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Abstract

Different program slicing methods are used for mainte-
nance, reverse engineering, testing and debugging. Slicing
algorithms can be classified as static slicing and dynamic
slicing methods. In several applications the computation of
dynamic slices is more preferable since it can produce more
precise results. In this paper we introduce a new forward
global method for computing backward dynamic slices of
C programs. In parallel to the program execution the al-
gorithm determines the dynamic slices for any program in-
struction. We also propose a solution for some problems
specific to the C language (such as pointers and function
calls). The main advantage of our algorithm is that it can
be applied to real size C programs, because its memory re-
quirements are proportional to the number of different mem-
ory locations used by the program (which is in most cases
far smaller than the size of the execution history—which is,
in fact, the absolute upper bound of our algorithm).
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1. Introduction

Program slicing methods are widely used for mainte-
nance, reverse engineering, testing and debugging (e.g. [6],
[12]). A slice1 consists of all statements and predicates that
might affect the variables in a setV at a program pointp
[15], [8]. A slice may be an executable program or a sub-
set of the program code. In the first case the behaviour of
the reduced program with respect to a variablev and pro-
gram pointp is the same as the original program. In the
second case a slice contains a set of statements that might
influence the value of a variable at pointp. Slicing algo-
rithms can be classified according to whether they only use

1In this paper we are dealing with backward slicing.

statically available information (static slicing) or compute
those statements which influence the value of a variable oc-
currence for a specific program input (dynamic slice).

To determine whether a change at some place in a pro-
gram will affect the behavior of other parts of a program
is an important task of a software maintainer.Decomposi-
tion slices [6] are useful in making a change to a piece of
software without unwanted side effects. The decomposition
slice of a variablev consists of all statements that may affect
the value ofv at some point; it captures all computations of
a variable and is independent of program location. One ad-
vantage of using decomposition slices is that after making
a modification in a program the unaffected part of the pro-
gram can be determined. Therefore program slicing is very
useful to reduce the cost ofregression testing [2]. Slicing-
based techniques can be used inprogram understanding
e.g. to locatesafety critical code that may be interleaved
throughout the entire system [5]. A slicing approach is able
to identify all code that contributes to the value of variables
that might be part of a safety critical component.

One of the problems inreverse engineering consists of
understanding the current design of a program and the way
this design differs from the original design. Program slices
can be used to assist for this type of re-abstraction. A pro-
gram can be represented as a lattice of slices ordered by the
is-a-slice-of relation and this lattice can guide an engineer
towards places where reverse engineering efforts should be
concentrated ([5], [3]). Static slicing approaches have been
used to the applications mentioned above. However, for re-
alistic programs static slices may be very large due to the
complexities in determining precise data- and control de-
pendences. One of the problems is the static resolution of
aliases due to procedure calls, pointer variables and array
references. On the other hand, aliasing can be easily re-
solved by observing execution behavior for dynamic slic-
ing. The dynamic slicing approach can be used to approxi-
mate static slices by constructing a union of program slices
for each variable in the program over a large number of test
runs [14].

Different dynamic slicing methods are introduced in e.g.



[10], [1]. In [1] Agrawal and Horgan presented a precise
dynamic slicing method, which is based on the graph rep-
resentation of the dynamic dependences. This graph, called
Dynamic Dependence Graph (DDG) includes a distinct ver-
tex for each occurrence of a statement. A dynamic slice
created from the DDG with respect to a variable contains
those statements that actually had an influence on this vari-
able. (We refer to this slice as theDDG slice.) The ma-
jor drawback of this approach is that the size of the DDG
is unbounded. Although Agrawal and Horgan suggested a
method for reducing the size of the DDG [1], even this re-
duced DDG may be very huge for an execution which has
many different dynamic slices [13]. Therefore, the method
of Agrawal et al. could not be applied for real size applica-
tions where for a given test case millions of execution steps
may be performed.

In [7] we have introduced a method for the forward com-
putation of backward dynamic slices (i.e. at each iteration
of the method all slices are available for all variables at the
given execution point). However, the presented method was
applicable only to “toy” programs (i.e. with one entry pro-
cedure and with only scalar variables and simple assignment
statements). The main contribution of the current paper is
that this basic algorithm is extended for slicing real C pro-
grams. The extended algorithm presents the solution for
handling the pointers, function calls (interprocedural slic-
ing) and jump statements (the latter, though, is not presented
in this paper due to space constraints). The main advantage
of our approach is that it can be applied toreal size C pro-
grams as well, because the memory requirements of the al-
gorithm are proportional to the number ofdifferent memory
locations used by the program, and not to the size of the
execution history (number of steps—instructions—during
program execution). Our experiences and preliminary test
results show that this number of different memory addresses
is substantially lesser than the size of the execution history.

The paper is organized as follows. In the next section
the basic concepts of dynamic slicing are presented. Sec-
tion 3 provides an introductory description of our algorithm
for simple C programs. The extension of the algorithm for
real C programs is presented in detail in Section 4. Section
5 discusses relations to other work. We have already devel-
oped a prototype for the algorithm presented in the paper.
Section 6 summarizes our experience in this implementa-
tion and the future research is also highlighted.

2. Dynamic slicing

The goal of the introduction of dynamic slices was to
determine those statements more precisely that may contain
program faults assuming that the failure has been revealed
for a given input.

Prior to the description of different dynamic slicing ap-
proaches some background is necessary, which is demon-
strated using the example in Figure 1 (a).

A feasible path that has actually been executed will
be referred to as anexecution history and denoted by
EH . Let the input bea = 0; n = 2 in the case
of our example. The corresponding execution history is
h1; 2; 3; 4; 5; 7; 8; 10; 11; 7; 8; 10; 11; 7; 12i. We can see that
the execution history contains the instructions in the same
order as they have been executed, thusEH(j) gives the
serial number of the instruction executed at thejth step re-
ferred to asexecution position j.

To distinguish between multiple occurrences of the same
instruction in the execution history we use the concept of
action that is a pair(i; j), which is written down asij ,
wherei is the serial number of the instruction at the exe-
cution positionj. For example,1215 is the action for the
output statement of our example for the input above.

We can define thedynamic slicing criterion as a triple
(x; ij ; V ) wherex denotes the input,ij is an action in the
execution history, andV is the set of the variables for which
the dynamic dependences should be computed.

Agrawal and Horgan [1] defined dynamic slicing as fol-
lows: given an execution historyH of a programP for a test
caset and a variablev, the dynamic slice ofP with respect
to H andv is the set of statements inH whose execution
had some effect on the valuev as observed at the end of the
execution.

Agrawal and Horgan introduced a new method, which
uses a Dynamic Dependence Graph (DDG) to take into ac-
count that the different occurrences of a given statement
may be affected by different set of statements due to rede-
finitions of variables. In the DDG there is a distinct vertex
for each occurrence of a statement in the execution history.
Using this graph precise dynamic slice can be created. The
main drawback of using the DDG is the size of this graph.
The number of vertices in a DDG is equal to the number of
executed statements, which is unbounded. To improve the
size complexity of the algorithm Agrawal and Horgan sug-
gested a method for reducing the number of vertices in the
DDG. The idea of this method is that a new vertex is cre-
ated only if it can create a new dynamic slice. Thus the size
of this reduced graph is bounded by the number of different
dynamic slices. It was shown in [13] that the number of dif-
ferent dynamic slices is in the worst caseO(2

n
), wheren is

the number of the statements.

If we compute a precise dynamic slice for the slicing cri-
terion(ha=0;n=2i; 1215;s) using the DDG slicing method
we get the dynamic slice of the program presented in Figure
1 (b).



#include <stdio.h> #include <stdio.h>
int n, a, i, s; int n, a, i, s;
void main() void main()
{ {

1. scanf("%d", &n); 1. scanf("%d", &n);

2. scanf("%d", &a); 2. scanf("%d", &a);

3. i = 1; 3. i = 1;

4. s = 1; 4. s = 1;
5. if (a > 0) 5. if (a > 0)
6. s = 0; 6. s = 0;

7. while (i <= n) { 7. while (i <= n) {

8. if (a > 0) 8. if (a > 0)
9. s += 2; 9. s += 2;

else else
10. s *= 2; 10. s *= 2;

11. i++; 11. i++;
} }

12. printf("%d", s); 12. printf("%d", s);

} }
(a) (b)

Figure 1. (a) A simple program. (b) The framed statements give the dynamic slice

3. Forward computation of dynamic slices

For simplicity, we present our dynamic slice algorithm
for C programs in two steps. First, the computation of the
backward dynamic slice is described for programs with sim-
ple statements. Then this algorithm is extended to derive the
dynamic slice for real C programs in Section 4.

Our algorithm is forward, which means that we obtain
the necessary information (i.e. the dynamic slice for a given
instruction) as soon as this instruction has been executed.
As a consequence, our method is global, i.e. after the last
instruction has been executed we obtain the dynamic slice
for all the instructions processed previously. On the con-
trary, former methods involving backward processing com-
pute the slices only for a selected instruction (and variables
used at this instruction). Global slicing is very useful for
testing and program maintenance.

Our algorithm does not necessitate a Dynamic Depen-
dence Graph. Instead, we compute and store the set of state-
ments that affect the currently executed instruction. This
way we avoid any superfluous information (which may be
unbounded).

Prior to the desciption of the algorithm some basic con-
cepts and notations are overviewed and introduced. For
clarity we rely on [10] but in some cases the necessary mod-
ifications have been made. We demonstrate our concepts for
dynamic slicing by applying them on the example program

in Figure 1.
We apply a program representation which considers only

the definition and theuse of variables and, in addition, it
considers direct control dependences. We refer to this pro-
gram representation asD/U program representation. An in-
struction of the original program has a D/U expression as
follows:

i: d : U;

where i is the serial number of the instruction andd is
the variable that gets a new value at the instruction in
the case of assignment statements. For an output state-
ment or a predicated denotes a newly generated “output
variable”– or “predicate variable”–name of this output or
predicate, respectively (see the example below). LetU =

fu1; u2; :::; ung such that anyuk 2 U is either a variable
that is used ati or a predicate-variable from which instruc-
tion i is (directly) control dependent. Note that there is at
most one predicate-variable in eachU . (If the entry state-
ment is defined, there is exactly one predicate-variable in
eachU .)

Our example has a D/U representation shown in Figure
2. Herep5, p7 andp8 are used to denote predicate-variables
ando12 denotes the output-variable, whose value depends
on the variable(s) used in the output statement.

Now we can derive the dynamic slice with respect to an
input and the related execution history based on the D/U
representation of the program as follows. We process each



i: d : U

1: n : ;
2: a : ;
3: i : ;
4: s : ;
5: p5 : fag
6: s : fp5g
7: p7 : fi; ng
8: p8 : fp7; ag
9: s : fs; p8g

10: s : fs; p8g
11: i : fi; p7g
12: o12 : fsg

Figure 2. D/U representation of the program

instruction in the execution history starting from the first
one. Processing an instructioni: d : U , we derive a set
DynSlice(d) that contains all the statements which affectd

when instructioni has been executed. By applying the D/U
program representation the effect of data and control depen-
dences can be treated in thesame way. After an instruction
has been executed and the relatedDynSlice set has been
derived we determine thelast definition (serial number of
the instruction) for the newly assigned variabled denoted
by LS(d). Very simply, the last definition of variabled is
the serial number of the instruction whered is defined last
(considering the instructioni: d : U , LS(d) = i). Obvi-
ously, after processing the instructioni: d : U at the exe-
cution positionj LS(d) will be i for each subsequent ex-
ecutions untild is defined next time. We also useLS(p)
for predicates which means the last definition (evaluation)
of predicatep.

Now the dynamic slices can be determined as follows.
Assume that we are running a program on inputt. After
an instructioni: d : U has been executed at positionp,
DynSlice(d) contains exactly the statements involved in
the dynamic slice for the slicing criterionC = (t; ip; U).
DynSlice sets are determined by the equation below:

DynSlice(d) =
[

uk2U

�
DynSlice(uk) [ fLS(uk)g

�

After DynSlice(d) has been derived we determine the
valueLS(d) for assignment and predicate instructions, i.e.

LS(d) = i

Note that this computation order is strict, since when we de-
termineDynSlice(d) we have to considerLS(d) occured
at a former execution position instead ofp (consider the pro-
gram linex = x + y in a loop).

We can see that during the dynamic slice determination
we do not use a Dynamic Dependence Graph (which may

be huge), but only a D/U program representation, which
requires less space than the original source code and the
method above creates the same dynamic slice as the appli-
cation of the DDG in [2].

The formalization of the forward dynamic slice algo-
rithm is presented in Figure 3.

program DynamicSlice
begin

InitializeLS andDynSlice sets
ConstructD/U
ConstructEH
for j = 1 to number of elements in EH

the current D/U element isij : d : U

DynSlice(d) =S
uk2U

�
DynSlice(uk) [ fLS(uk)g

�
LS(d) = i

endfor
OutputLS andDynSlice sets for the last definition of

all variables
end

Figure 3. Dynamic slice algorithm

Note, that the construction of the execution history is
achieved by instrumenting the input program and execut-
ing this instrumented code. The instrumentation procedure
is discussed in Section 4.

Now we illustrate the above method by applying it on
our example program in figure 1. for the execution history
h1; 2; 3; 4; 5; 7; 8; 10; 11; 7; 8; 10; 11; 7; 12i. During the ex-
ecution the following values are computed:

Action d U DynSlice(d) LS(d)

1
1 n ; ; 1

2
2 a ; ; 2

3
3 i ; ; 3

4
4 s ; ; 4

5
5 p5 fag f2g 5

7
6 p7 fi; ng f1,3g 7

8
7 p8 fp7; ag f1,2,3,7g 8

10
8 s fs; p8g f1,2,3,4,7,8g 10

11
9 i fi; p7g f1,3,7g 11

7
10 p7 fi; ng f1,3,7,11g 7

8
11 p8 fp7; ag f1,2,3,7,11g 8

10
12 s fs; p8g f1,2,3,4,7,8,10,11g 10

11
13 i fi; p7g f1,3,7,11g 11

7
14 p7 fi; ng f1,3,7,11g 7

12
15 o12 fsg f1,2,3,4,7,8,10,11g 12

The final slice of the program can be obtained as the
union ofDynSlice(o12) andfLS(o12)g.



4. Dynamic slicing of real C programs

In the previous section we have introduced an algorithm
for forward computation of dynamic slices. For simplicity,
the method was presented for simple C programs (only in-
traprocedural and only with scalar variables and assignment
statements). In this section we extend our algorithm for real
C programs. This means the solution of several problems,
such aspointers, function calls andjump statements.

The necessity for handling the pointers prompts us to
slightly extend the meaning of our slicing criterion. This
means that, for example, if we want to compute the dynamic
slice for a pointer dereference*p, we are actually seeking
for dynamic dependences of amemory location (and not
simply a variable, as in our original definition). (As we will
see later, the slice for*p will include the dependences of
the pointerp itself and the dereferenced memory location
as well.)

We note, that the handling of arrays and structure mem-
bers can be traced back to slicing of memory locations (as
in the case of pointers).

The complete handling of C programs includes the
handling of jump statements (goto, switch, break,
continue). Our algorithm is capable of slicing such C
programs too, however, due to space constraints we cannot
present this technique here in detail (the full version of the
mehod subsists in a technical report [4]).

Our method for slicing C programs involves the follow-
ing main steps:

� First, by analyzing the input program a D/U represen-
tation is created based on static dependences in the pro-
gram and the program is instrumented for creating the
necessary runtime information.

� Next, the instrumented program is compiled and exe-
cuted and this way atrace of the execution is created
which contains the dynamic information needed by the
dynamic slice algorithm (among others theEH). This
is denoted byTRACE.

� Finally, the dynamic slice algorithm is executed for a
certain slicing criterion using the previously created
D/U representation andTRACE.

In the previous section the D/U representation is defined
asi: d : U for each program instructioni. For C programs,
the D/U representation will contain asequence of d : U

items for each instruction as:

i: h(d1 : U1); (d2 : U2); : : :i

This is needed because in a C instruction (i.e. expression)
several l-values can be assigned new values. Note that the
sequence order is important, sinced values of a previous

D/U item can be used by subsequentU sets. This sequence
order is determined by the “execution-order” (evaluation)
of the corresponding subexpressions (the order of evalua-
tion of subexpressions in C is not always defined by the
language, however we can rely on the parsing sequence de-
termined by the context-free grammar of C).

The defined variabled and the used variablesuk 2 U can
have several meanings. These are (see the example program
in Figure 4):

� Scalar variables. These are the “regular” global or lo-
cal variables (they have a constant address in the scope
where they are declared).

� Predicate variables. Denoted bypn, wheren is the
serial number of the predicate instruction as described
in the previous section.

� Output variables. Denoted byon. By definition, out-
put variables are a kind of “dummy” variables that
are generated at those places where a setU is used
but no other regular variable takes any value fromU .
These include function calls with their return values
neglected, single expression-statements with no side-
effects and for simplicity some output statements in C
(such asprintf).

� Dereference variables. Denoted bydn, wheren is a
global counter for each dereference occurrence. We
use the notion of dereference variables where a mem-
ory address is used or gets a value through a pointer
(or an array, structure member).

� Function call argument variables. Variables denoted
by arg(f; n), wheref is a function name andn is the
function argument (parameter) number. An argument
variable isdefined at the function call site andused at
the entry point of the function.

� Function call return variables. Denoted byret(f),
wheref is a function name. A return variable isde-
fined at the exit point of the function andused at the
function caller after returning.

In Figure 4. we can see an example C program and its
statically computed D/U representation according to the no-
tation described above.

In order to compute the dynamic slice, beside the static
D/U representation we need to gather some dynamic infor-
mation as well of the actual execution of the program. This
is done byinstrumenting the original program code2 at all

2Basically, there are two alternatives for the type of instrumentation:
source level and object-code level. In our algorithm source level instru-
mentation was chosen because of ease of portability to different platforms
and of mapping the slice results to the original source code. However, some
may argue that object level instrumentation could result in faster execution
of instrumented code and also system and library calls could be handled
more completely [14].



i: hd : Ui

#include <stdio.h>
int a, b;

1. int f(int x,int y) { x : farg(f; 1)g; y : farg(f; 2)g
2. a += x; a : fa; xg
3. b += y; b : fb; yg
4. return x+2; ret(f) : fxg

}

5. int g(int y) { y : farg(g; 1)g
6. a += y; a : fa; yg
7. return y+1; ret(g) : fyg

}

void main() {
int s, *p;

8. s = 0; s : ;
9. scanf("%d", &a); a : ;

10. scanf("%d", &b); b : ;
11. p = &b; p : ;
12. while (*p < 10) { p12 : fp; d1g
13. s += f(3,4); arg(f; 1) : fp12g; arg(f; 2) : fp12g; s : fs; ret(f); p12g
14. s += g(3); arg(g; 1) : fp12g; s : fs; ret(g); p12g

}
15. printf("%d", *p); o15 : fd2g
16. printf("%d", s); o16 : fsg

}

Figure 4. An example C program and its (static) D/U representation

the relevant points in the program with certain dump-actions
which will create a dump-file, the so-calledTRACE of the
program. The instrumentation is performed in such a way,
that after compiling the instrumented program it will behave
identically to the original code.TRACE contains all the
necessary information about the actual execution (theEH

itself) and some other “administrative” information about
the program and its execution as well, such as memory ad-
dresses of scalar variables, actual values of pointers, begin-
nings/endings of functions, etc.

After we have determined the D/U representation of the
program and theTRACE for a given execution we can de-
rive the dynamic slice with respect to the given slicing cri-
terion. We process theTRACE from its beginning and
perform different actions for each element. If the actual
TRACE element is an “administrative” element, then the
necessary computations are made for the internal represen-
tations (such as maintaining a stack for the visible variables
in block-scopes). If the element is anEH element then
the correspondingi: hd : Ui sequence is processed as fol-
lows. For each D/U item in this sequence we determine

the correspondingd0 andu0k 2 U 0 “dynamic dependences”
(i.e. memory locations and/or variables and predicates) and
derive a setDynSlice(d0) that contains all the statements,
which affectd0 when instructioni has been executed and
LS(d0) by the equations below:

DynSlice(d0) =
[

u0

k
2U 0

�
DynSlice(u0k) [ fLS(u0k)g

�
;

LS(d0) = i

Note, that this computation order is strict as seen in the pre-
vious section.

In the case of function calls the actual D/U sequence can-
not be processed in a single iteration of the algorithm by
processing a singleEH element “on the fly”. In these cases
the remaining sequence positions should be stacked and af-
ter the function has returned the remaining sequence items
can be processed (see the formalized algorithm below).

The d0 and u0k values are determined from the corre-
spondingd anduk (statically computed) values as follows
(the same conversions apply touk as well):



� if d is a scalar variable then d0 will be its memory
location (this can be determined based onTRACE),

� if d is adereference variable thend0 will be the value
(also a memory location) of the corresponding pointer
(also fromTRACE),

� if d is a predicate variable thend0 is determined by
supplementing the predicate variablepnwith a “depth-
level” which corresponds to the depth of thefunction-
call stack, denoted bypn(k) (this is needed in the
case of recursive functions because the same predicate
should be considered as a different one in different in-
stances of the same function),

� in all other casesd andd0 are the same.

Now we can give a formalization of the dynamic slice
algorithm for complete C programs in Figure 5.

We illustrate the above method by applying it on our
example program shown in Figure 4 for the slicing crite-
rion (ha=2;b=6i; 1514;*p). On this input we get the fol-
lowing execution history:h8; 9; 10; 11; 12; 13=1; 2; 3; 4=13;
14=5; 6; 7=14; 12; 15; 16i. The “dual”EH elements13=1,
4=13, 14=5 and7=14 correspond to the function call/return
and parameter passing “virtual statements”. Parameter
passing can be treated as two statements (but as one action),
since first the caller puts the parameter on the function call
stack and then the called function takes that value (returning
a value can be interpreted similarly). The values computed
during the execution are shown in Figure 6. (The numbers
of the form$xxxxxxx are memory addresses supplied by
TRACE.)

The final slice of the program can be obtained as the
union ofDynSlice(o15) andfLS(o15)g, while the actual
result is depicted in Figure 7. The slice contains the lines
marked with the bullets in the first column. We can observe
that the dynamic slice contains those statements, which in-
fluenced the value of memory location$4347828 pointed
byp (which is, in fact, the value of the scalar variableb).

As a point of interest, we can observe also that the dy-
namic slice for criterion(ha=2;b=6i; 1615;s) (the second
column of bulleted lines) contains only those statements,
which influence the value of scalars, i.e. those statements,
which influence the values of the two globals are not in-
cluded, sinces uses only the return values of the functionsf
andg (which are dependent only on constant values). Note,
that this computation does not necessitates a separate exe-
cution of the algorithm, i.e. our method is “global” for a
specific input (andTRACE) and slices of all variables at
their last definition point can be determined simultaneously.

program DynamicSliceForC
begin

InitializeLS andDynSlice sets
ConstructD/U
ConstructTRACE
actual D/U item = nil
for all lines of TRACE

case the current line in TRACE of
function begin mark:

push(actual D/U item)
actual D/U item = nil

function end mark:
pop(actual D/U item)

EH element:
the current action inEH is ij

actual D/U item = the first item ini: hd : Ui
other:

resolve the unresolved memory address
references in actual D/U item

endcase
while actual D/U item can be processed�

computed0 andU 0 based on actual D/U item
DynSlice(d0) =S

u0

k
2U 0

�
DynSlice(u0k) [ fLS(u0k)g

�

LS(d0) = i

actual D/U item = the next item ini: hd : Ui
endwhile

endfor
OutputLS andDynSlice sets for the last definition

of all memory locations
end

�This is true if: according to the static D/U there are no
function calls at the actual D/U item position and item 6=
nil and item does not have any unresolved memory address
references.

Figure 5. Dynamic slice algorithm for C pro-
grams

5. Related work

Our method for the computation of dynamic slices sig-
nificantly differs from the approach presented in [1]. This
method takes into account that different occurrences of a
statement may be affected by different set of statements.
This approach uses a Dynamic Dependence Graph. Using
this graph precise dynamic slice can be computed, but as
mentioned earlier, the size of the DDGs may be unbounded.
Agrawal and Horgan also proposed a reduced DDG method.
The size of reduced graphs is bounded by the number of
different dynamic slices (see Section 2 for details about the



Action d0 U 0 DynSlice(d0) LS(d0)

8
1 $6684144 ; ; 8

9
2 $4347824 ; ; 9

10
3 $4347828 ; ; 10

11
4 $6684148 ; ; 11

12
5 p12(1) f$6684148;$4347828g f10,11g 12

13
6 arg(f; 1) fp12(1)g f10,11,12g 13

13
6 arg(f; 2) fp12(1)g f10,11,12g 13

1
6 $6684060 farg(f; 1)g f10,11,12,13g 1

1
6 $6684064 farg(f; 2)g f10,11,12,13g 1

2
7 $4347824 f$4347824;$6684060g f1,9,10,11,12,13g 2

3
8 $4347828 f$4347828;$6684064g f1,10,11,12,13g 3

4
9 ret(f) f$6684060g f1,10,11,12,13g 4

13
9 $6684144 f$6684144; ret(f); p12(1)g f1,4,8,10,11,12,13g 13

14
10 arg(g; 1) fp12(1)g f10,11,12g 14

5
10 $6684064 farg(g; 1)g f10,11,12,14g 5

6
11 $4347824 f$4347824;$6684064g f1,2,5,9,10,11,12,13,14g 6

7
12 ret(g) f$6684064g f5,10,11,12,14g 7

14
12 $6684144 f$6684144; ret(g); p12(1)g f1,4,5,7,8,10,11,12,13,14g 14

12
13 p12(1) f$6684148;$4347828g f1,3,10,11,12,13g 12

15
14 o15 f$4347828g f1,3,10,11,12,13g 15

16
15 o16 f$6684144g f1,4,5,7,8,10,11,12,13,14g 16

Figure 6. Values computed during the execution.

DDG and reduced DDG methods). In [13] a simple pro-
gram is presented (calledQn) which hasO(2

n
) different

dynamic slices, wheren is the number of statements in the
program. This example shows that even this reduced DDG
may be very huge for some programs.

In [11] Korel and Yalamanchili introduced a forward
method for determining dynamic program slices. Their al-
gorithm computes executable program slices. In many cases
these slices are less accurate then those computed by our
forward dynamic slicing algorithm. (Executable dynamic
slices may produce inaccurate results in the presence of
loops [13].) The method of Korel and Yalamanchili is based
on the notion ofremovable blocks. The idea of this ap-
proach is that during program execution, on each exit from a
block the algorithm determines whether the executed block
should be included in the dynamic slice or not.

Excellent comparison of different dynamic slicing meth-
ods can be found e.g in [13], [9].

6. Summary

Different program slicing methods are used for mainte-
nance, reverse engineering, testing and debugging. Slicing
algorithms can be classified as static slicing and dynamic
slicing methods. In several applications the computation of
dynamic slices is more preferable since it can produce more
precise results. Experimental results from [14] show that

the dynamic slice of a program can be expected to be less
than 50% of the executed nodes and to be well within 20%
of the entire program.

There have been several methods for dynamic slicing in-
troduced in the literature, but most of them use the inter-
nal representation of the execution of the program with dy-
namic dependences called the Dynamic Dependence Graph
(DDG). The main disadvantage of these methods is that the
size of the DDGs is unbounded, since it includes a distinct
vertex for each instance of a statement execution.

In this paper we have introduced a new forward global
method for computing backward dynamic slices of C pro-
grams. In parallel to the program execution the algorithm
determines the dynamic slices for any program instruction.
We have also proposed a solution for some problems spe-
cific to the C language (such as pointers and function calls).
The main advantage of our algorithm is that it can be ap-
plied to real size C programs, because its memory require-
ments are proportional to the number of different memory
locations used by the program (which is in most cases far
smaller than the size of the execution history—which is, in
fact, the absolute upper bound of our algorithm).

We have already developed a prototype system, where
we implemented our forward dynamic slicing algorithm for
the C language. Our assumptions about the memory re-
quirements of the algorithm turned out to be true according
to our preliminary test results.



*p s
#include <stdio.h>
int a, b;

1. int f(int x,int y) { � �
2. a += x;
3. b += y; �
4. return x+2; �

}

5. int g(int y) { �
6. a += y;
7. return y+1; �

}

void main() {
int s, *p;

8. s = 0; �
9. scanf("%d", &a);

10. scanf("%d", &b); � �
11. p = &b; � �
12. while (*p < 10) { � �
13. s += f(3,4); � �
14. s += g(3); �

}
15. printf("%d", *p); �
16. printf("%d", s); �

}

Figure 7. The dynamic slices computed for
the input a=2 and b=6

We tested our system on several input programs (more
than twenty) and several hundred separate executions for
different slicing criterions. The average number of different
memory locations was less than 10% of the size of execu-
tion histories. We computed a ratio for each test execution
and after that we computed the average value (for large ex-
ecution histories the ratios were less than 3%). The largest
execution history consisted of more than 1 million actions.

Our future goal is to obtain empirical data on the size of
dynamic slices in large C programs. We selected a set of
C programs and a large number of test cases for each pro-
gram. We are going to construct a union of dynamic slices
for each variable in the program over all test runs to ob-
tain an approximation of decomposition slices. As we men-
tioned earlier, decomposition slices are very useful in soft-
ware maintenance and reverse engineering. We also wish
to extend our approach to compute dynamic slices of C++
programs.
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