
Columbus: A Reverse Engineering Approach

Árpád Beszédes, Rudolf Ferenc and Tibor Gyimóthy
University of Szeged, Department of Software Engineering

and
FrontEndART Software Ltd.

{beszedes|ferenc|gyimi}@inf.u-szeged.hu

Abstract

In this paper we present our approach to several com-
mon problems in reverse engineering that are built around
the Columbus framework. Columbus defines several funda-
mental building blocks for the use in reverse engineering
processes, and as such it can be an important player in the
studies conducted at the workshop for Empirical Studies in
Reverse Engineering. The Columbus framework proved its
usefulness in the field through a number of research projects
(also by independent researchers) and several industrial ap-
plications. Columbus may contribute as (1) a flexible, eas-
ily extensible tool architecture, (2) a data exchange model
(C/C++ schema) and (3) as a source code analysis process.

1. Introduction

The role of reverse engineering in software evolution is
evidently important. However, in order to introduce this dis-
cipline into the software engineering process, some funda-
mental building blocks are needed. Such are the availability
of tools, data exchange settlements and a reverse engineer-
ing process.

We demonstrate the reverse engineering approach that
builds upon the Columbus framework [4, 5, 6], which ad-
dresses these essential elements, and as such can be an im-
portant player in a study conducted to assess the existing ap-
proaches and define a general framework for empirical stud-
ies. The Columbus technology is by now recognized by the
academia, in fact it is one of the reference architectures in
the field. In addition to the numerous examples of its us-
age by research groups, it also plays an important role in a
number of industrial projects.

Columbus deals with the issues mentioned above in the
following way. First, it includes an extensible reverse en-
gineering tool, currently with a source code analysis mod-
ule for the C/C++ language. Second, it defines a schema for
representing C++ source code as an exchange model among

other tools [3, 6, 12]. This schema is also one of the refer-
ence representations according to state of the art. Finally,
Columbus contributes to the reverse engineering process in
the following manner. Although it does not cover all poten-
tial aspects of such a process, it deals with some of the most
critical issues such as project set-up and fact extraction. We
emphasize the importance of the former, since in many sit-
uations collecting the artifacts to be analyzed is not trivial,
and being a fundamental activity, it affects all remaining
parts of the process. The most important aspect that needs
special attention of the latter issue, fact extraction, is that
it needs special design consideration regarding code analy-
sis, with respect to traditional methods such as those used
by compilers.

We overview fact extraction using Columbus in the sec-
ond section, while data exchange is discussed in Section 3.
Section 4 deals with representing the extracted data in an-
other form and providing input to other tools, and in the
final section we summarize our contributions to the work-
shop.

2. Fact extraction with Columbus

To comprehend a software system we need to know
many different things about it. We refer to this informa-
tion as facts about the source code. Fact extraction is an au-
tomatized process during which the subject system is ana-
lyzed with analyzer tools to identify the source code’s vari-
ous characteristics and their interrelationships, and to cre-
ate abstract representations of the extracted information.
The form of these representations is prescribed by schemas,
which are descriptions of the form of the data in terms of
a set of entities with attributes and relationships. A schema
instance is an embodiment of the schema which models a
concrete software system. To make the results of fact ex-
traction widely usable, we further process the schema in-
stances to take various new formats.

Columbus is a reverse engineering framework developed
in cooperation between the University of Szeged, the Nokia

Research Center and FrontEndART [9]. The main moti-
vation behind developing this framework was to create a
toolset which supports fact extraction and provides a com-
mon interface for reverse engineering tasks in general. The
graphical user interface of the framework is called Colum-
bus REE (Reverse Engineering Environment). Further tools
are also incorporated into the framework (mostly command
line), which actually do the C++-specific tasks, like analyz-
ing the source code and further processing the results.

The extraction process within the Columbus framework
is outlined in [4]. The process is very similar to the tradi-
tional compilation process. It consists of five consecutive
steps (see Figure 1) where each step uses the results of the
previous one.

The steps of the process are the following:

1. Acquiring project/configuration information

2. Analysis of the source – creation of schema instances

3. Linking of schema instances

4. Filtering the schema instances

5. Processing the schema instances

These steps may be performed in different ways: us-
ing the visual user interface of the Columbus REE, using
the compiler wrapper toolset (see below), or using only the
command-line programs by themselves. An important ad-
vantage of the presented steps is that they can be performed
incrementally, that is, if the partial results of certain steps
are available and the input of the step has not been altered,
these results need not be regenerated.

Acquiring project/configuration information is indis-
pensable to carry out the extraction process. The source
code of a software system is usually logically split into
a number of files and these files are arranged into fold-
ers and subfolders. Furthermore, different preprocess-
ing configurations can apply to them. The information
on how these files are related to each other and what set-
ting apply to them are usually stored either in makefiles (in
the case of building software with the make tool), or in dif-
ferent project files (in the case of using different IDE-s –
Integrated Development Environments).

The Columbus technology employs a so-called compiler
wrapping technique for using makefile information and two
different approaches for handling IDE project files: IDE in-
tegration and project file import.

Compiler wrapping. Makefiles can contain not only the
references to files to be compiled and their settings but
can also contain various commands, like invoking exter-
nal tools. These powerful possibilities are bad news for re-
verse engineers, because every action in the makefile must
be somehow simulated in the reverse engineering tool. This
can be extremely hard or even impossible in some cases. We
approached this problem from the other end and solved it by

“wrapping” the compiler. This means that we temporarily
hide the original compiler, and this way if the original com-
piler should be invoked our wrapper program will start in-
stead of it, which executes first the original compiler, and
second, it invokes our analyzer tools as well. These are in-
voked with the appropriate parameters in the same environ-
ment to build up the required schema instances. This way
all we have to do is to build a software system as usual (but
with the wrapper switched on).

IDE integration. In this case our tool appears as a new
toolbar within the IDE and its operation is very similar to
the usual build process. The active project is analyzed and
the output can be transformed into any format supported by
the Columbus framework. (Currently Microsoft Visual Stu-
dio 6.0 and .NET are supported.)

Project file import. The Columbus REE is able to parse
Microsoft Visual C++ 6.0 and .NET project files and to im-
port all relevant information from them to be able to ana-
lyze the project. All Columbus REE features can be used in
this case.

Manual setup. Besides these possibilities the project
can be built up by hand also in the Columbus REE (for in-
stance if no project information is available at all). A so-
called Project Setup Wizard is available to help in this task.

The Columbus environment currently contains a C/C++
source code analysis front end, which is constituted of a
specially developed preprocessor and language analyzer.
The analyzers were designed especially to meet the require-
ments of source code analysis in the scope of reverse engi-
neering. The employed technology makes possible, for ex-
ample, parsing incomplete code, source-complete detailed
analysis, and the handling of language dialects.

3. Data exchange

Successful data exchange is crucial among reverse en-
gineering tools. This requires a common format, which
is applicable in various reverse engineering tools such as
front ends and metrics tools. A standard schema must be
found. We described our approach to this important topic
in [3, 6, 8], which is since then known as the Columbus
Schema for C++, and it describes the C++ language details.
An extension to the C++ schema is the schema for captur-
ing the preprocessor related facts as described in [12].

The Columbus schemas capture the C++ and preproces-
sor languages at low detail (AST) and also contains higher-
level elements (e. g. semantics of types). The description of
the schemas is given using UML Class Diagrams, which
permits their simple implementation and easy physical rep-
resentation (e. g. using GXL). Their modularity provides
additional flexibility for any future extension/modification.
The implementation of the classes belonging to the schemas
provides an Application Programming Interface for access-

CANPPCAN1.cpp 1.in.cpp n.i CANLink CANFilter......... ... Step 3includefiles 1.csi1.psin.psin.csi l.psil.csi
Step 2 f.psif.psi

Step 4 Step 5
schemainstances linkedschemainstances filteredschemainstances processedschemainstances

CAN2CppmlCAN2Metrics... f.cppmlf.csv
Step 1 project /configurationinformationAcquiringproject /configurationinformationprojectfiles makefiles input foranalysis ...

Figure 1. The fact extraction process

ing the internal representation, which is used both by the
Columbus framework itself and independent developers as
well.

Apart from defining the content of the data to be repre-
sented and potentially exchanged with other reverse engi-
neering tools, it is also necessary to settle down common
physical formats. To this end, the Columbus schemas can
be represented in various external formats, including the in-
creasingly popular GXL format. The external formats are
overviewed in the following section.

4. Presentation of data and tool interoperabil-
ity

Because different re- and reverse engineering tools use
different schemas for representing their data, the schema
instances must be further processed to achieve tool inter-
operability. The processing may consist of transforming the
schema instance into another format and/or applying further
computations on it. Currently the following are included in
the Columbus REE:

PPML and CPPML. This transformation permits the
creation of XML documents (called PPML – Preprocessor
Markup Language and CPPML – C++ Markup Language)
that have structures based on the corresponding Columbus
schemas. The exported documents conform to their Doc-
ument Type Definitions, as described on FrontEndART’s
homepage [9].

GXL. With this transformation GXL representations can
be created from the extracted information. GXL (Graph eX-
change Language) [10] is an XML-based graph-description
format. Since the Columbus schemas basically de-
fine graphs, this format is suitable for representing them

in a convenient way. The call graph of the analyzed sys-
tem can be also created in GXL form.

UML XMI. This processing allows the creation of stan-
dard UML XMI documents from the Columbus Schema for
C++. The XMI document contains the class diagram of the
analyzed project which can be further processed with XMI
enabled tools (like IBM Rational Rose, Borland Together
ControlCenter, etc.).

Famix XMI. With this processing a Famix [2] XMI rep-
resentation of the extracted information can be created. This
format can be utilized in the CodeCrawler tool for visual-
ization and metric calculations.

RSF. Three transformations are available for creating
rigi RSF [11] documents: (1) a graph based on the Colum-
bus Schema for C++, (2) a call-graph and (3) a UML class
diagram-like graph. All of these use different rigi domains
which can be created with Columbus as well.

HTML documentation. This processing can be used to
create a hypertext documentation of the extracted project
in HTML form. The generated documentation presents the
project in a browsable and user-friendly fashion. All the
necessary information is presented about the classes and
other elements in a structured way. Three types of browser
frames are also supplied, with which a project can be easily
navigated. These present the classes using (1) their names in
alphabetical order, (2) the scoping structure and (3) the in-
heritance relationship.

Apart from these, so to say, simple transformations, we
have been experimenting with other kinds of processings of
the extracted fact representations. These include the calcu-
lation of object oriented metrics [7], recognition of design
patterns [1] and bad smells (for refactoring purposes) in the
code.

Furthermore, we have developed a special code audit-
ing tool based on Columbus – called SourceAudit – which
is able to investigate source code and check it against rules
that describe the preferred properties of the code. These
rules mostly involve issues related to coding style, but in
some cases they extend the warning reporting capabilities
of the compiler. The checked rules are organized into rule
packages and the tool can be freely extended with new pack-
ages. The tool can be used in command line and integrated
with popular IDE-s (e. g. Microsoft Visual Studio and Bor-
land C++Builder).

5. Relevance to the Workshop

We believe that the Columbus reverse engineering tech-
nology may serve as one of the fundamental approaches to
be investigated under the scope of the workshop for Em-
pirical Studies in Reverse Engineering. It may contribute as
a tool, a data exchange model and as a source code analy-
sis process.

The Columbus Reverse Engineering Environment em-
ploys a highly flexible architecture that is essential for tool
reuse in various environments where reverse engineering is
needed. Its C/C++ source code analysis front end includes
the necessary analysis technologies that are specific to the
purpose of reverse engineering.

The extracted facts about the source code are stored and
further manipulated according to a language schema that,
together with common formats like GXL, provides a ba-
sis for successful data exchange among reverse engineer-
ing tools. Columbus supports a number of external formats
that are most commonly used by the reverse engineering
community, and this interoperability helped being utilized
in several research and industrial projects.

One of the most important assets of Columbus is that it
performs the analysis tasks according to a proven source
code analysis process. It includes several ways of setting
up the reverse engineering projects, because we believe that
this is one of the most critical issues in successful code anal-
ysis. The compiler wrapping technology proved its simplic-
ity and usefulness in a number of successfully performed
analyses of real size software systems, like the open source
Mozilla and StarOffice systems.

References

[1] Z. Balanyi and R. Ferenc. Mining Design Patterns from C++
Source Code. In Proceedings of the 19th International Con-
ference on Software Maintenance (ICSM 2003), pages 305–
314. IEEE Computer Society, Sept. 2003.

[2] S. Demeyer, S. Ducasse, and M. Lanza. A Hybrid Reverse
Engineering Platform Combining Metrics and Program Vi-
sualization. In Proceedings of WCRE’99, 1999.

[3] R. Ferenc and Á. Beszédes. Data Exchange with the Colum-
bus Schema for C++. In Proceedings of the 6th European
Conference on Software Maintenance and Reengineering
(CSMR 2002), pages 59–66. IEEE Computer Society, Mar.
2002.

[4] R. Ferenc, Á. Beszédes, and T. Gyimóthy. Extracting Facts
with Columbus from C++ Code. In Tool Demonstrations
of the 8th European Conference on Software Maintenance
and Reengineering (CSMR 2004), pages 4–8. IEEE Com-
puter Society, Mar. 2004.

[5] R. Ferenc, Á. Beszédes, and T. Gyimóthy. Tools for Software
Maintenance and Reengineering, chapter Extracting Facts
with Columbus from C++ Code, pages 16–31. Franco An-
geli Milano, 2004.

[6] R. Ferenc, Á. Beszédes, M. Tarkiainen, and T. Gyimóthy.
Columbus – Reverse Engineering Tool and Schema for C++.
In Proceedings of the 18th International Conference on
Software Maintenance (ICSM 2002), pages 172–181. IEEE
Computer Society, Oct. 2002.

[7] R. Ferenc, I. Siket, and T. Gyimóthy. Extracting Facts from
Open Source Software. In Proceedings of the 20th Interna-
tional Conference on Software Maintenance (ICSM 2004),
pages 60–69. IEEE Computer Society, Sept. 2004.

[8] R. Ferenc, S. E. Sim, R. C. Holt, R. Koschke, and
T. Gyimóthy. Towards a Standard Schema for C/C++. In
Proceedings of the 8th Working Conference on Reverse En-
gineering (WCRE 2001), pages 49–58. IEEE Computer So-
ciety, Oct. 2001.

[9] Homepage of FrontEndART Software Ltd.
http://www.frontendart.com.

[10] R. Holt, A. Winter, and A. Schürr. GXL: Towards a Standard
Exchange Format. In Proceedings of WCRE’00, pages 162–
171, Nov. 2000.

[11] H. A. Müller, K. Wong, and S. R. Tilley. Understanding Soft-
ware Systems Using Reverse Engineering Technology. In
Proceedings of ACFAS, 1994.

[12] L. Vidács, Á. Beszédes, and R. Ferenc. Columbus Schema
for C/C++ Preprocessing. In Proceedings of the 8th Euro-
pean Conference on Software Maintenance and Reengineer-
ing (CSMR 2004), pages 75–84. IEEE Computer Society,
Mar. 2004.

