
Extracting Facts with Columbus from C++ Code

Rudolf Ferenc,́Arpád Besźedes and Tibor Gyiḿothy
University of Szeged, Department of Software Engineering

{ferenc|beszedes|gyimi }@inf.u-szeged.hu

Abstract

Fact extraction from software systems is the fundamental
building block in the process of understanding the relation-
ships among the system’s elements. It is evident that in real
life situations manual fact extraction must be supported by
software tools which are able to analyze the subject system
and provide useful information about it in various forms.
These forms are most useful if they adhere to prescribed
schemas and this way promote tool interoperability. In this
work we outline our solution to tool supported fact extrac-
tion, which is built upon the reverse engineering framework
Columbus and is supported by schemas for the C++ lan-
guage. We describe the extraction process in detail and
show how the extracted facts can be used in practice by
processing the schema instances. We also introduce new
features of the Columbus system not published previously,
which among others include compiler wrapping and source
code auditing.

Keywords

Reverse engineering, fact extraction, tool interoperabil-
ity, standard exchange format, schema, C, C++, Columbus,
CAN, CANPP

1 Introduction

Software systems are rapidly growing and changing, so
source code written today gets out-of-date tomorrow. This
is among others due to the quickly changing market require-
ments and also due to the continuously upcoming new tech-
nologies. The always tight deadlines often prevent the de-
velopers to release a product properly with up-to-date doc-
umentation (design descriptions, source code comments,
etc.). As a result there is a great need to understand the
relationships between the different parts of a large system.

To comprehend an unfamiliar software system we need
to know many different things about it. We refer to this
information as facts about the source code. Afact is for
instance the size of the code. Another fact is whether a
class has base classes. Actually any information that helps

us to understand unknown source code is called a fact in
this paper. It is obvious that collecting facts by hand is
only feasible when relatively small source codes are investi-
gated. Real-world systems that contain several million lines
of source code can be only processed with the help of tools.

Tool supportedfact extractionis in our approach an au-
tomatized process during which the subject system is ana-
lyzed file-by-file with analyzer tools to identify the source
code’s various characteristics and their interrelationships
and to create some kinds of representations of the extracted
information. The form of the output of these tools is usually
prescribed by schemas.

By schemawe mean a description of the form of the data
in terms of a set of entities with attributes and relationships.
A schema instanceis an incarnation of the schema which
models a concrete software system. This concept is anal-
ogous to databases, which also have a schema (usually de-
scribed by E-R diagrams) that is distinct from the concrete
instance data (data records). Schemas have a very important
role in the process of fact extraction. They define the central
repository of the whole process where the facts are stored.
We designed two schemas that prescribe the form for stor-
ing the facts: theColumbus Schema for C++ Preprocess-
ing (for preprocessing related facts) [11] and theColumbus
Schema for C++(for the C++ language itself) [3].

To make the results of fact extraction widely usable, we
further process the schema instances to take various new
formats. These can be very simple transformations, like for
instance XML and HTML, but the processing can be much
more sophisticated, like calculating metrics and recognizing
design patterns. With the help of a so-called code audit pro-
cessing we implemented a new tool called CPPAudit (see
Section 3).

The main contributions of the paper can be summarized
as follows. Most importantly, we define in detail a process
for tool supported fact extraction. Taking the opportunity
we also present new features in the Columbus system: the
preprocessing schema, IDE integration, compiler wrapping
and code auditing, to name only few.

In the next section we will introduce the process of how
fact extraction can be done within the Columbus framework

and we also present the used tools. Furthermore, this sec-
tion describes how the extracted facts can be used in prac-
tice. We then present our code auditor tool in Section 3. Af-
terwards, we describe our experiments in Section 4, which
shows that our methods can be applied in real-world cases.
Finally, in Section 5 we draw some conclusions and outline
directions for future work.

2 Fact Extraction with Columbus

Figure 1. The user interface of Columbus REE

Columbus[4] is a reverse engineering framework, which
has been developed in cooperation between the University
of Szeged, the Nokia Research Center and FrontEndART
[5]. The main motivation behind developing the Columbus
framework was to create a toolset which supports fact ex-
traction and provides a common interface for other reverse
engineering tasks as well.

The main tool is calledColumbus REE(Reverse Engi-
neering Environment), which is the graphical user interface
shell of the framework (see Figure 1). The Columbus REE
is not limited for the C++ language; all C++ specific tasks
are performed by different plug-in modules of it. Some of
these plug-in modules are present as basic parts, but the
REE can be extended to support other languages and re-
verse engineering tasks as well. By doing this we have
obtained a versatile and easily extendible environment for
reverse engineering. The framework contains further tools
as well (mostly command line tools), which actually do the
C++-specific jobs, like analyzing the source code and fur-
ther processing the results.

The outline of the extraction process within the Colum-
bus framework can be seen in Figure 2. The process consists

of five consecutive steps where each step uses the results of
the previous one. These steps may be performed fundamen-
tally in two different ways: using the visual user interface of
Columbus REE, or using only the command-line programs.

The steps of the fact extraction process will be described
in the following. An important advantage of the presented
steps is that they can be performedincrementally, that is, if
the partial results of certain steps are available and the input
of the step has not been altered, these results must not be
regenerated.

Step 1: Acquiring project/configuration information

Acquiring project/configuration information is indispens-
able to carry out the extraction process. The source code of
a software system is usually logically split into a number of
files and these files are arranged into folders and subfolders.
Furthermore, different preprocessing configurations can ap-
ply to them. The information on how these files are related
to each other and what setting apply to them are usually
stored either inmakefiles (in the case of building software
with themaketool), or in differentproject files(in the case
of using differentIDE-s – Integrated Development Environ-
ments).

We introduce a so-calledcompiler wrappingtechnique
for using makefile information and two different approaches
for handling IDE project files: IDE integration and project
file import.

Compiler wrapping . Makefiles can contain not only
the references to files to be compiled and their settings but
can also contain various commands, like invoking external
tools. These powerful possibilities are bad news for re-
verse engineers, because every action in the makefile must
be somehow simulated in the reverse engineering tool. This
can be extremely hard or even impossible in some cases.
We approached this problem from the other end and solved
it by “wrapping” the compiler. This means that we tem-
porarily hide the original compiler, and this way if the orig-
inal compiler should be invoked our wrapper program will
start instead of it, which executes first the original compiler,
and second, it invokes our analyzer tools as well. These are
invoked with the appropriate parameters in the same envi-
ronment to build up the required schema instances. This
way all we have to do is to build a software system as usual
(but with the wrapper switched on).

IDE integration . In this case our tool appears as a new
toolbar within the IDE and its operation is very similar to
the usual build process. The active project is analyzed and
the output can be transformed into any format supported
by the Columbus framework. (Currently Microsoft Visual
Studio 6.0 and .NET are supported.)

Project file import . The Columbus REE is able to parse
Microsoft Visual C++ 6.0 and .NET project files and to im-

2

� �������

� ���

� 	
 � � � 	 �

 	
 � �

 	 �
������� �
 � � ����� � � � � �

� � �

� � �

� � �

� � �

��� �����

�

 � � � �
� � � � �

� 	
 � �

� 	 � � �

 	 � � �

 	
 � �

� 	 � � �

� 	
 � �

� � ���"!

� 	 � � �

� 	 � � �

��� ���$# ��� ����%

�
 & � ' (
�
 � � (

 � �

� �
 � � �
�
 & � ' (
�
 � � (

 � �

� � � � � � � �
�
 & � ')(
�
 � � (

 � �

� � *
 � � � � �
�
 & � ')(
�
 � � (

 � �

� ��� + ��� � ')�

� ��� + , � � � �
 �

� � �

� 	
 � � ')�

� 	
 � -

� � ���/.

� � * 0 �
 � 1

 *
 � � 2 � � (� � *

�
 � * � ' (� � *

��
 3 � � � �
 2
� � * 0 �
 � 1

 *
 � � 2 � � (� � *

�
 � * � ' (� � *

� � * 0 �
 �
� � � � � ' (� � � � � � �

�
 � � � � * �
(
 (� 4 � � �

� � �

Figure 2. The fact extraction process

port all relevant information from them to be able to analyze
the project. All Columbus REE features can be used in this
case.

Manual setup. Besides these possibilities the project
can be built up by hand also in the Columbus REE (for in-
stance if no project information is available at all). A so-
calledProject Setup Wizardis available to help in this task.

Step 2: Analysis of the source code – creation of schema
instances

In this step the input files are processed one by one using the
project information acquired in the first step (for instance
macro definitions to be used and paths to different header
files to be included). First, the preprocessing and the ex-
traction of preprocessing related information is done with
the CANPPtool. Second, the preprocessed file is handed
over to theCAN tool, which then analyzes the file and ex-
tracts C++ language related information. Both tools create
the corresponding schema instances and save them into ap-
propriate files. This step is performed for every single input
file.

In the Columbus REE, the analysis of the input source
file is performed with the C++ extractor plug-in module,
which invokes the CANPP and CAN tools for carrying out
the real analysis.

CANPPis a command line program for analyzing C/C++
preprocessor related language constructs and for prepro-
cessing the code. The input is a C++ source file with various
settings (like include path and macro definitions), and the
outputs are the preprocessed file and the built up instance of
the Columbus Schema for C++ Preprocessing of the source
file.

CAN is a command line program for analyzing C++

code. The input of CAN is one complete compilation unit
(a preprocessed source file) and the output is the built up
instance of the Columbus Schema for C++ of the analyzed
unit. The C++ language processed by the analyzer meets the
ISO/IEC standard of 1998 [8]. Moreover, this grammar has
been extended with the Microsoft extensions used in Visual
C++, the Borland extensions used in C++ Builder and the
GCC extensions used in g++. The parser isfault-tolerant
(it has the ability to parse incomplete, syntactically incor-
rect source code), which means that it can carry on with the
analysis from the next parsable statement after the error.

Step 3: Linking of schema instances

After all the schema instance files have been created the
linking (merging) of the related schema instances is done
with theCANLinktool. This way, similarily to real compiler
systems that create files which contain C++ entities that log-
ically belong together (for example libraries and executa-
bles), the related entities are grouped accordingly. The out-
puts of this step are the merged schema instances for each
logical unit (subproject) of the analyzed software system.
These merged instances can be of course further merged
into one single schema instance to represent the whole soft-
ware system at the same time.

In the Columbus REE, the linking of the schema in-
stances created by CANPP and CAN is performed by the
C++ linker plug-in module, which invokes the CANLink
tool for carrying out the real linking.

Step 4: Filtering the schema instances

In the case of really large projects the previous steps can
produce large schema instances that contain huge amounts

3

of extracted data. This is hard to present in a useful way
to the user (he/she is usually interested only in parts of the
whole system at a given time). Different filtering methods
in the Columbus REE can help in solving this problem. (In
command-line based processes no such filtering methods
are available yet.)

There are three options for filtering:

• Filtering using C++ element categories, for instance
classes, templates and enumerations. With this option
all elements that do not belong to the selected cate-
gories will be filtered out.

• Filtering by input source files. All C++ elements that
come from the input files which are not selected are
filtered out. In this way all elements that come from
system libraries, for instance, can be easily filtered out
(these header files are not strictly part of the user’s
project).

• Filtering according to scopes. Different C++ elements
like classes or namespaces can be selected/deselected
individually in a tree-view browser that represents the
scoping structure of the project.

Step 5: Processing the schema instances

Because different C++ re- and reverse engineering tools
use different schemas for representing their data, the (fil-
tered) schema instances must be further processed. The pro-
cessing may consist of transforming the schema instance
into another format and/or applying further computations
on it. The following formats/applications are included in
the Columbus REE currently:

PPML and CPPML . This transformation permits the
creation of XML documents (calledPPML – Preprocessor
Markup Language andCPPML – C++ Markup Language)
that have structures based on the corresponding Columbus
schemas. The exported documents conform to their Doc-
ument Type Definitions, as described on FrontEndART’s
homepage [5].

GXL . With this transformation GXL representations can
be created from the extracted information.GXL (Graph eX-
change Language) [7] is an XML-based graph-description
format. Since the Columbus schemas basically define
graphs, this format is suitable for representing them in a
convenient way. The call graph of the analyzed system can
be also created in GXL form.

UML XMI . This processing allows the creation of stan-
dard UML XMI documents from the Columbus Schema for
C++. The XMI document contains the class diagram of the
analyzed project which can be further processed with XMI
enabled tools (like Rational Rose, Borland Together Con-
trolCenter, etc.).

Famix XMI . With this processing aFamix[2] XMI rep-
resentation of the extracted information can be created. This
format can be utilized in theCodeCrawlertool for visual-
ization and metric calculations.

RSF. Three transformations are available for creating
rigi RSF [9] documents: (1) a graph based on the Colum-
bus Schema for C++, (2) a call-graph and (3) a UML class
diagram-like graph. All of these use different rigi domains
which can be created with Columbus as well.

HTML documentation . This processing can be used
to create a hypertext documentation of the extracted project
in HTML form. The generated documentation presents the
project in a browsable and user-friendly fashion. All the
necessary information is presented about the classes and
other elements in a structured way. Three types of browser
frames are also supplied, with which a project can be easily
navigated. These present the classes using (1) their names
in alphabetical order, (2) the scoping structure and (3) the
inheritance relationship.

Metrics. With this processing 88 different object ori-
ented metrics are calculated from the schema instances.

Design Patterns. This processing checks the schema in-
stances for occurrences of design patterns [6] (see [1] for
details).

CPPAudit. This processing checks the schema instances
for different coding rule violations (see Section 3 for a de-
tailed description).

3 Code Auditing
A special-purpose tool was developed on top of the

Columbus fact extraction technology. This tool, called
CPPAudit, is a code auditor that is able to investigate source
code and check it against a set of rules (organized into rule
packages) that describe the preferred properties of the code.
These rules mostly involve issues related to coding style, but
in some cases they extend the warning reporting capabilities
of the compiler. Code auditing is performed according to
the available rule packages, of which there is a built-in one
calledgeneral. Further rule packages will be available sep-
arately, so the program can be easily extended at any time
with new packages.

From the user’s point of view the basic operation of the
tool is very simple: a subject system is analyzed and the
eventual rule violations found are supplied to the user. In-
ternally however, complex machinery is involved. Namely,
the same extraction process is performed as described in
Section 2: the source code is preprocessed and analyzed for
preprocessor- and language related facts, and the adequate
schema instances are produced. Then linking and default
filtering is performed (to select only facts strictly related to
the project). In the final step the filtered schema instances
are analyzed according to the chosen set of rules and finally
the warnings are issued on the output.

4

CPPAudit can be used in two ways. First, it can be used
in user makefiles with the same compiler wrapping technol-
ogy presented in Step 1 in the previous section. Second, the
tool can be integrated into the Microsoft Visual Studio 6.0
and .NET environments (it can be used to check Visual C++
projects) using the IDE integration capability of the Colum-
bus framework (see Section 2). In this case the tool appears
as a toolbar within the Visual C++ environment and its op-
eration is fully automatic: the project is analyzed and the
reported warnings are provided in the output window of the
environment.

4 Experiments

We executed the steps of the fact extraction process de-
scribed in this paper on an older version of StarOffice Writer
[10], which is a large open source C++ project. The follow-
ing table contains the size information of its source code:

Number of files Size LOC1

9 449 66.5MB 1 764 574

The project was set up in the Columbus REE, on an In-
tel P4-1900 machine with 512MB RAM running Windows
2000. The extraction time was 4 hours, 28 minutes and 25
seconds, and the memory consumed was 263 MBytes (full
analysis was performed – statements and expressions were
extracted as well).

The table below shows the number of some of the ex-
tracted items of the test project.

Classes Namespaces Functions
4 988 99 61 553

Objects Statements Expressions
23 862 308 774 3 062 519

As an experiment we processed the extracted facts and
successfully produced all supported formats. For example,
the CPPML file was 507MB large.

5 Conclusion and Future Work

In this paper we presented a reverse engineering frame-
work using which different facts about C++ source code can
be extracted. It is free for scientific and educational pur-
poses; our intention is to support academic persons in their
research work [5]. The framework relieves researchers of
the burden of having to write extractors for different pur-
poses and allows them to concentrate on their own concrete
research topic.

The main advantage of this work is that it offers an ex-
tendible framework for fact extraction and transformation.

1Lines of non-preprocessed code.

The framework already supports several popular tools like
rigi and CodeCrawler, but it can be easily extended to sup-
port any other reverse engineering tool as well. We de-
scribed how a complete fact extraction process can be per-
formed with our framework, and also outlined some new
features not published previously.

In the future we plan to extend the framework with addi-
tional processings to support even more RE tools and to add
new extractors for supporting additional programming lan-
guages. The development of a special-purpose tool similar
to CPPAudit is also in our plans for metrics calculation. We
already started a very challenging research about designing
a compact link between the Columbus Schema for C++ and
the Columbus Schema for C/C++ Preprocessing.

References

[1] Z. Balanyi and R. Ferenc. Mining Design Patterns from C++
Source Code. InProceedings of the 19th International Con-
ference on Software Maintenance (ICSM 2003), pages 305–
314. IEEE Computer Society, Sept. 2003.

[2] S. Demeyer, S. Ducasse, and M. Lanza. A Hybrid Reverse
Engineering Platform Combining Metrics and Program Vi-
sualization. InProceedings of WCRE’99, 1999.

[3] R. Ferenc and́A. Besźedes. Data Exchange with the Colum-
bus Schema for C++. InProceedings of the 6th European
Conference on Software Maintenance and Reengineering
(CSMR 2002), pages 59–66. IEEE Computer Society, Mar.
2002.

[4] R. Ferenc,Á. Besźedes, M. Tarkiainen, and T. Gyiḿothy.
Columbus – Reverse Engineering Tool and Schema for C++.
In Proceedings of the 18th International Conference on
Software Maintenance (ICSM 2002), pages 172–181. IEEE
Computer Society, Oct. 2002.

[5] Homepage of FrontEndART Software Ltd.
http://www.frontendart.com .

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns : Elements of Reusable Object-Oriented Software.
Addison-Wesley Pub Co, 1995.

[7] R. Holt, A. Winter, and A. Scḧurr. GXL: Towards a Standard
Exchange Format. InProceedings of WCRE’00, pages 162–
171, Nov. 2000.

[8] International Standards Organization.Programming lan-
guages – C++, ISO/IEC 14882:1998(E) edition, 1998.

[9] H. A. Müller, K. Wong, and S. R. Tilley. Understanding
Software Systems Using Reverse Engineering Technology.
In Proceedings of ACFAS, 1994.

[10] The StarOffice Homepage. http://www.sun.com
/software/star/staroffice .

[11] L. Vidács,Á. Besźedes, and F. Rudolf. Columbus Schema
for C/C++ Preprocessing. InProceedings of the 8th Euro-
pean Conference on Software Maintenance and Reengineer-
ing (CSMR 2004), to appear. IEEE Computer Society, Mar.
2004.

5

