwise its value will quickly decline [1], [2], [3],
[4]. This typically includes the addition of new test cases
and update or removal of outdated ones, after which it often
becomes as large and complex as the software itself. Unfor-
tunately, developers and testers have hardly any means that
may help them in test suite maintenance activities, apart from
perhaps test prioritization/selection and test suite reduction
techniques [2], and some more recent approaches for the
assessment of test code quality [5].

In earlier work [6], we introduced a method for a systematic
assessment and improvement of test suites (named Test Suite
Assessment and Improvement Method – TAIME), which is
based on computing detailed code coverage information about
the system and its test suite. This information is essentially a
binary coverage matrix, where rows represent individual test
cases while columns correspond to program elements such
as statements or functions according to the chosen level of
granularity. Both the test cases and the program elements are
decomposed into coherent logical groups, which correspond
to different functional units in the system. This way, various

analyses can be performed on the coverage matrix – in addition
to identifying low coverage areas –, such as identifying cov-
erage patterns that indicate low coherence within functional
units. Later, this approach was to measure the test suite of
the WebKit project, a large industrially supported open source
web browser layout engine [7]. For the analysis, we used the
SoDA library [8].

In this paper, we provide results of a systematic evaluation
of the data obtained for WebKit, and provide additional
insights about this system and its test suite, primarily in terms
of enhancement possibilities. WebKit has about 2.2 million
lines of code and a large test suite of about 27 thousand test
cases. Earlier, we identified 9 functional units in WebKit, and
the evaluation was based on computing basic coverage metrics
for these units. Results are summarized in a heat-map shown
in Figure I. This visualization shows how different test groups
cover different code groups in the system. The numbers in the
cells represent code coverage ratios the test cases of a given
test group attain with respect to the given code group (or to
the whole system as indicated in the first row and column).

TABLE I
COVERAGE METRIC VALUES AND HEAT-MAP OF WEBKIT

PPPPPPTest
Code W

eb
K

it

ca
nv

as

cs
s

do
m

ed
iti

ng

ht
m

l5
lib

ht
tp

js sv
g

ta
bl

es
WebKit .53 .56 .61 .59 .67 .67 .65 .47 .50 .72

canvas .16 .46 .26 .24 .07 .19 .00 .30 .03 .45

css .24 .13 .51 .33 .25 .36 .00 .32 .11 .62

dom .33 .17 .38 .52 .34 .51 .12 .35 .08 .57

editing .23 .02 .31 .38 .66 .35 .01 .31 .06 .59

html5lib .29 .12 .37 .43 .46 .52 .13 .34 .20 .63

http .33 .23 .41 .42 .25 .41 .65 .39 .14 .57

js .33 .16 .37 .47 .51 .44 .15 .44 .11 .63

svg .26 .01 .38 .35 .17 .21 .01 .31 .50 .56

tables .18 .00 .29 .30 .16 .31 .00 .26 .02 .62

In the present paper, basic coverage metrics are extended
with efficiency and uniqueness metrics, and the functional
units of the WebKit system are assessed in more detail. We
make the following contributions:



• Detailed analysis of efficiency and uniqueness metrics
trends computed on the 27 000 WebKit test cases.

• List of enhancement opportunities for each functional unit
of the system.

II. TEST SUITE ASSESSMENT METRICS

In previous work [7], the analysis of the WebKit test suite
was centered around the classical code coverage ratio (denoted
by COV) and the so-called partition metrics (denoted by PART).
The latter predicts the fault localization capability of a test
suite because it captures how much the test cases are able to
partition the program code regarding code coverage, which is
important for separating faulty code from correct ones [7].

A certain degree of coverage or partitioning can be achieved
using a different number of test cases. Clearly, the more test
cases are in a suite, the better coverage and partition metrics
are to be expected, provided the test cases are sufficiently
different. However, if such test cases are added to the test
suite, which mostly cover the same program code, they will
unnecessarily increase the size of the test suite possibly
with little additional benefit. Thus our assessment includes
efficiency metrics of test suites, which take into account the
relative number of test cases. To express efficiency we defined
the following measures: Coverage efficiency (EFFCOV) shows
how many procedures are covered by one test case on average;
Partitioning efficiency (EFFPART) is defined to express how
much a single test contributes to the partitioning capability
of the whole functional unit on average (a partition consists
of procedures covered by the same test cases).

We are also interested in the uniqueness of the test groups in
terms of how much their unique contribution is to the coverage
of a code group compared to all other test cases in other test
groups. To express this feature we defined two related metrics,
Specialization metric (SPEC) and Uniqueness metric (UNIQ).
As opposed to the earlier metrics, here we need information
not only from the test and code group in question, but from
other functional units as well. SPEC shows how specialized a
test group is to a code group. A small SPEC value shows that
there are relatively few test cases compared to all the others
covering the given code group, while a high value reflects that
there are few covering test cases outside of the given group.

The UNIQ metric measures what portion of the covered
elements are covered only by a particular test group. A small
UNIQ value shows that there are only a few procedures covered
uniquely by the given test group and there are many other test
cases covering the same. A high value indicates that the given
test group is unique and there are few other tests covering the
same procedures. The two uniqueness metrics are most useful
to characterize tests which are designed to focus on certain
code parts such as unit tests, or higher level functional tests
concentrating on specific features. Integration tests typically
exercise code from multiple modules by definition, hence they
are probably less relevant from this aspect. More details on the
aforementioned metrics can be found elsewhere [6], [7], [8].

Table II shows our extended list of metrics obtained for
the WebKit system, more precisely for each of the 9 functional

units identified. In the first section the number of procedures
(at present, our analysis granularity is procedures), test cases
and the Tests per Procedure (TPP) metric values are given.
The second and third sections show efficiency metrics, while
in the last section uniqueness metric values are presented.

TABLE II
SUMMARY OF BASIC AND EXTENDED METRICS FOR WEBKIT

Statistics Coverage Partition Uniqueness
efficiency efficiency

Pr
oc

s

Te
st

s

T
PP

C
O

V

E
FF

C
O

V

PA
R

T

E
FF

PA
R

T

SP
E

C

U
N

IQ

canvas 400 1073 2.68 0.46 0.17 0.69 0.26 0.77 0.36
css 1899 2956 1.56 0.51 0.33 0.72 0.46 0.12 0.09
dom 3761 3749 1.00 0.52 0.52 0.76 0.76 0.17 0.09
editing 1690 1358 0.80 0.66 0.82 0.87 1.08 0.06 0.16
html5lib 4176 2118 0.51 0.52 1.03 0.76 1.50 0.08 0.08
http 454 1778 3.92 0.65 0.17 0.79 0.20 0.5 0.61
js 8113 8313 1.02 0.44 0.43 0.68 0.66 0.37 0.10
svg 6336 1955 0.31 0.5 1.62 0.74 2.40 0.22 0.57
tables 2035 1340 0.66 0.62 0.94 0.83 1.26 0.06 0.03

III. DETAILED ANALYSIS OF WEBKIT METRICS

A. Efficiency

Test efficiency has many facets such as execution time,
defect detection rate, etc., which may be taken into consid-
eration in general. In our case, we investigate the “cost” of
achieving the base coverage metric values in terms of test
case and procedure numbers. Since the same results can be
achieved using various number of test cases, the same level
of coverage/partitioning achieved by less test cases means that
tests are more efficient on average in terms of code coverage.

The second section in Table II shows the values of coverage
and coverage efficiency (higher values are better). Although
the absolute coverage values of groups are similar, this ratio
shows remarkable differences. For example, in canvas or
http there are 0.17 covered procedures for a test on average;
compared to html5lib or svg, where one test adds more
than one covered procedure on average. The PART metric is
shown together with the EFFPART metric in the third section.
The values can be examined similarly to coverage efficiency.

In a few cases high values of TPP need attention (http,
canvas). The added value of individual test cases in these
groups is smaller than in others. Test reduction is not necessar-
ily required, but newly added tests could be more concentrated.
On the other hand, these groups contain fewer test cases than
the average. The two other efficiency values follow similar
trends. The highest efficiency values are reached by the svg
group, but its coverage is not as good as that of the editing
and tables groups, which are well balanced: they reached
coverage above the average, still their efficiency is good.

B. Uniqueness

While efficiency considers a standalone property of the test
group, now the relation to other test groups is considered.
We investigate to what extent tests cover procedures that are
not covered by test cases of other functional units. The last



section in Table II presents uniqueness information. In order
to interpret these results, also consider Figure 1, which shows
the number of all test cases in each group, divided into special
and not special parts (proportionally according to SPEC). In
this regard, several test groups (editing, tables) could be
improved. The test group of canvas has the best value with
special test ratio of 0.77. It is followed by the http and the
js groups, which latter contributes with the largest amount of
special tests, and its SPEC value is still among the highest.

0

1 000

2 000

3 000

4 000

5 000

6 000

7 000

8 000

9 000

canvas css dom editing html5lib http js svg tables

Special and not special part of all tests in each group

Special tests Not special tests

Fig. 1. Special and not special part of all tests in each group

The last column of the table reports UNIQ values. These
values show what portion of the coverage metric is obtained
uniquely by own test cases of groups. Figure 2 shows a bar-
chart of the coverage metric, where the bars are divided into
uniquely covered and commonly covered (i.e. also covered
by other test groups) parts according to metric values of this
last column. There are groups like http, svg and canvas,
where UNIQ part represents a remarkable amount in the
overall coverage of the test group. Not surprisingly, core
groups (css, dom, html5lib, js) behave much worse, the
majority of their coverage is not special, it is covered also by
other groups as well. Except for integration tests, a common
aim in improving test quality would be to increase the unique
part of test groups. Developers also have to be careful in test
case selection when uniqueness is high, because the chance to
leave out a test that uniquely covers procedures is higher.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

canvas css dom editing html5lib http js svg tables

COV metric uniqueness distribution

Unique COV Common COV

Fig. 2. Unique and common part of the COV metric for each group

C. Enhancement opportunities in WebKit

We summarize our observations in Table III, where each
functional unit and the associated test group of the WebKit test
suite is evaluated and a recommendation is provided. Note, that
evaluation is based on the results of this paper extended with

observations from [7] (which includes coverage and partition
heat-maps). A general recommendation for the WebKit test
suite could be that the coverage of all code groups could be
improved as they are around the overall coverage rate of 53%.
This should be done by adding more unique and specific test
cases to the individual test groups. Another general comment
is that component level testing (unit testing) is usually more
effective than system level testing (as is the case with WebKit)
when higher code coverage is aimed. For example, error
handling code is very hard to be exercised during system
level testing, while at component level such code can be
more easily tested. Thus, in a long term, introducing a unit
testing framework and adding real component tests would be
beneficial to attain higher coverage.

IV. RELATED WORK

The main approach to assess the adequacy of testing has
long been the fault detection capability of test processes [9].
Code coverage is a traditional base for white-box test design
techniques due to the presumed relationship to defect detection
capability, however this correlation is not always present or is
at least not evident [10], [11]. We use the functional units as
a priori information, and code coverage to gain more in-depth
knowledge about the test suite and its relation to the system.

The area of test suite metrics is much less developed
than general measurement for software quality. Athanasiou et.
al. [5] gave an overview on the state of the art. They concluded
that although some aspects of test quality had been addressed,
basically it remained an open challenge. Researchers started
to move towards test oriented metrics only recently, which
strengthens our motives to work towards a more systematic
evaluation method for testing. Gomez et. al. found that only
a small fraction of metrics is directed towards testing [12].
Chernak [13] proposes that objective measures should be
defined and built into the testing process to improve the overall
quality of testing, but the employed measures in this work are
also defect-based ones, as opposed to our paper.

V. CONCLUSIONS

Large and complex systems tend to grow large regression
test suites as well. These test suites have to be effective in
finding as many defects as possible, and efficient in terms
of minimal redundancy to be useful on long term. In this
paper we provided insights about the WebKit system and its
test suite from this respect using our code coverage-based test
suite assessment method. Over previous results, we added new
dimensions to simple coverage-based analysis by computing
efficiency and uniqueness metrics trends of code and test
groups. The outcome of the metrics based analysis is a set of
observations and a list of enhancement opportunities for the
large scale WebKit test suite, which demonstrates the method’s
usefulness in the validation process of real life software tests.

Important future work will be to empirically evaluate our
findings, and we also plan to investigate the possibilities of an
automatic recommendation system that can at least partially
automate the process of test suite assessment.



TABLE III
METRICS BASED EVALUATION OF WEBKIT TEST GROUPS

Group Description Evaluation

http The http code base is responsible for testing the http protocol, the commu-
nication between the browser and the servers – assemble requests, send data,
etc. Most functionalities are covered by the http test group, while other test
groups usually use basic communication and small number of requests.

These groups have the highest UNIQ values, meaning that
other test groups are not really exercising these code groups,
while these test groups cover other code groups. Thus, if the
test groups are to be modified, these should be preferred over
the other groups. The http and canvas groups have the
two highest TPP and lowest EFFCOV metric values, which is
balanced by the two best SPEC properties. The number of
test cases in these groups could probably be reduced without
losing coverage, but only with taking care of special tests.
The svg group has the highest EFFCOV and EFFPART values,
however, its COV could be improved by new test cases.

svg Svg is a special format that allows the description of graphics using xml-like
format. It can be embedded within a html document (similar to the canvas) or
used as a separate document. The specific svg test group covers its code.

canvas Canvas is a special html element, an area where figures can be drawn (usually
by some scripts). The canvas test group covers the canvas code group, while
other tests do not really aim canvas.

editing This code group is responsible for various editing features of web page content
like filling the input fields, support for text selection, copy-paste, etc. Some
content manipulation features of JavaScript are also implemented through this
codebase. As JS plays a central role in the tests, it implies that the editing
code group has similar attributes.

These are the central elements of rendering a typical webpage.
These functional units have low UNIQ values showing that
other test groups provide notable coverage to these code
groups. So the modification of these test groups is advised to
carry out after those other groups. Although js contributes
the highest number of special (SPEC) tests, its coverage value
is the lowest among these groups. Thus, there is a room for
improving it by adding unique test cases (to also improve
the UNIQ value). The editing and html5lib groups have
the highest coverage values. However, their own COV metric
value is different. While editing tests provides almost
the full coverage of its code group alone, a moderate part
of the html5lib coverage is provided by other groups.
The editing test group could probably be reduced by
investigating and removing test cases providing non-unique
coverage, while improving html5lib test group by adding
more unique tests to it is probably a harder work. css
and dom groups have similar metric values. The TPP value
is lower for the dom group which implies higher efficiency
metric values. In the case of css, the reduction of the specific
test suite could probably be done by removing test cases that
are not unique and similar to other test groups (by means
of coverage).

js WebKit tests are automated. The test inputs are specially prepared documents
that are in connection with the test environment. The process is partially
controlled from the test cases through JavaScript interfaces. As a result, all
WebKit tests utilize JavaScript and cover a notable part of the js code, and
only a small part of the procedures are uniquely covered by the js test group.

css In WebKit, all style information is handled through Cascading Style Sheets
(css). Thus, similar to the dom or html5lib, the load of any document will
imply the use of a large part of the css code base, which implies a weak
uniqueness value.

dom For all documents, dom-trees are built in WebKit: whenever a page is loaded,
a series of dom elements are created in order to allow dynamic content
manipulation. As a consequence, all test groups cover the dom code group.

html5-
lib

The html5lib group code contains those classes in WebKit that will represent
the different parts of the html documents. The content of the html documents
are stored using these classes. As most of the WebKit test cases are html
documents, most test groups cover this code group.

tables The tables code group is an outlier in the sense that this code group is
heavily covered by all of the test groups. The reason for this is that it is hard
to separate this group from the code implementing the so-called box model
in WebKit, and the box model is used not only in the tables but it is a base
of the rendering engine. Thus, almost anything that tests web pages will use
the implementation of the box model, which is mostly included in the table
code group.

tables maintains good COV and PART metrics, its coverage
is the highest one while its SPEC and UNIQ values are the
lowest. Highly covered by other test groups, tables should
be the last one to be optimized among the test groups. The
number of test cases in this group could probably be reduced
due to the high coverage by other modules, however, more
specific tests could be used to improve coverage.

REFERENCES

[1] A. Bertolino, “Software testing research: Achievements, challenges,
dreams,” in 2007 Future of Software Engineering. IEEE Computer
Society, 2007, pp. 85–103.

[2] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: a survey,” Software Testing, Verification and Reliability,
vol. 22, no. 2, pp. 67–120, 2012.

[3] K. Beck, Ed., Test Driven Development: By Example. Addison-Wesley
Professional, 2002.

[4] L. S. Pinto, S. Sinha, and A. Orso, “Understanding myths and realities
of test-suite evolution,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering.
ACM, 2012, pp. 33:1–33:11.

[5] D. Athanasiou, A. Nugroho, J. Visser, and A. Zaidman, “Test code
quality and its relation to issue handling performance,” Software Engi-
neering, IEEE Transactions, vol. 40, no. 11, pp. 1100–1125, Nov 2014.

[6] D. Tengeri, Á. Beszédes, T. Gergely, L. Vidács, D. Havas, and T. Gy-
imóthy, “Beyond code coverage - an approach for test suite assessment
and improvement,” in Proceedings of 2015 IEEE ICST Workshops
(ICSTW), 10th Testing: Academic and Industrial Conference - Practice
and Research Techniques (TAIC PART), Apr. 2015, pp. 1–7.

[7] F. Horváth, B. Vancsics, L. Vidács, Á. Beszédes, D. Tengeri, T. Gergely,

and T. Gyimóthy, “Test suite evaluation using code coverage based
metrics,” in Proceedings of the 14th Symposium on Programming
Languages and Software Tools (SPLST’15), Oct. 2015, pp. 46–60.

[8] D. Tengeri, Á. Beszédes, D. Havas, and T. Gyimóthy, “Toolset and
program repository for code coverage-based test suite analysis and
manipulation,” in Proc. of the IEEE Intl Working Conference on Source
Code Analysis and Manipulation (SCAM’14), Sep. 2014, pp. 47–52.

[9] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage
and adequacy,” ACM Comput. Surv., vol. 29, no. 4, pp. 366–427, Dec.
1997.

[10] A. S. Namin and J. H. Andrews, “The influence of size and coverage on
test suite effectiveness,” in Proceedings of the Eighteenth International
Symposium on Software Testing and Analysis. ACM, 2009, pp. 57–68.

[11] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated
with test suite effectiveness,” in Proceedings of the 36th International
Conference on Software Engineering. ACM, 2014, pp. 435–445.

[12] O. Gómez, H. Oktaba, M. Piattini, and F. García, “A systematic review
measurement in software engineering: State-of-the-art in measures,” in
Software and Data Technologies, ser. Communications in Computer and
Information Science. Springer, 2008, vol. 10, pp. 165–176.

[13] Y. Chernak, “Validating and improving test-case effectiveness,” IEEE
Softw., vol. 18, no. 1, pp. 81–86, Jan. 2001.


