
Continuous Software Quality Supervision Using
SourceInventory and Columbus

Tibor Bakota, Árpád Beszédes, Rudolf Ferenc and Tibor Gyimóthy
University of Szeged

Department of Software Engineering
{bakotat|beszedes|ferenc|gyimothy}@inf.u-szeged.hu

ABSTRACT
Several tools and methods for source code quality assurance
based on static analysis finally reached a state when they are
applicable in practice and recognized by the industry. How-
ever, most of these tools are used in an isolated manner and
very rarely as organic parts of the quality assurance process.
Furthermore, little or no help is provided in interpreting the
outputs of these tools. This paper presents SourceInventory ,
a system for source code-based software quality assessment
and monitoring, which is able to collect, store and present
measurement data including metrics, coding problems and
other kinds of data like bug numbers and test coverage in-
formation. It helps software developers, architects and man-
agers to take control over their software’s quality by per-
forming continuous code scans, fault detection, coding style
verification, architecture violation detection, and automatic
report generation considering metric baselines.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement; D.2.8 [Software Engineering]: Metrics

General Terms
Measurement, Management, Reliability, Verification

Keywords
Software quality assessment, static verification, continuous
measurement, software metrics, bug detection.

1. INTRODUCTION
In software quality assurance, the importance of static

verification and quality assessment techniques (a.k.a. static
testing) is increasingly recognized. To ensure sustainable
quality in a continuously evolving software system, quality
measurement is required to be a continuous activity during
software development and evolution. The maintenance and
evolution costs of software projects are significantly larger
than the initial development, generally around 70% of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’08, May 10–18, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-079-1/08/05 ...$5.00.

total cost. The biggest problem is, however, that these costs
inevitably increase as the system gets older, so the main
aim of continuous software quality supervision is to keep the
long-term maintenance costs as low as possible.

Over the past decades, many methods and tools have been
developed to assist static quality assessment (e.g. metrics
calculators, coding and design problem detectors, and re-
verse engineering tools). Unfortunately, little or no help is
generally provided in interpreting the outputs of these tools.
Using the analogy of a human patient, the tools provide
measurement results (laboratory findings), but no diagnosis
nor treatment is suggested for the “ill” software, although
this would be very much desired by important stakeholders
like project managers. Finally, it is very uncommon yet that
the results provided by these tools are integrated in a central
quality repository, which can be easily accessed and used on
a daily basis by the developers and managers.

SourceInventory is a step forward to overcome these weak-
nesses. The system is based on the Columbus technology1,
and it is able to collect, store and provide any kind of mea-
surement data including metrics, coding problems and other
kinds of data like bug numbers and test coverage informa-
tion. This paper introduces only SourceInventory, however
the complete Columbus technology includes a vast number of
supporting tools as well, like source code analyzers and dif-
ferent utilities. It is used in a number of industrial projects
in which large software systems consisting of many million
lines of code are continuously assessed for quality based on
source code analysis (e.g. at Nokia, evosoft, Erste Bank).

In projects where it has been applied the technology pro-
vided very useful service to the project teams by enabling
continuous supervision of the project’s quality in forms of
time line diagrams and automatic notifications on prob-
lems, for instance. The users of the framework have differ-
ent roles; developers benefit from concrete problem reports,
while managers are able to investigate higher level quality
attributes in different forms (helping diagnosis activity).

The Columbus technology and the SourceInventory sys-
tem is owned by FrontEndART Software Ltd.2, a spin-off
company of the University of Szeged. The tools are avail-
able for non-commercial research projects and education for
free.

1R. Ferenc, Á. Beszédes, M. Tarkiainen, and T. Gyimóthy.
Columbus – Reverse Engineering Tool and Schema for C++.
In Proceedings of the 18th International Conference on Soft-
ware Maintenance (ICSM 2002), pages 172–181. IEEE
Computer Society, Oct. 2002.
2http://www.frontendart.com

2. FEATURES AND USAGE SCENARIOS
In this section we will show the basic features of the

SourceInventory client user interface (see Figure 1), such as
creating diagrams, performing queries, and making reports.

Figure 1: Graphical user interface

System Overview
The simplest diagram in SourceInventory is the bar chart.

It is a great view to check basic properties of the monitored
source code. The first (upper) diagram in Figure 1 shows
basic size metrics for the source code of Mozilla Firefox:
TNCL (Total Number of Classes), TNA (Total Number of
Attributes), TNM (Total Number of Methods), TNF (To-
tal Number of Functions); and the number of serious prob-
lems: BDC (Bugs and Dangerous Constructs), MHP (Mem-
ory Handling Problems) and CP (Complexity Problems).

Histogram – distribution of items
The second (lower) diagram in Figure 1 shows the dis-

tribution of the classes of Mozilla Firefox according to their
WMC (Weighted Methods per Class) value, which is the sum
of the McCabe cyclomatic complexities of the class’ meth-
ods. The x axis represents the WMC complexity value and
it is divided into equidistant intervals. The y axis shows the
number of items (classes in this case) having a WMC value
falling into the corresponding interval. Note, that the first
few columns of the diagram are truncated for visualization
purposes. It can be seen that most of the classes have small
WMC values (the left-hand side columns are very high), but
there are also classes with higher complexities. About 9.3%
of the classes have complexity greater than 100 (which we
take as the baseline) and there are also 41 cases (0.8%) when
this value is greater than 500. One class is extremely com-
plex with a WMC value of 3228, which is nsHTMLEditor.
We found these numbers by performing searches by met-
ric values using the Search Dialog Box of SourceInventory.
Classes with high complexity can cause problems, as their
testing and maintenance is very difficult. (Class nsHTMLEd-

itor requires at least 3228 test cases!)

System Evolution
Continuous quality measurement and monitoring provides

the same advantages as using version control and bug track-
ing systems. One can check and explore the quality-history

of the system or some of its items. SourceInventory visual-
izes this information on so-called time lines. Figure 2 shows
the changing of the number of FE (Feature Envy) and TF
(Temporary Field) bad code smells in the source code.

Figure 2: Time line – system evolution

Change report

Creating reports about the analyzed system is a powerful
feature. One of the most important questions of software de-
velopers and architects is the following: “What did change?”
SourceInventory answers this question by providing a change
report (see Figure 3). The report lists the new, removed and
changed items in the system according to a selected set of
metrics (in the example these are the following: CBO – Cou-
pling Between Object classes, LCOM5 – Lack of Cohesion
of Methods and WMC – Weighted Methods per Class), and
shows the change of their metrics. The green (negative)
numbers show improvement, and the numbers shown in red
(positive numbers) mean quality decrease.

Figure 3: Changes in metrics – report

Problem report
The problem report (see Figure 4) is meant to provide use-

ful information usually for programmers. The report shows
all the coding errors, problems and bad smells in the source
code which the SourceAudit tool of the Columbus framework
can provide.

Figure 4: Problems in the code – report

Double clicking on a concrete problem line in the report
fetches the source code from the version control system (CVS,
Subversion or ClearCase), displays the code and highlights
the problematic parts in red (see Figure 5).

Figure 5: A highlighted problem in the code

