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Abstract

Many of the existing techniques for impact set computa-
tion in change propagation and regression testing are ap-
proximate for the sake of efficiency. A way to improve pre-
cision is to apply dynamic analyses instead of static ones.
The state-of-the-art dynamic impact analysis method is sim-
ple and efficient, but overly conservative and hence impre-
cise. In this paper we introduce the measure of Dynamic
Function Coupling (DFC) between two functions or meth-
ods, which we use to define a more precise way of computing
impact sets on function level with a scalable rate of recall.
The intuition behind our approach is that the ‘closer’ the
execution of a function is to the execution of another func-
tion in some of the runs of the program, the more likely they
are really dependent on each other. So, impact sets may be
computed based on this kind of coupling. We provide exper-
imental data to support the validity of the concept, which
essentially show that the impact set of a function consist-
ing of only strongly DFC-coupled functions has twice the
precision compared to the conservative method.
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1 Introduction

Impact analysis [6] is a very important software engi-
neering activity, especially in software processes with a
high degree of incrementality, change propagation [15] and
regression testing [17] being two of its main application
fields. Different approaches exist for impact set computa-
tion, which is the main purpose of impact analysis. Both
static and dynamic methods are being investigated, how-
ever, recently the focus of several researchers has been
shifted towards the latter due to the overly conservative
(hence imprecise) nature of traditional static approaches.

The current state-of-the-art method for producing dy-
namic impact sets on function level is based on the so-called
Execute After sequences computed from execution traces
with function entry and exit events [2]. Apiwattanapong et
al. use a very simple approach that essentially states the fol-
lowing: based on a set of executions, a specific function f
will potentially have an impact on all those methods that are
executed sometime after it in any of the executions, mean-
ing that any function g executed after f will become part
of f ’s impact set. Note, that this is very simple to compute
since one only has to look at the first occurrence of f in
the trace and consider all other functions located after this
position in the trace. This approach is safe—meaning that
no dependence is missed—, but very imprecise too (in the
following we will refer to this method as the conservative
method). In fact, based purely on the sequence of func-
tion calls and returns, it seems to be impossible to provide
a more precise, yet still safe method.

In this paper, we further develop the notion of Execute
After sequences by tackling two problems with it. First,
for change propagation, we advocate that both directions of
potential dependencies need to be taken into account (the
impacting and the impacted program elements) and incor-
porated into the impact set [15]. However, for regression
testing the forward computation impact is sufficient, mean-
ing that the modification program point and the impacted el-
ements need to be considered for determining the test cases
for retesting (will use the computation impact terminology
here). Our second enhancement is that we give a method
for computing more precise impact sets with the trade-off of
loosing the safety of the approach. The basic idea for refin-
ing Execute After relations between the functions is based
on the intuition that the ‘closer’ the execution of a function
f is to the execution of function g in some of the runs of the
program, the more likely they are dependent on each other.

But, what a ‘close’ execution should mean? Simply lim-
iting the impact set of f to a simple surrounding with ra-
dius of some fixed value d of each of f ’s occurrences in the
traces is invalid because of other possible intervening func-



tion calls made by f . Defining the impact sets based on the
dynamic call graph such that the impact set of function f
contains the reachable functions g (in both directions) up to
a fixed distance d, is a much better approximation (we call
this a call-indirection relation between functions). How-
ever, many further dependencies may be missed using this
approach. Namely, if a function f is called by a function h
and later g is called as well by h, g may be dependent on
f if f sets a data that g reads (we will refer to this kind of
dependency as the sequence-indirection).

Thus, our approach is the following. We define the mea-
sure of Dynamic Function Coupling (DFC) between two
functions as the minimal level of indirection between all
possible occurrences of the two functions in the traces (the
different executions of the program contribute jointly to
this measure, so representative test cases induce more ac-
curate DFC values). Informally, the level of indirection is
the ‘closeness’ of the two functions taking into account the
number of other intervening functions at places where call-
or sequence-indirection takes place.

Once we have the DFC metric for every pair of functions,
we may compute the impact set of a function f by taking
those functions that have a DFC of at most some fixed cut-
off value d. Based on this heuristic, in this paper we give a
method for computing the impact sets using a fixed cut-off
value, and promote the use of such sets for mentioned activ-
ities instead of (1) the imprecise Execute After relations, (2)
the precise but expensive dynamic slices, and (3) imprecise
and/or unsafe static dependency sets.

The indirection level d serves as a parameter to our im-
pact set computing algorithm, which opens the possibility
to balance between precision and recall. For example, as
a special case the algorithm is able to compute the original
Execute After relation with an infinite d (safe but impre-
cise), and on the other end, only directly coupled functions
can be retrieved as well (precise and small but unsafe).

We investigate the validity of the approach and assess
its efficiency in terms of (1) precision/recall measurement
with respect to precisely computed dynamic dependencies
among functions, and in terms of (2) the amount of reduc-
tion in the impact set sizes compared to the conservative
method. For this validation we rely on fine-grained dynamic
control and data dependencies computed globally for many
slicing criteria [4] using our dynamic slicing tool for Java
[19]. So we consider that there is an actual coupling be-
tween the functions if there is at least one fine-grained dy-
namic dependency between them.

We define the following research questions to be experi-
mentally answered in this article.

RQ1 Is it true that a small DFC value between two func-
tions (close indirection) indicates a more probable ac-
tual coupling between them?

RQ2 To what extent do call-indirections alone and to-
gether with the sequence-indirections reflect actual
coupling?

RQ3 What is the threshold value of parameter d that pro-
duces good recall with respect to the fine-grained dy-
namic dependencies, and what is the precision of the
method with that parameter?

RQ4 If the application of the method requires smaller sets
and better precision, what d values would produce
such sets, and what is the recall in that case?

RQ5 How much gain can we achieve using this method
compared to the conservative approach in terms of the
size of the impact sets?

In the next section we overview related work. In Section
3 we define the DFC measure and the method for comput-
ing it and the impact sets themselves. Section 4 deals with
the ways this method can be applied to different tasks in
software evolution. In Section 5 we describe our experi-
ments with test programs and discuss the results. In Section
6 a discussion of our findings with answers to the research
questions is given, while the final section is dedicated to the
conclusions and future work.

2 Related work

Many common methods for change impact analysis are
static, e. g. [15, 16]. In their work, Rajlich and Gosavi de-
fine a lifecycle model that heavily utilizes static change im-
pact analysis, while Buckner et al. provide an experimental
tool supporting this paradigm [10].

Our algorithm for computing dynamic impact sets on
function level is motivated by and is the generalization of
the work of Apiwattanapong et al. [2]. The function-level
dynamic impact analysis technique by Orso et al. [14] com-
bines approximate static forward slices with coverage in-
formation to obtain the dynamic impact sets. The dynamic
computation part is simple and efficient, however it misses
information about the ordering of function calls. The static
analysis part of the algorithm may be expensive for large
programs, furthermore it is imprecise too, since it essen-
tially employs a flow-graph reachability approach. Law
and Rothermel presented another function-level dynamic
impact algorithm [12], which is based on trace traversal.
Although it is more precise, it incurs much higher overhead
in time and space due to being dependent on the size of the
trace (the authors provide, though, a way to compress the
traces efficiently).

Our work partially covers the method by Breech et al.
for dynamic impact analysis [7]. The authors present an on-
line algorithm for computing dynamic impact sets based on



dynamic call graphs, which directly corresponds to the re-
duced version of our algorithm involving only forward and
backward call-indirections (EAcall , EAret ).

A very common application of impact analysis is in re-
gression testing, more specifically as a means for selective
retesting (Rothermel and Harrold give an excellent compar-
ative overview of regression test selection techniques [17]).
Most of the existing methods in this field are based on static
program analysis [6]. For example, Rothermel and Harrold
use control flow graphs for safe test selection under cer-
tain conditions [18]. Other notable static approaches are by
Binkley [5] and Gupta et al. [11]. A certain class of practi-
cally usable methods are less precise but very efficient, such
as the application of testing firewalls [20, 21].

Agrawal et al. use different dynamic analysis techniques
combined with static analyses and give several incremental
algorithms for regression testing, including the application
of relevant slices for this purpose [1]. These and similar
dynamic analysis-based approaches suffer from the inher-
ent problem of very expensive computation due to the large
amount of dynamic data to be processed. More lightweight
methods can produce less precise results, however they can
be applied in real life scenarios. For example, Orso et
al. present the way of applying their function-level impact
analysis method for regression testing of real applications
and field data [14].

Different kinds of static coupling metrics have been pro-
posed in the literature [8] (their usefulness specifically for
impact analysis has been verified by Briand et al. [9]). Dy-
namic program metrics is a much less elaborated research
field. Arisholm et al. evaluated a number of dynamic cou-
pling metrics in object oriented software and found that
some of them complement static coupling measures [3].
Mitchell and Power investigated different dynamic cou-
pling between objects metrics [13]. The authors measured
the correlation between static and dynamic measures, and
found that they are quite independent from each other, sug-
gesting that static metrics alone are not so good predictors
of runtime behavior of objects, only combined with cover-
age information.

3 Dynamic Function Coupling

Apiwattanapong et al. [2] defined the EA (Execute Af-
ter) relation between two methods f and g, given a program
and an execution of it, in the following way (in order to
be consistent with our notation we transposed the relations,
and we also omitted the incorporation of more than one ex-
ecution). (f, g) ∈ EA iff f calls g (directly or transitively),
or f returns into g (directly or transitively), or f returns
into a method h (directly or transitively), and method h later
calls g (directly or transitively).

We will follow this threefold categorization of the rela-

tion between executed functions as it covers all possibili-
ties of their sequential execution (and possible interaction
thereof), and provide some refinements to it as described in
the following.

We rely on function entry and function exit events in the
trace. To simplify the formal definitions below, we will use
the concept of dynamic call trees, which can be constructed
based on these events very easily using a traditional call-
stack approach. Note however, that actually building this
representation is not required by the implementation of our
method, it is used for demonstration purposes only. For a
program P and its execution with the trace T we define
the dynamic call tree1 as a rooted tree G with the ordering
of the neighbors at each vertex. The vertices of G repre-
sent the instances of functions in T , while the root is the
main function of the program (the first function executed).
The children of a vertex v represent the functions v directly
called at that point taking into consideration the order of the
invocations. We will also use the term f -to-g call chain in
G, which is a path from vertex v to vertex u, these being
instances of functions f and g, respectively, for which the
following holds: the path from the root to v is the prefix of
the path from the root to u.

Following the intuition outlined above, let us extend the
definition of Execute After with the measure of indirection
level d. We give the definition by the separation of the three
cases when two functions can be executed after each other,
and define the following relations:

(f, g) ∈ EA(d)
call

def⇐⇒ ∃ f -to-g call chain of length d,

(f, g) ∈ EA(d)
ret

def⇐⇒ ∃ g-to-f call chain of length d,

(f, g) ∈ EA(d)
seq

def⇐⇒ ∃ function h with:

h-to-f call chain of length dr and

h-to-g call chain of length dc,

having a common instance vertex for h,

where f is called first, and

d = dr + dc − 1.

Based on these, EA(d) will be the combined Execute Af-
ter relation, which permits the maximal (cut-off) indirection
level of d, formally defined as follows:

(f, g) ∈ EA(d) def⇐⇒
∃ d′ ≤ d : (f, g) ∈ EA(d′)

call ∪ EA(d′)
ret ∪ EA(d′)

seq .

Following our view on the symmetry of the coupling of

1In this paper we concentrate on the analysis of single threaded pro-
grams and executions with “regular” function-entry and -exit sequences,
having the following properties: every function call induces a pair of entry-
exit events, and these events follow a clean recursive structure.



two functions based on their interaction, we define the Ex-
ecute Before relation (EB (d)) very simply by reversing the
roles of the two functions, for any d:

(f, g) ∈ EB (d) def⇐⇒ (g, f) ∈ EA(d),

and by combining these two relations we define the Execute
Round relation as well, as follows:

∀d : ER(d) = EB (d) ∪ EA(d).

Observe, that as special cases of our definitions, EA(∞) cor-
responds to Apiwattanapong et al.’s definition of the Exe-
cute After relation, while ER(∞) gives the complete graph
with the covered functions. It is also easy to verify that the
Execute Round relation will be symmetric, while the other
two are not. Also note, that for computing ER only one
of EAcall or EAret are needed since they are defined to be
symmetric just like ER, however for the sake of complete-
ness we use the definitions above.

Naturally, if a cut-off level d is sufficient for a pair of
functions to be connected by Execute Round, all higher lev-
els will be appropriate too. So, it is interesting to see what is
the lowest of such levels for a pair of functions, and eventu-
ally, this will become the Dynamic Function Coupling mea-
sure that we informally defined earlier. Thus:

DFC (f, g)

=
{

min{d | (f, g) ∈ ER(d)} if such d exists,
∞ otherwise.

Observe that DFC (f, g) = DFC (g, f) and DFC (f, f) =
0 will be true for any two functions f and g.2

The definitions above are given for one specific execu-
tion of a program, however they can be easily extended to
multiple executions and thus providing the combined data
for a complete set of test cases, where such is required like
in regression testing. Namely, the EA, EB and ER relations
for a set of executions can be obtained by computing the re-
spective unions of the individual relations, while the DFC
metric for any two functions will be the minimal such value
from all of the executions. For the sake of simplicity, in
the rest of the paper we will assume that the computed data
are obtained from a fixed set of test cases, however more
investigation is needed on the sensitivity of the approach to
different attributes of the test cases.

Based on the above, we formally give our way of com-
puting dynamic impact sets. For a program, a set of test
cases and a fixed indirection cut-off value d, the dynamic
impact set of a set of changed functions C is the following:

ImpactSet (d)(C) = {g | ∃f ∈ C : (f, g) ∈ ER(d)},

2Here we do not follow the traditional convention that a larger value
means stronger coupling.

and similarly, the computation impact set is the following:

CImpactSet (d)(C) = {g | ∃f ∈ C : (f, g) ∈ EA(d)}.

3.1 Example

Let T = 〈fe, ge, he, hr, ke, ge, gr, kr, le, lr, gr, ke,
ge, gr, fe, fr, kr, fr〉 be a trace (e: entry, r: return), which
produces the dynamic call tree shown in Figure 1.
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Figure 1. A dynamic call tree. The numbers on the
edges correspond to the order of invocations.

The left-hand side part of the table that follows shows
the minimal call-indirection level for each function pair
(minimal d for which (row , column) ∈ EA(d)

call ), while the
sequence-indirection levels are on the right-hand side:

d f g h k l f g h k l

f 0 1 2 1 2 ∞ ∞ ∞ ∞ ∞
g ∞ 0 1 1 1 1 2 ∞ 1 2

h ∞ ∞ 0 ∞ ∞ 3 2 ∞ 1 1

k 1 1 ∞ 0 ∞ 3 1 ∞ 2 1

l ∞ ∞ ∞ ∞ 0 3 3 ∞ 2 ∞
By transposing both matrices and selecting the minimal

value from the four matrices in each cell, we get the DFC
measures shown below:

DFC f g h k l

f 0 1 2 1 2

g 1 0 1 1 1

h 2 1 0 1 1

k 1 1 1 0 1

l 2 1 1 1 0

In the following we give algorithms for computing Exe-
cute Round relations, however they can be easily modified
to compute only Execute After relations.

3.2 Global algorithm for DFC

In this subsection we give the algorithm we used in our
experiments. It computes globally the DFC metric for each
function pair, and although it can be used to determine the
ER relations and the impact sets, it is not practical due to
its linear or quadratic complexity. A practical on-demand



algorithm for a fixed d value is presented in the next sub-
section.

The algorithm works on a trace (denoted by T ) of length
t, which is essentially a stream containing function entry
and exit events. The maximal depth of the dynamic call tree
corresponding to the trace will be denoted by m, while the
number of functions covered will be n.

The algorithm shown in Figure 2 is a recursive one. For
an actual subtree of the dynamic call tree rooted at function
h it works as follows. For all subtrees of h it first com-
putes minimal h-to-f call chain lengths recursively (line 8),
and then the sequence-indirection levels while h being the
“root” between any two f and g functions (lines 9–13). It
then updates call-indirection levels with h (lines 16–19) and
returns with updated call chain length information.

program ComputeDFC(T )
input: T : trace

output: D[f, g] : DFC between all functions f and g

begin
1 init all elements in D with ∞
2 E := Read T
3 ComputeDistances(E .function)
4 Output D
end
procedure ComputeDistances(function h)

local: P [f ] : array of previous values
N [f ] : array of next values

begin

5 init all elements in P with ∞
6 E := Read T
7 while E is an ENTRY event
8 N := ComputeDistances(E .function)
9 forall f functions
10 forall g functions
11 D[f, g] := min(D[f, g], P [f ] + N [g] − 1)
12 D[g, f ] := D[f, g]
13 P := min(P, N )
14 E := Read T
15 P [h] := 0
16 forall f functions
17 D[h, f ] := min(D[h, f ], P [f ])
18 D[f, h] := D[h, f ]
19 P [f ] := P [f ] + 1
20 return P
end

Figure 2. Global DFC algorithm

Per trace element, this algorithm requires O(n2) time,
while its memory requirement is O(n · m) not counting the
DFC matrix itself.

We feel important to note that it is possible to construct a
non-recursive algorithm for computing DFC values globally
that has O(n) time complexity per event. However, since it
is more complicated to explain and due to space constraints
we will not present this algorithm here.

3.3 On-demand algorithm for ER

The algorithm presented in the previous section is global
meaning that it computes the relation between all function
pairs. Based on it, it is trivial to determine the impact set of
a set of changed functions. However, this is not so efficient
in practice since we are generally interested in the impact of
only a small number of functions.

In Figure 3 we present the algorithm that computes the
set of impacted functions for a given changed function set
using the ER relation with an indirection level d. Process-
ing the trace, the algorithm maintains n + 2 stacks. The
tops of CALL and RET show the indirection levels from
the last changed function according to EAcall and EAret ,
respectively, while the top of SEQ [g] shows the indirection
from g, which corresponds to EAseq .

On an entry event, new values are pushed onto the stacks
depending on whether the entered function is a changed one
or not (lines 6–8). The resulting impact set is also updated
according to the stack tops (lines 12–20). On return events
the stacks are updated by popping them, and the new tops
of RET and SEQ sets are updated using the popped value
based on whether the returned function is a changed one or
not (lines 23–28).

The time requirement of this algorithm is O(n) per trace
element, if appropriate data structures are used. The mem-
ory requirement is O(n · m).

Since our method for computing impact sets is often
most successfully applied with a small indirection level d,
it is useful to investigate another more specialized versions
of it for fixed d values. Due to space constraints, we will
not present the specialized algorithms, but we will note
that because of some possibilities for simplifications in the
data structures used (for example, SEQ does not need to
be a vector), significantly better complexity requirements
can be achieved. Namely, the algorithm with d = 1 has
O(m · log(n)) time- and O(n · m) space cost in the worst
case, and the average requirements are even better.

However, in some cases even this complexity could be
unacceptable. Then, a reduced version of the method in-
corporating only call-indirections can be used. We do not
present this algorithm here, we just note that it can be imple-
mented in O(1) time with respect to each step of the trace.

4 Applications

Since the DFC metric is computed from a set of test
cases, it represents the actual coupling level between func-



program ComputeER(T, C, d)
input: T : trace

C : set of changed functions
d : cut-off indirection level

output: IMP : change impact set of C

data: CALL,RET : stacks of values
SEQ [] : vector of stacks with values

begin

1 IMP := C
2 init all stacks by pushing ∞ in them
3 while T is not empty
4 E := Read T
5 f := E .function
6 if E is an ENTRY event then
7 if f ∈ C then push(0,CALL))
8 else push(top(CALL) + 1,CALL))
9 push(RET , ∞)
10 forall g functions
11 push(SEQ[g], top(SEQ [g]) + 1)
12 if top(CALL) < d then
13 insert f into IMP
14 forall g ∈ C functions
15 if top(SEQ[g]) < d then
16 insert f into IMP
17 if f ∈ C then
18 forall g �∈ IMP functions
19 if top(SEQ[g]) < d then
20 insert g into IMP
21 else
22 pop(CALL)
23 u := min(pop(RET ) + 1,pop(RET))
24 if f ∈ C then push(RET , 1)
25 else push(RET, u)
26 forall g functions
27 if f ∈ C then push(SEQ[g], 0)
28 else push(SEQ [g], u)
29 if top(RET ) < d then
30 insert f into IMP
end

Figure 3. ER algorithm

tions with respect to that test suite. If the test suite repre-
sents the relevant use cases of the system, it actually may
serve as a replacement to related static metrics [9]. Indeed,
according to some studies, dynamic coupling metrics are
better predictors of runtime behavior of objects than their
static counterparts [13]. Thus, practically any application
where coupling metrics are useful, DFC may be applied too.
It could also be extended to class level using a suitable com-
bination of all methods’ DFC values of a class.

However, the most promising application fields of this

metric are change impact analysis, regression testing and
debugging. The possibility for parameterizing the compu-
tation algorithm with the cut-off value d enables its flexi-
ble application in these fields, namely, using infinite d for
safe but imprecise sets, and smaller d values for smaller and
more precise returned sets with accordingly worse recall.

For illustration, in this section we will outline a possible
usage scenario in the mentioned fields. The benefit of us-
ing our method instead of previous ones will be elaborated
based on the experimental results in the next section.

4.1 Change impact analysis

In change impact analysis [15], when a change is made
to a part of the system, the other parts of the system that
need to be investigated in order to propagate the change
may be computed using ImpactSet(d) with a fixed d. A us-
able scenario could be the following: the initial impact sets
are computed for all functions during a regular all-inclusive
testing process (this can be done in parallel using our algo-
rithm). This database is then used in subsequent activities
when incremental changes are made to the system. After a
change however, it will not necessarily reflect the actual im-
pact sets anymore, so the database needs to be maintained.
It may be used for a certain period of time as it is, if a change
propagation method can tolerate a certain level of inconsis-
tency, and after this period the database is completely re-
generated. Alternatively, the entries in the database could
be regularly updated corresponding to the changed func-
tions, by extending the impact sets with the newly appear-
ing dependencies (these can be computed by rerunning the
affected tests, which is probably done anyway due to retest-
ing after the change). However, the impact sets cannot be
reduced with this method, so the corresponding parts of the
database would need to be regenerated from time to time
based on last modification times.

Some change propagation methods rely on high recall, in
which case we can use a large d value (according to our ex-
periments the smallest values where it reached 100% were
around 8–15). On the other hand, other approaches ben-
efit from better precision, in which case a close coupling
(d = 1) should be chosen.

4.2 Regression testing

As far as regression testing is concerned, CImpactSet (d)

can be used, again with a fixed d. With this kind of compu-
tation of impact sets, generally all traditional modification-
based test selection strategies may be used. Namely, we
may obtain a database of impact sets similarly to as out-
lined for change impact analysis above, and the test cases
that need to be retested may be selected using these im-
pact sets. Also, the same possibilities may used here for the
maintenance of the database.



Regression testing may also benefit from the possibility
to parameterize the algorithms with the d value. For exam-
ple, testing firewalls are typically defined to involve only
the closest dependents, in which case our impact sets with
d = 1 can be a good alternative. Other regression testing ap-
proaches require the impact sets to be safer, in which case
larger cut-offs may be chosen.

4.3 Debugging

Program debugging can also benefit from the coupling
relation introduced in this article. Consider a scenario
where a faulty value is observed at a specific program point,
which is then marked with a breakpoint. It is obvious that
debugging the program step-by-step starting at the begin-
ning of the execution is not the optimal strategy. Inserting
additional breakpoints in the code could help a lot, but the
question is where to put them. For this problem a heuris-
tic can be used in which, using the EB (d) relation, we can
determine the set of functions that may have probable ef-
fect on the erroneous value, and put breakpoints at the exit
points of these functions. The return values of these func-
tions can then be checked, whose incorrectness may indi-
cate a bug’s occurrence. Varying the d value gives us the
flexibility so that if a small value does not uncover the place
of the bug, we still can use a higher value until the bug has
been found. This method will probably produce more us-
able breakpoints and will help finding the bug faster than
random breakpoint selection.

5 Experiments

In this section we experimentally evaluate the DFC met-
ric and the impact sets computed based on it in terms of the
sets’ size and quality. The set sizes are important since they
indicate the amount of reduction that can be achieved com-
pared to the conservative method. The quality of the sets, on
the other hand, is assessed through measuring the precision
and recall rates with respect to precisely computed dynamic
dependencies among functions.

5.1 Experimental tool setup

We performed our experiments on three medium size
open source Java programs and a set of test cases for each
of them. The programs were JSubtitles (15 classes, 460
lines), NanoXML (27 classes, 1156 lines) and java2html
(55 classes, 2290 lines) with 95–100 test cases each.

For computing precision and recall, we applied fine-
grained, instruction level dynamic dependencies computed
with our Java dynamic slicer called Jadys [19]. This tool is
able to compute dynamic slices on the lowest level of granu-
larity and for all possible criteria globally. The so produced
dynamic slices were lifted to method level and used as base

information on actual couplings. To produce the relations
introduced in this paper for different d values, we applied
our global algorithm for DFC using matrices similar to the
examples in Section 3. Taking advantage of the symmetries
between the different kinds of indirection relations, only
two matrices were actually computed: EAcall and EAseq .
The matrices of other relations were then computed using
transposition and minimization.

Figure 4 shows our experimental toolchain. To com-
pute the actual couplings the measured program is first ex-
ecuted on an instrumented version of the open source vir-
tual machine JamVM, which generates an instruction level
trace. Then the Jadys tool processes this trace and com-
putes forward and backward statement-level dynamic slices.
The J4J utility then propagates instruction level information
to method level, thus producing method level forward and
backward slices, which are combined into complete slices
using the Merge tool. To compute the different DFC re-
lations, first the DCall tool with HotSpot virtual machine
is used to generate the method level trace. This trace is
processed by the JImpact tool that implements our global
DFC algorithm, generating the two basic relations. The tool
called Combine then generates 7 other relations including
the final DFC (the others are not presented in this article).
Finally, using the corresponding method level slices as ac-
tual couplings precision, recall and other values and dia-
grams are produced. Naturally, we used only forward slices
when investigating EA, and complete slices for ER rela-
tions. At the points where “UNION” appears in the picture
the combined data is produced for multiple test cases, as
outlined in Section 3.

5.2 Precision and Recall

Precision measures what part of the impact sets com-
puted by the algorithm is covered by the actual couplings.
In other words, it shows the rate of true positives in the re-
sulting impact sets, which may contain false positives as
well. On the other hand, recall measures what part of the
actual couplings are covered by the computed impact set,
namely the rate of true positives over the total amount of ac-
tual dependencies (this may include false negatives). There
is a trade-off between these two measures and our parameter
d provides the way to set the desired type of efficiency.

We measured the precision and recall of all possible
combinations of the two base matrices, but only three com-
binations turned to be useful: EAcall ∪ EAret to verify the
efficiency of this simplified version of the method with call-
indirections only, EA as the original Execute After algo-
rithm and ER for DFC itself. Although computing only
call-indirections would be useful because of small computa-
tional cost, it captures only a small part (22–28% at d = ∞)
of the dependencies.

Figure 5 shows the overall results for ER for the test pro-
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grams. The other relation types showed similar shapes of
the curves but with different values. It is interesting to con-
clude also that the three programs produced very similar re-
sults, although with different key values. It can be observed
that as d grows recall also steadily grows with a relatively
long linear phase, and at some point before ∞ (which is
different for the different programs) it reaches 100%. This
suggests that there is a threshold level of d for every pro-
gram with which our algorithm can be used with safety.

On the other hand, precision starts at a higher value and
rapidly decreases towards the precision of the original Ex-
ecute After algorithm (but remaining somewhere above it
because of EB relations), having a relatively long constant
period. Our initial assumption before performing the ex-
periments was that recall will reach a higher value before
precision starts to decline, however the opposite happened.
So we draw slightly different conclusions from the experi-
ments, as summarized in the next section.

5.3 Impact set size

Naturally, precision and recall are important, but what
really matters when it comes to applying this method is the
sizes of the impact sets produced, since this will determine
the efficiency of the software engineering task in question.
We computed the set sizes for all d levels, however since
the tendencies of their change were very similar to the recall
curves, we will present only the interesting values (d = 1, 2)
for ER in a table below. The mentioned similarity can be at-
tributed to an interesting relation between impact set sizes,
precision and recall. Namely, impact = recall

precision ·C, where
C is a constant value. Since it can be observed from the
precision curves that after a few steps of increasing d it be-
comes nearly constant, it follows that the impact set size
will grow proportionally to recall in that period, and that
it will eventually reach a certain value when recall reaches

100% (after this its precision will surely decline by moving
towards ∞). Unfortunately, the sizes of the impact sets at
100% recall are not significantly smaller than that produced
by the original conservative method.

d = 1 d = 2
set size orig. p. prec. set size orig. p. prec.

JSubtitles 14.3 23.4 48.4 34.5 23.4 35.6
NanoXML 13.5 33.4 52.1 25.5 33.4 47.2
java2html 4.2 8.7 28.5 9.9 8.7 23.2

Table 1. Impact set sizes. The set sizes are shown as
percentage values relative to the respective set sizes of the
conservative method, whose precision values are shown in
the second and fifth column. The third and the sixth column
are the respective precisions for ER.

In Table 1 the average sizes and precisions over all func-
tions’ impact sets are shown. It can be seen that with d = 1
the precision of ER is at least twice better than that of the
original Execute After method (with java2html much more),
and that it is still very good with d = 2 as well. At the same
time, the corresponding impact set sizes are much smaller,
although the recall is not very good compared to the 100%
of the original Execute After. However, this suggests that
using ER(d) relations is a much better alternative to simply
reducing the original Execute After sets by chance.

6 Discussion

Before we obtained our experimental results we had dif-
ferent expectations than what we actually realized by the
end of the work. Namely, we thought that by reaching a
good enough recall with a given d value, the precision will
not start to decline significantly. Our results show that the
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opposite happened: precision declines very fast, while re-
call steadily rises for some more indirection levels. The out-
come of this is that one should not aim at very high recall
values using this approach, since the gain in terms of impact
set size and precision is minor with respect to the safe and
simpler Execute After method. However, with small d val-
ues (1, eventually 2), the gain is notable: the average impact
set size is much smaller than the one with the safe method,
and compared to using the safe method’s impact sets that
are arbitrarily reduced to the same size, double precision
can be obtained with our method.

To summarize our findings, here are the answers to the
research questions set up at the beginning of this article:

RQ1 Yes, a small DFC value between two functions indi-
cates that there may be an actual coupling between
them with higher probability. According to our mea-
surements, all actual couplings can be identified by
the level of maximum 5–15. The recall rates we ob-
tained show that, except for very close indirection
1–2, by extending the cut-off value, higher levels
uniformly bring new dependencies in with approxi-
mately the same precision. In other words, most no-
tably DFC levels 1 or 2 indicate significantly more
actual couplings than higher levels.

RQ2 If we observe higher indirection levels, the call-
indirections alone do not represent many of the ac-
tual couplings (at the widest cut-off only about 20%
is recalled). This means that a significant part of ac-
tual couplings comes from sequence-indirections, so
the more complex algorithm incorporating all kinds
of indirections is required, and the simple only-call
algorithm is not sufficient. Still, if the constant com-
plexity of the latter is preferable over the logarithmic
complexity of the former, it may have its useful appli-
cations.

RQ3 The cut-off value of parameter d around 5–15 pro-
duces recall near 100%, having a similar precision at
this point to the safe method (20–30%). However,

this precision is reached much earlier, and remains
approximately the same.

RQ4 The impact set sizes increase in a similar rate to the
recall, namely a small d will produce small sets with
proportionally smaller recall as well. The best preci-
sion values can be obtained at levels one or two.

RQ5 In terms of the size of the impact sets, the relative
gain compared to the conservative approach is also
scalable with a characteristic similar to the recall val-
ues. Namely, the closest level 1 produces impact sets
that are on average 13–15% of the set sizes of the safe
method, while level 2 brings in about 25–35%.

7 Conclusion and future work

In this paper we propose a parameterized measure of dy-
namic function coupling (DFC), which can be used to com-
pute forward and backward impact sets on function level
based on execution traces. The method has an adjustable
precision and recall rate, which enables its use in different
application scenarios. To verify the validity of the approach
we performed a number of experiments, whose main aim
was the investigation of the quality and size of the impact
sets computed. The answers that we provide to the research
questions underline the metric’s usefulness in various fields
related to software evolution of large software systems.

However, the basic purpose of this paper was merely
to introduce the concept of the DFC metric. Accordingly,
there are many open issues that need to be addressed in the
future. The discussion of the method in this paper imposed
a constraint on the layout of function call events in the traces
and assumed single threaded programs. We feel that these
constraints do not affect the validity of the approach for
unconstrained real-life execution traces, they merely sim-
plified the description. In the current implementation we
have already tackled several problems related to these con-
straints, and we have also elaborated an extension of the
method to multi threaded programs. In the future we plan



to investigate in more detail any impacts of these issues on
the validity of the method.

In order to be applicable in real life usage scenarios,
the scalability of the method also needs to be verified. In
case studies on large software and different applications re-
lated to software evolution outlined in this article, we plan
to measure performance attributes of the different variants
of the algorithm, in addition to our current theoretical com-
plexity findings. This way we could also gain some more
insights into the method’s applicability and efficiency in
different application scenarios compared to other existing
methods. Furthermore, more investigation is needed on the
sensitivity of the approach to different attributes of the test
cases such as their coverage.

The paper dealt with only dynamic analysis, however we
feel that it would be useful to compare these methods to
static approaches as well. Finally, we started to work on
the static counterpart of Execute Round relation and DFC
metric, which will eventually provide a more complete view
on the topic.
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