Predicting Critical Problems from Execution Logs of a
Large-Scale Software System

Arpad Beszédes, Lajos Jend Fiilsp and Tibor Gyiméthy

Department of Software Engineering, University of Szeged
Arpéd tér 2., H-6720 Szeged, Hungary
(beszedes|flajos|gyimi)@inf.u-szeged.hu

Abstract. The possibility of automatically predicting runtime failures in large-
scale distributed systems such as critical slowdown is highly desirable, since this
way a significant amount of manual effort can be saved. Based on the analysis
of execution logs, a large amount of information can be gained for the purpose
of prediction. Existing approaches — which are often based on achievements in
Complex Event Processing — rarely employ intelligent analyses such as machine
learning for the prediction. Predictive Analytics on the other hand, deals with ana-
lyzing past data in order to predict future events. We have developed a framework
for our industrial partner to predict critical failures in their large-scale telecom-
munication software system. The framework is based on some existing solutions
but include novel techniques as well. In this work, we overview the methods and
present initial experimental evaluation.

Keywords

Predictive Analytics, Complex Event Processing, predicting runtime failures, machine
learning, execution log processing.

1 Introduction

Modern large-scale software systems are often distributed — composed of several sub-
systems, for example, database systems, application servers, and other domain specific
layers. Failures occurring during the operation of these systems are many times very
difficult to track down due to the complexity and size of the systems. For finding causes
of failures, most of the times the administrators or operators of the systems rely on
low level monitoring techniques such as monitoring CPU or memory load, disk usage,
application load, and so forth. Due to the huge amount of data to be processed and
produced in the execution logs, it is almost impossible to monitor such large systems
purely manually. So, usually more sophisticated (semi-)automatic analysis methods are
applied, such as those belonging to Complex Event Processing (CEP) [1]. CEP tools
abstract the low level events into a high level form which is more easier to understand.

However, even with the help of CEP tools, manual monitoring is required (often
employing a whole team of administrators), which demands high costs and constant
attention. This is because although CEP tools present easily understandable high level

events, the administrators are still responsible to interpret the events to find out whether
an alert given by the tools requires any further action. The approaches taken by CEP
tools rarely provide more intelligent data analyses that could automatically predict pos-
sible problems in the future based on past data. However, the field of predictive analyt-
ics (PA) perfectly fits to this problem area. PA deals with methods and techniques (such
as data mining, statistics, machine learning, etc.) with the aim to forecast future events
based on past data. Using PA, the effort to interpret CEP-related results could be greatly
reduced.

In this paper, we present our first experiences in applying PA to a set of CEP-related
problems in the domain of large-scale distributed telecommunication software. An in-
dustrial partner asked us to conduct research in this field and produce tailored methods
to forecast runtime problems (such as critical slowdown) in their large-scale telecom-
munication software system. We detail on our framework developed for this project,
where we reused some existing techniques, but also developed specialized analysis al-
gorithms. We experimented with different algorithms with different success rates. The
results of initial experiments are presented.

We will proceed as follows. In Section 2, we will present the prediction framework.
Afterwards, in Section 3, we will describe our experiments. In the following section,
we will discuss some works that are similar to ours. Finally, we will close our paper
with conclusions and directions for future work in Section 5.

2 Framework

The development of the prediction framework is motivated by forecasting concrete
problems occurring in large-scale telecommunication software of an industrial partner.
We could have applied existing solutions, but the input given by the industrial partner
was too special. Furthermore, introducing an existing solution, like a CEP technique
would require too much costs and resources from our industrial partner. These facts
motivated us to develop a new framework and not to use an existing one. We apply
existing components like Weka [2], but not complete solutions.

In the paper, the large-scale telecommunication software will be referred to as sub-
Jject system. After several discussions with the industrial partner two events have been
selected as the object of the prediction. The first one is the prediction of changes in
file systems, and the other one is the direct prediction of the concrete problems; both
occurred in the subject system. The latter is based on the idea, that some attribute of the
system that normally change together suddenly does not, which can be a potential pre-
dictor of a concrete problem. After all, both events can be considered as the prediction
of the problems. The only difference between them is that the prediction of changes in
file systems is an indirect method: it is based on the fact that the changes could imply
that some kind of problem is arising.

First, a brief description of the required concepts is given, and afterwards the ar-
chitecture of the prediction framework is shown. Finally, data transformation methods
will be detailed. As we will show it, these data transformation methods were the major
supporters of the prediction of the previously mentioned two events.

2.1 Definitions

In this subsection, we define some required concepts. The following machine learn-
ing [3] concepts will occur several times in the paper:

Machine learning algorithms can predict future events on present data by using
previously observed data and previously known events. In other words machine
learning algorithms try to learn a function, or try to build a model, which maps
input data (predictors) into an event.

— We worked with discrete functions where the predictions were different events, for
example, whether problems occurred or not (problem event and no problem event).
This is usually called classification.

— In the learning phase, the machine learning algorithm got the predictors and the
events as well. In this phase, the learning algorithm built a model based on the
relationships of the predictors and the events.

— In the testing phase, the machine learning algorithm got only the predictor values

and the previously determined model to predict the future event.

After the basic concepts we need to introduce another one as follows. If we have
a dataset which covers a certain time interval, and we have certain number of events
on this interval, how can we run a machine learning algorithm and how can we test
the produced model? A trivial solution would be that we split the time interval into a
learning part and a testing part. The learning part should be used during the learning
phase, while the testing part should be used in the testing phase. However, in the case
the results are really dependent on the circumstances of the experiment.

Another solution is where the whole data is split into x parts and the learning-testing
phases are run x times. In each learning-testing phase, we run the learning on the union
of x-1 parts, and we run the test on the remaining part. This techniques is known in the
literature as the fold cross validation [4], and most of the times ten-fold cross validation
is applied (x=10).

2.2 Architecture

Figure 1 represents the architecture of the prediction framework. The basic process is
the following.

Filtering. The Subject System has a logging subsystem which produces its results in
XML log files. The first step of the prediction framework is extracting the relevant in-
formation from these XML files. The XML files store fragments of log files made by
different programs and the results of scripts querying different kinds of system infor-
mation. A significant part of the information stored in the files is not relevant, so we
have developed a general method for filtering out the relevant predictors. The filtering
is completely general; filtering further predictors can be easily implemented by a plug-
in mechanism. In filtering, it is important to consider time, which means that the data
are filtered for a certain time interval (e.g. for a day, for an hour, etc.). This time factor
is also a parameter of the framework. This way, several experiments can be made to find
the best parameters.

Transformations. In the second step, certain transformations are performed on the pre-
dictors produced by filtering. The filtered but raw predictors are too simple for a ma-
chine learning algorithm. We found out that the transformation of the raw predictors
into high level predictors can improve the prediction abilities of machine learning al-
gorithms. We developed several data transformation methods and chose the best two
methods to be published. One of them is the Maximum Of Relative Increasing (MORI)
data transformation method, which can be applied for simplifying linear predictors. The
other one is the Correlation Anomalies (CA) data transformation, which can be applied
for predictor pairs. The data transformation methods will be detailed in subsection 2.3.

i’

Subject System Prediction Framework
XML log files 1T T T T T T > Filter
2

A
| raw predictors l
| Transformations ¢ ¢
|
| MORI CA
|
|
‘ high level precictors
|
|
|

prediction

[—— Machine Learning

4

Fig. 1. Architecture of the prediction framework

Machine learning In the third step, machine learning methods are applied. We ran the
machine learning algorithms by using the high level predictors produced by the data
transformation methods. Several variants of machine learning algorithms are known,
for example, decision trees [5], neural networks [6], or genetic algorithms [7]. By using
machine learning algorithms different kinds of problems can be solved, for example, re-
gression or classification problems. The prediction framework uses only classification
tasks. We applied two decision tree based algorithms from Weka [2], J4.8 (Java imple-
mentation of C4.5 [8]) and Logistic Model Tree [9]. The Logistic Model Tree algorithm
differs from a usual decision tree because its leaves represent logistic regression func-
tions instead of classification labels.

Prediction. In the current work, we just implemented the Filtering and Transformations
phases, and applied Machine Learning algorithms. Now, during the Machine Learning
phase we apply cross-fold validation techniques for testing the models (please see Sec-
tion 2.1 for definitions). The fourth step of the prediction framework will be a future
work. In the future, it will be possible to integrate the models produced by the machine
learning methods into the Subject System.

2.3 Data transformation methods

In this Section, we present the two data transformation methods we have developed
during this work. Sometimes, in the paper we refer to the whole process — filtering,
transforming and learning — with the name of the data transformation method, because
it is the key sub process of the whole prediction framework.

Maximum Of Relative Increasing — MORI. At the beginning of this work we tried to
predict problems in a special way. With the help of Subject System professionals, we
started out from the fact that the fullness of file systems can be the cause of serious
problems. Therefore, we tried to predict this event, but we faced a problem. No exam-
ple existed where a file system was full. To resolve this problem, we transformed the
data in a way that the machine learning algorithms had to learn the changes of a given
file system. The prediction of changes is another important piece of information, for
example, when the fullness of a file system is 90%, the prediction that it will increase
by more than 12% on the following day is very beneficial.

To predict the changes in file systems, we have developed the Maximum Of Relative
Increasing (MORI) method. The name of this method implies that for a given interval,
the maximum of relative increase will be greater than a bound. During this method,
machine learning produces a model which helps us predict whether there will be a
change above the bound or not for a given p time frame. For example, if p is 2 days
between Monday and Wednesday, and the bound is 12%, then the model tells us whether
or not there will be an increase above 12% in the following two days (compared to the
beginning time point, see Figure 2). The method has another parameter for refreshing
the prediction. For example, if it is set at one hour, it gives a new prediction in every
hour. MORI is general; it can be applied to any kind of load attribute of a software
system, for example, CPU load, memory load, an application load based on its requests,
etc. To sum up, MORI works in the following way in case of file systems:

1. We select the file system which we want to make predictions for, and we set the p
parameter that tells the size of the time interval (e.g. 2 days) for MORI. Moreover,
the time window can be shifted based on an other parameter, s. By this way, we
got several overlapping time windows, where MORI calculate the changes of the
selected file systems.

2. Afterwards, MORI classifies the changes of the selected file systems into two labels
(great increase (GI) and other changes (OC)) in a way that the cardinality of the
two labels is almost the same. Let’s see an example, every number represents the
change ratio for her time interval (we have 6 numbers which means applying the
shifting 6 times):

512 6 22 15 12
In the next step, MORI order the changes:
56 12 12 15 22

After that, MORI takes the central value as the minimal value for the GI labels. In
this case the minimal value for the GI labels will be 12, and there will be 4 GI and

2 OC labels. After all, most of the times that the ratio of GI and OC labels will be
convert to equal (about 50-50 percent). GI labels represents the upper 50 percent,
while OC labels represents the lower 50 percent of the different changes values
on the whole data. This way, the bound previously shown in the example (12%) is
automatically determined by MORI, which will be the minimum value of the great
increase labels. We note, that other changes implies not important, low changes in
a certain time interval. But we interested in the extreme, great increases in a certain
time interval.

greater than 12%?

Monday Wednesday

Fig. 2. MORI method

Correlation Anomalies — CA. This method uses the Pearson correlation values for ev-
ery raw predictor pair to produce high level predictors. In the first step, CA calculates
the correlation for every raw predictor pair on the whole timeframe. The correlation for
a predictor pair shows how the predictors are related to each other during the whole
timeframe. Afterwards, CA selects the top x number of predictor pairs based on their
correlation, where x is a parameter of the framework, say, 100. The selected predic-
tor pairs are marked with SPP. In the second step, CA does the followings for each
problematic event:

1.

2.

Before the problematic event, it selects a time interval based on a manually config-
urable parameter. This interval can last from 1 minute to several days.

Afterwards, it divides this time interval into two parts. The latter part will be the
dangerous (D) one, while the former part will be the not dangerous (ND) one. The
dangerous part refers to the case when the problematic event is nearing.

These parts can be further split into subparts based on another parameter of the
prediction framework. This is required because the machine learning algorithm can
only make a model effectively if the number of labels is not too few. For example,
if the scale of the split is 2, we will have 4 subparts with the following labels: ND,
ND, D, D (see Figure 3)

The last step is the key operation of CA. Namely, calculating the difference
(anomaly) for every SPP, among the original correlation on the whole timeframe,

and correlations on each ND and D subintervals. In the previous example, it means
that CA gives correlation anomalies for the ND, ND, D and D subintervals.

Problems
4 \

Start - \ End
1 Time

L v
pr., P2 P8 P4

Lo | o, o 5355

Fig. 3. CA method

In the case of CA data transformation method, the machine learning algorithm will
use the correlation anomalies, or in other words, the correlation differences as high level
predictors, while the predicted events will be the dangerous (D) and not dangerous
(ND) labels. This way, the method can predict any problematic event before it could
occur.

3 Case study

In this Section, we present our experimental results. The logging subsystem of the sub-
ject system produces a large number of predictors. Based on the experience of subject
system professionals we kept only the most relevant 33 predictors. These predictors
can be classified into different categories based on disk usage, application error and log
data, CPU usage, system load, application status, communication status between appli-
cations, database status, application server status, whether an application is running or
not and whether a user with root privileges is logged in or not, etc.

After several experiments, we achieved good prediction results in the case of two
problems occurred during the operation of the subject system. The first is the prediction
of changes in file systems, which is based on the advice of subject system profession-
als. It would be beneficial to predict the changes of file systems, especially to predict
whether a file system will be full or not in a certain time. The other predicted event
was the concrete problems that occurred in the subject system and were reported by the
customers. These problems were system halt, no system response (but the system was
running) and extremely long response time. The filtering, MORI and CA methods, and
the machine learning algorithms are run and tested on the data which were previously
collected from June 6, 2007 to January 17, 2008.

3.1 Prediction of the changes of file systems

First we applied the MORI method (see Section 2.3) to predict whether the file system
would be full in a certain time. However, it could be used in the future to predict any

similar feature, e.g., CPU or memory load. The results were produced with a 1 day p
parameter, and the prediction was repeated in every hour (parameter s equals to one
hour). In Table 1, the investigated file systems and the automatically calculated bounds
(the minimum values of GI labels) separating the GI and OC labels are shown. In the
case of fs1, the relatively low bound implies that most of the changes (about 50%) are
below this bound, so this file system changes slowly. On the other side, the fs3 file
system changes a lot as implied by the 78,2% bound.

File system|Bound
fs1 9,9%
fs2 29,2%
fs3 78,2%
fs4 25,6%

Table 1. Automatically calculated bound for the file systems

We tested MORI with ten-cross validation by trying out several machine learning
algorithms. The performance of the algorithms was measured by precision and recall,
which are defined as follows:

— Precision: ratio of correct predictions. For example, if the machine learning model
predicts 100 times label A, but only 80 are correct, the precision will be 80%.

— Recall: ratio of prediction of all correct cases. For example, if there are 100 A labels
altogether, but machine learning can predict only 85 of them, then the recall will be
85%.

The results are summarized in Table 2. In the second column of the table, a global
measurement representing the precision of great increase (GI) and other changes (OC)
labels together is shown. The precision and recall values for the GI label are shown in
the third and fourth columns.

File system|Precision |Precision (GI)|Recall (GI)
fs1 84,22% 83,90% 84,76%
fs2 88,26% 92,97% 82,87%
fs3 67,98% 63,75% 75,12%
fs4 82,99% 85,92% 79,37%

Table 2. Summarized cross-fold validation test results of MORI for predicting file system changes

The prediction was the worst in the case of fs3, which could be caused by the fact
that this file system had the largest bound (see Table 2). However, we cannot state that
the results have a strong correlation with the automatically determined bounds because
the best result is produced in the case of fs2, which has the second largest bound. To

sum up, the results are promising, but we have to make further examinations. GI labels
are much frequent in certain time intervals than in the other cases. In these intervals, the
machine learning model reached very good local results, but in the other cases, it was
not so precise. For example, in the case of f52, there were three partitions on the whole
timeframe where the GI labels were almost constantly experienced. For these cases, the
machine learning algorithm worked very well, but in the other cases when the GI labels
were experienced infrequently, it could not give the same good results.

3.2 Prediction of problematic events

We applied the CA method (see Section 2.3) to predict whether a problem event would
occur in a certain time or not. CA was run on the previously collected data of the sub-
ject system (from June 6, 2007 to January 17, 2008). During this interval, the customers
reported five problems with the subject system (August 21, 2007; September 25, 2007,
October 12, 2007; October 26, 2007; January 9, 2008). We applied CA for these prob-
lems, and used five-cross-fold validation for testing the machine learning models.

After several experiments, we managed to select the appropriate arguments for CA:
the size of the preceding interval (PI) was 8 days with two ND and two D labels. This
way, an ND and a D label represented a two day long subinterval. In the next step,
we tried out several machine learning algorithms, and finally the Logistic Model Tree
(LMT) [9] was the best. Table 3 shows the statistics based on the 5-cross-validation
results, while Figure 4 shows the concrete predictions. On the X axis, the ND and D
labels are shown for the five problems, while on the Y axis the prediction results of the
machine learning algorithm are shown: if the machine learning algorithm predicts D,
the value is represented with a column. Above the ND and D labels, the endpoint of the
two day long interval is shown. For example, in the case of the first column, it means
that the interval lasted from midnight 13th August to midnight 15th August. Based on
Figure 4, it can be said that the machine learning algorithm can forecast every problem,
but in certain cases, it makes forecast even if it is not needed (01.03).

Precision|Precision (D)|Recall (D)
85% 88,9% 80%

Table 3. Summarized cross-fold validation test results of CA for predicting problems

We investigated the machine learning models and realized that very good predictor
pairs came from the predictor groups of:

— disk usage - disk usage: it means, that certain disk drives’ correlation changes when
a problem arising.

— the application error and log data and the disk usage, which imply that the connec-
tion of certain application events with certain disk usage changes when a problem
arising.

— whether the root logged in and the disk usage. This is really surprising, but can be
happened. The simplest explanation is the following. If an administrator is logged
in, then she can listen to the disk usage and can precede the fullness of a disk. It is
also explain, why our industrial partner drawn our attention to the fullness of the
disk drives.

The success of this method depends on the applied parameters, which are currently
based on our experiments. Determining these parameters effectively is yet another prob-
lem, which could be solved by introducing a new machine learning phase in CA in
the future. However, it is questionable whether the machine learning algorithm model
forecasts problems for intervals when the problems are far away. To examine this ques-
tion, we selected the following dates: 11.18, 11.26, 12.10 and 12.18. CA was run for
these dates similarly as before (preceding 8 days with two ND and two D labels). This
means 16 predictions. In these cases, the previously produced machine learning algo-
rithm model did not forecast any problems correctly.

Predictions

= Predictions

08.15(08.17 0819 |08.21|09.19 |08.21|02.23 | 09.25|10.06 | 10.08 | 10.10 |10.12|10.20 |10.22 | 10.24 |10.26 |01.03 [01.05 |01.07 |01.09

ND | ND | D D | ND|ND| D D | ND | ND | D D | ND|ND| D D | ND | ND| D D

Problerm Problem Problem Problem Problem

Fig. 4. Predictions of problems with CA method

We experienced that the correlation anomalies method could be a good solution to
forecast the problems. To sum up, for a complete validation of this technique, we have
to make further investigations and try out other test cases.

4 Related work

In this Section we present an overview of the research area of predicting runtime prob-
lems in software systems.

Chen et al. [10] presented a similar work. They used the abnormal change of distri-
bution of certain extracted statistics about the system which is similar to our CA data
transformation method. They presented their new approach to detecting and localizing
service failures in component based systems. They tracked high dimensional data about
component interactions to detect failure dynamically and online. They divided the ob-
served data into two subspaces: signal and noise subspaces, and extracted two statistics
that reflected the data distribution in subspaces for tracking. The subspaces are updated
for every new observation, data distribution is learned. This decomposition method is

not a novel approach but they employed online distribution learning algorithms instead
of normal distribution.

Wolski presented [11] a similar method to MORI. The author focused on the dy-
namic prediction of network performance with the support of parallel application
scheduling. A prototype of Network Weather Service (NWS) was developed to forecast
future latency, bandwidth and available CPU percentage for each monitored machine.
Three kinds of forecasting methods were implemented: mean-based, median-based and
autoregressive method. NWS automatically identifies the best prediction method for the
resource.

Cohen et al. [12] were applied Tree-Augmented Bayesian Networks (TANs) to find
correlation between certain combinations of system-level metrics and threshold values
and high-level performance states in a three-tier web service. This paper showed that
TANSs are powerful enough to recognize the performance behavior of a representative
three-tier web service. It can forecast violations with stable workloads as well.

A new concept named flow intensity was introduced by Jiang et al. [13] to measure
the intensity with which the internal monitoring data reacts to the volume of user re-
quests in distributed transaction systems. They gave a new approach to automatically
model and search relationships between the flow intensities which are measured at var-
ious points of the system.

Munawar et al. [14] presented a new approach to monitoring at a minimal level in
order to determine system health and automatically adaptively increase the monitoring
level if a problem is suspected. The relationships between the monitored data were used
to determine normal operation and — in the event of anomalies — identify areas that need
more monitoring. In this paper the authors urged the need for adaptive monitoring and
describe an approach to drive this adaptation.

Kiciman et al. [15] presented Pinpoint, a methodology for automating fault detec-
tion in Internet services by observing the low-level, internal structural behaviors of the
service. It modeled the majority behavior of the system correctly and detects the anoma-
lies in these behaviors as the possible symptoms of the failures.

Ostrand et al. [16] assigned a statistical model with a predicted fault count to each
file of a new software release based on the structure of the file and its fault and change
history in previous releases. The higher the predicted fault counts, the more important
it is to test the file early and carefully.

5 Conclusion

During this work, we tried out different data filtering techniques, data transformation
methods, and several machine learning algorithms. When forecasting the changes of
the file systems and the problems, we achieved promising results, which give bases
for further work. However, there are several opportunities to continue this work. First,
the presented methods could be tried out on further data and should be integrated into
the subject system to get an online forecasting system. To improve the precision of the
predictions, the development of other data transformation methods is possible. For ex-
ample, in the case of the MORI method, it would be useful to investigate the relationship
between the changes of the file system and the reported problems. Furthermore, another

important task is to set the parameters of the data transformation methods automatically,
which can be supported by machine learning algorithms as well.

Acknowledgements. This research was supported in part by the Hungarian national
grants RET-07/2005, OTKA K-73688, TECH_08-A2/2-2008-0089 (SZOMINO08) and
by the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences.

References

o]

10.

. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Processing in

Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA (2001)

. Witten, .LH., Frank, E.: Data Mining: Practical machine learning tools and techniques. Mor-

gan Kaufmann, San Francisco (2005)

. Alpaydin, E.: Introduction to Machine Learning. MIT Press (2004)
. Picard, R.R., Cook, R.D.: Cross-validation of regression models. Journal of the American

Statistical Association 79 (1984) 575-583

. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees.

Wadsworth and Brooks, Monterey, CA (1984)

. Wasserman, P.D.: Neural computing: theory and practice. Van Nostrand Reinhold Co. New

York, NY, USA (1989)

. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press (1998)
. Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
. Niels Landwehr, M.H., Frank, E.: Logistic model trees. In: Springer ’05: Machine Learning,

Springer Netherlands (2005) 161-205

Chen, H., Jiang, G., Ungureanu, C., Yoshihira, K.: Failure detection and localization in
component based systems by online tracking. In: KDD ’05: Proceedings of the eleventh
ACM SIGKDD international conference on Knowledge discovery in data mining, New York,
NY, USA, ACM (2005) 750-755

. Wolski, R.: Forecasting network performance to support dynamic scheduling using the net-

work weather service. In: Proceedings of the 6th IEEE International Symposium on High
Performance Distributed Computing. (1997) 316-325

. Cohen, I., Goldszmidt, M., Kelly, T., Symons, J., Chase, J.S.: Correlating instrumentation

data to system states: a building block for automated diagnosis and control. In: OSDI’04:
Proceedings of the 6th conference on Symposium on Operating Systems Design & Imple-
mentation, Berkeley, CA, USA, USENIX Association (2004) 231-244

. Jiang, G., Chen, H., Yoshihira, K.: Modeling and tracking of transaction flow dynamics for

fault detection in complex systems. IEEE Transactions on Dependable and Secure Comput-
ing 3 (2006) 312-326

. Munawar, M.A., Ward, P.A.S.: Adaptive monitoring in enterprise software systems. (In: In

SysML, June 2006.)

. Kiciman, E., Fox, A.: Detecting application-level failures in component-based internet ser-

vices. Neural Networks, IEEE Transactions on Neural Networks 16 (2005) 1027-1041

. Ostrand, T.J., Weyuker, E.J., Bell, R.M.: Predicting the location and number of faults in large

software systems. IEEE Transactions on Software Engineering 31 (2005) 340-355

