Prediction of Software Development Modification Effort
Enhanced by a Genetic Algorithm

Gergé Balogh, Adam Zoltan Végh, and Arpad Beszédes

Department of Software Engineering University of Szeged, Szeged, Hungary
{geryxyz,azvegh,beszedes}@inf .u-szeged.hu

Abstract. During the planning, development, and maintenance of software projects one of
the main challenges is to accurately predict the modification cost of a particular piece of
code. Several methods are traditionally applied for this purpose and many of them are based
on static code investigation. We experimented with a combined use of product and process
attributes (metrics) to improve cost prediction, and we applied machine learning to this end.
The method depends on several important parameters which can significantly influence the
success of the learning model. In the present work, we overview the usage of search based
methods (one genetic algorithm in particular) to calibrate these parameters. For the first set
of experiments four industrial projects were analysed, and the accuracy of the predictions was
compared to previous results. We found that by calibrating the parameters using search based
methods we could achieve significant improvement in the overall efficiency of the prediction,
from about 50% to 70% (F-measure).

Keywords: software development, effort estimation, modification effort, genetic algorithm

1 Introduction

One of the tasks in software cost estimation, especially in the evolution phase, is to predict the
cost (required effort) for modifying a piece of code. A possible approach for such modification
effort prediction is to use various software attributes from historical development data and from the
current version of the software. The attributes can be expressed in the form of software metrics,
both product and process. Product metrics are calculated by preforming the static analysis of
the software (a simple example is the logical lines of code), while process metrics can represent
time-related quantities collected during project implementation (for example, the Net Development
Time of the modifications). The metrics can then be used, with the help of a model, to predict the
modification costs.

Numerous articles were written about experiences using process or product metrics [1,2], but
researches using both are rare. Our previous works tried to predict the cost of future modifications
by applying both product metrics calculated from the source code and process metrics collected
during the development [3]. We compared the results when using only one type of metrics with
the case when both kinds of metrics had been used. We applied machine learning to create the
model for the prediction. In an advanced model we used a more complex metric for expressing
the modification effort, which was the aggregation of different kinds of modifications like creation,
deletion, and type change. To express the modification effort in a single value, we used different
parameters (weights) for the different kinds of modifications. The choice of these parameters was
crucial for the accuracy of prediction and their calibration was not simple. In the present work, we

report on our early experiences in applying search based methods to determine these parameters (a
basic genetic algorithm (GA) was used for this purpose). A typical improvement of as much as 20
percentage points was achieved in the combined prediction accuracy (F-measure on the precision
and recall) when comparing the model with initial parameters to the one obtained after running
the search method.

We summarize the experiments with the following research questions: RQ. 1 Is it possible to
define a better model for software development effort prediction than the one used in paper [3,4]?
In particular, we seek for a better way to express modification effort. RQ. 2 Can the GA be used to
improve the precision of the estimation of software development effort compared to the results in
paper [3,4]7 In particular, what rate of improvement can be obtained after calibrating the crucial
parameters of the cost metric and re-applying them to the model?

To achieve the mentioned goals we implemented a framework which is capable to collect and
aggregate product and process metrics from various sources including the source code and the
integrated development environment. The framework detects the modifications between revisions,
and tries to predict the effort of further changes.

2 Overview

The overall process is shown in Fig. 1. The experiment starts with a measurement phase where
the used data is collected from various sources: the metrics about the evolution of the software,
the source code from the SVN version controlling system, and the metrics estimations which were
given by the project manager. This phase has two main tasks; to collect and calculate the process
and product metrics, and to detect and group the modifications of the source code between the
revisions. The metrics and the modification groups are sent to the GA which prepares a population
of individual entities. During the initial set-up of the population and the evolution steps, two
metrics are calculated: Typed Modification (TMoD), which was defined as the weighted count of
modifications between two revisions; and Modification Effort (MEFF), the ratio of TMoD and the
net development time of these modifications. Afterwards the prediction model is tested and its
weighted F-measure value is used as fitness to rank the individuals in the population and select the
best entities for breeding. As the final step of the evolution cycle, the new weights of the modification
are calculated and the model is updated. When the precision reaches an appropriate value, the GA
stops and a new, enhanced model is built using the weights of the best entity in the final population.
This MEFF prediction model is the output of the execution of the framework.

Data was collected during the experiment from about 800 revision, about 75 days long. Both
R&D and industrial projects were analysed and the source code was written in Java language using
the Java EE 6 virtual machine and the Seam 2 framework. Altogether 2200 records were collected
as learning set.

3 Modification Effort Prediction

Process and product metrics were used together per source file basis as separated entities. Then,
the appropriate cost function was calculated from this data. The metrics used as predictors were
the followings: (i) Logical Lines Of Code (LLOC) (ii) c&K metric suit defined by Chidamber and
Kemerer|2] (iii) Estimated development time of a task, aggregated into 3 groups: short, medium,

Measurement

rave data
of revisions

estimations

metric

A 4

source code

~

Genetic Algorithm

—@®
collecting detecting and grouping
metrics modifications calculating calculating E::‘:stﬂg breed Meff
TMod Meff reeding prediction
(fitness)
d fF GA entiti modell
product || process modification TMo Me entities
metrics metrics groups

Fig. 1. Overview of the experiment

long. (TT) (iv) Developer’s Experience in Programming (DEP) (v) Number of File Access (NFA)
(vi) Number of Developers of File (NDF) (vii) Development Time (DT) *

To extend our previous framework, a new metric called Modification Effort (MEFF) was defined
which was calculated as the following: first, the modifications were grouped, based on the target
entity (e.g.: method) and the preformed action (e.g.: creation) [5]. The weighted count of the pre-
viously defined modifications was called Typed Modification (TMobD), this expresses the different
amount of developer’s effort used in the modifications. The ratio of the net development time with
the TMoD is the MEFF metric.

The weight was defined on the basis of the per groups of modification. We established a single
rule for each disjunct group which determined the contained relation.

The following modification groups were measured.

e class o creation o deletion o accessibility change

e method o creation o deletion o accessibility change o prototype change o return type change
o size change

e data member o creation o deletion o accessibility change o type change

Instead of the Level of Modification Complexity (LMC) — defined as the ratio of the Effectively
Changed Lines Of Code (ECLOC) for the next change of the file/class and DT, the net development
time between two revisions [3,4] — MEFF was used as the target function, which was equally labelled
with: low, medium and high values.

The Weka framework [6] machine learning and the 10-fold cross-validation utility were used to
evaluate our model. The weight sum of the F-measure was chosen as the fitness value which is the
harmonic mean of precision and recall.

4 Genetic Algorithm

SBSE was used to fine tune the weights of the modification. The initial weight-vector was set by
our developer experience. The algorithm was iterated on the basis of previously set scenario. Our
assumption was that the genetic algorithm should converge to the suitable weights, which should
provide a more accurate estimation [7].

* detailed in paper [3]

As previously described, a weighted sum of the count of modification group was used as the
target function. A genetic algorithm (GA) was used to fine tune the weights of each group.

The individuals identified by its chromosome, which is a vector over the real numbers with
the same dimension. In the model each chromosome represents a weight-vector, and every element
determines the weight of a single modification group.

The fitness value is calculated for each individual by evaluating the model with the weights
defined in that particular individual. The final goal of the GA is to improve the precision of the
model. For classification problems, the F-measure value can give a reliable approximation of the
accuracy. The base model was not enhanced with the GA, but it was evaluated using the F-measure.
Thus the F-measure was chosen to be the fitness value of the GA.

An evolution step starts with the breeding process which consists of two steps, first, the ca
selects the two best entities with its fitness value. The crossover operator will apply only this pair.
Every call of the crossover operator produces exactly one child. The algorithm repeats the operation
to produce more than one child.

We used a uniform crossover logic. During the crossover the algorithm iterates via the elements
of the chromosome (vector) and randomly chooses an element from one of the two parents. Every
element has the same chance to be copied into the child’s chromosome [8].

The chromosome of the children is subject to mutation. A lower limit and an upper limit were
determined for the weights of the groups. During the mutation some elements (weights) of the
chromosome change. The algorithm gets the half of the distance between the limits and the current
selected weight and sets the current value either to the lower or to the upper half point. This way,
the two limits are never exceeded. Then, the child is included in the population.

The individuals with the worst fitness value are killed (removed from the population) to maintain
the size of the population, this way the current evolution step is completed and the algorithm
proceeds to the next generation [9,10].

The above mentioned GA parameters and their values are shown in Tab. 1.

Table 1. GA parameters

initial mutation rate 100%
mutation rate 50%
mutation lower limit 0.5
mutation upper limit 100
birth count 2 child per evolution step
crossover rate 2 crossover per evolution step
population size 200 individuals
generation count 50 generation

5 Preliminary Results

As shown in Fig. 2, the fitness value of the prediction grows in every case. Tab. 2 shows the same
fitness values. As it can be seen in Tab. 3, the average grows with about 18 percent. It is also
relevant that in the worst case our model proves to be better with about 16 percent.

With these pieces of information the two research questions can be answered.

80%

70%

60%
50%
40% - M base model
30% - Oenhanced model
20% -~
10% -
0% - T T !
Projectl Project2 Project3 Projectd

Fig. 2. Fitness values of prediction per project

Table 2. Fitness values of prediction per project

Projecti Projectz Projectg Projectq

base model 59,8000% 47,0000% 44,2000% 45,3000%
enhanced model 75,2630% 66,6425% 67,4835% 60,2791%

Table 3. Comparison of models

worst best average median

base experiment 44,2000% 59,8000% 49,0750% 46,1500%
enhanced model 60,2791% 75,2630% 67,4170% 67,0630%
difference 16,0791% 15,4630% 18,3420% 20,9130%

RQ. 1 Yes, it is possible. Our model gives a better estimation from the beginning of the evolution
and the population average fitness value is higher in every generation.

RQ. 2 Yes, the use of the GA can improve precision. With this simple GA implementation a signifi-
cant improvement was reached.

The weight of groups was aggregated from all four projects and weighted with the size of the
learning set. Two aspects were created to examine the validity of the weights calculated by the GA.

deletion
29%

Fig. 3. Aggregated weights of groups

These aspects are shown in Fig. 5. The values can be interpreted as the importance of a mod-
ification, i.e. how much gain will be achieved by applying the modification. The diagram on the
left shows a by action aggregation. As it can be seen, the creation and deletion are more important
than the type and visibility changes. On the right side, a subject based aggregation can be seen.
The most important modification was applied on the method elements which included the method
body modifications as well.

6 Conclusion and Plans

In this paper, we present two new metrics and a new procedure with which we can increase the
effectiveness of our modification cost prediction method based on product and process metrics and
machine learning. Our previous results have been improved with the introduction of new metrics
(TMob, MEFF) used as target function, and by using a genetic algorithm to calibrate certain
crucial parameters required by the model. We were able to increase the success of the prediction
model significantly. We manually investigated the final parameter values produced by the GA. These
parameters seem to be valid based on our own developer experience, but further analysis will be
needed to validate the results.

In the future, we plan to prepare a new set of parameters by collecting developer experience
within our team. We plan to use a questionnaire and compare the results with the automatically
calculated ones, which do not use the bias of developer experiment. We also plan to repeat the
experiment on a bigger dataset and apply the method to achieve different goals like comparing
projects or developer productivity. We would like to fine tune our GA with the testing of some other
crossover operator or fitness value.

References

1. Mockus, A., Weiss, D.M., Zhang, P.: Understanding and predicting effort in software projects. In:
Proceedings of the 25th International Conference on Software Engineering, IEEE Computer Society
(2003) 274284

2. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Transactions on
Software Engineering 20(6) (1994) 476—493

3. Toth, G., Végh, A.Z., Beszédes, A., Gyimo6thy, T.: Adding Process Metrics to Enhance Modification
Complexity Prediction. In: Proceedings of the 1g9th IEEE International Conference on Program Com-
prehension (ICPC’11), Ieee (June 2011) 201-204

4. Toth, G., Végh, A.Z., Beszédes, A., Schrettner, L., Gergely, T., Gyimothy, T.: Adjusting Effort Esti-
mation Using Micro-Productivity Profiles. In: Proceedings of the 12th Symposium on Programming
Languages and Software Tools (SPLST’11). (2011) 207—218

5. Abdi, M.K., Lounis, H., Sahraoui, H.: Using Coupling Metrics for Change Impact Analysis in Objec-
t-Oriented Systems. In: Proceedings of the 10th ECOOP Workshop on Quantitative Approaches in
ObjectOriented Software Engineering QAOOSE 06. (2006) 61—70

6. Holmes, G., Donkin, A., Witten, I.. WEKA: a machine learning workbench. In: Proceedings of ANZIIS

‘94 - Australian New Zealnd Intelligent Information Systems Conference, IEEE 357—361

Cavicchio, D.: Adaptive search using simulated evolution. (1970)

Syswerda, G.: Uniform Crossover in Genetic Algorithms. (1989) 2 — g

9. Melanie, M.: An introduction to genetic algorithms. Cambridge, Massachusetts London, England, Fifth

(1999)
10. Sivanandam, S.: Introduction to genetic algorithms. (2007)

® 3

