
Identifying Wasted Effort in the Field via Developer
Interaction Data

Gergő Balogh∗, Gábor Antal∗, Árpád Beszédes∗, László Vidács†, Tibor Gyimóthy∗ and Ádám Zoltán Végh‡
∗Department of Software Engineering, University of Szeged, Hungary

†MTA-SZTE Research Group on Artificial Intelligence, University of Szeged, Hungary
‡AENSys Informatics Ltd., Szeged, Hungary

{geryxyz, antalg, beszedes, lac, gyimothy}@inf.u-szeged.hu, adam.vegh@aensys.hu

Abstract—During software projects, several parts of the source
code are usually re-written due to imperfect solutions before
the code is released. This wasted effort is of central interest to
the project management to assure on-time delivery. Although
the amount of thrown-away code can be measured from version
control systems, stakeholders are more interested in productivity
dynamics that reflect the constant change in a software project. In
this paper we present a field study of measuring the productivity
of a medium-sized J2EE project. We propose a productivity
analysis method where productivity is expressed through dynamic
profiles – the so-called Micro-Productivity Profiles (MPPs). They
can be used to characterize various constituents of software
projects such as components, phases and teams. We collected
detailed traces of developers’ actions using an Eclipse IDE plug-
in for seven months of software development throughout two
milestones. We present and evaluate profiles of two important
axes of the development process: by milestone and by application
layers. MPPs can be an aid to take project control actions
and help in planning future projects. Based on the experiments,
project stakeholders identified several points to improve the
development process. It is also acknowledged, that profiles show
additional information compared to a naive diff-based approach.

I. INTRODUCTION

On-time delivery determines the daily life of software
companies, hence development productivity is a key point
to research and improve. The roots of software productivity
management and measurement go back to traditional industrial
production processes. However, since software development is a
process of always creating something new, the usual approaches
to productivity measurement – like the ratio of produced
uniform units per day – are not always applicable [20].

The history of software productivity measurement goes back
to the ’70s, and some observations of influence factors of
productivity still hold – like the previous experience with
programming language or amount of user participation [24].
However, productivity literature is mainly centered around the
notion of productivity influence factors and is less concerned
with productivity change dynamics. Several (prediction) models
have been set up on these factors like development team
characteristics, software reuse, technology/tools and methods,
etc. For a review on these factors we refer to [20].

Most of the approaches deal with macro-productivity, i.e.,
they try to reason about the (future) characteristics of a system’s
development process by considering coarse granularity data
available at higher levels of observation (such as projects and

tasks) [13]. These approaches try to use the highest possible
number of projects to reach generally applicable observations
if possible [9]. On the other hand, micro-productivity refers
to approaches where fine granularity data are collected and
used from lower levels of operation in the projects (that is,
elementary changes made to the system) [19]. The target of
our study is in the middle of the two approaches: it is built
up on fine grained productivity data to model productivity as
Micro Productivity Profiles (MPP), but enables to reason about
varying levels of software development productivity observation.
We can use MPPs to capture the amount of wasted effort as
the different observed amounts of work products produced
(such as changed lines) on short and long term. For example,
we can observe that a developer is able to modify x lines in
an hour of work on average, but when totalling for a day we
get y lines, where y < 8 · x. This difference is what we call
“wasted effort”, because many intermediate changes will be
cancelled over a longer period of time due to the inability to
work perfectly. A major issue with productivity measurement
is that such wasted effort may distort the measurement making
it difficult to interpret.

Projects would clearly benefit from measuring (and thus
controlling) wasted effort, however this is not simple. One of the
challenges is the approximation of development time which is
able to distinguish between types of developer activities. In our
approach, we use developer interaction data for approximation
of wasted effort. First, raw interaction data are collected within
the IDE and then Micro Productivity Profiles are computed
to aid reasoning about productivity, and hence the predicted
amount of wasted effort. Profiles show additional information
about productivity dynamics in software projects compared,
for example, to a naive diff-based approach. For instance,
using MPP-s it becomes visible what is the amount of changes
after which the long-term observable productivity settles, and
this could be a hint to project management about what is the
“natural” development cycle characteristic of the project and
team at hand.

We applied the proposed method in the field during the
development of a middle-sized J2EE project to aid the project
management with detailed productivity information. This paper
presents the following main contributions:

• We propose (division based) micro-productivity profiles
as a modification frequency based representation of

978-1-4673-7532-0/15 c© 2015 IEEE ICSME 2015, Bremen, Germany

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

52

391

development productivity, which can be used to express
productivity levels at different granularities.

• We evaluate a real-life development project where pro-
ductivity is analyzed with respect to milestones and
application layers.

The paper is organized as follows. We outline our motivation,
introduce the subject project and the way we obtain developer
interaction data in the following two sections. Productivity
measurement method is detailed in Section IV. Experiment
results are presented and evaluated in Section V, while we
discuss the results in Section VI. Related work is presented in
Section VII. Conclusions with future possibilities are outlined
in the last section.

II. MOTIVATION

The maintenance of software systems can be more and
more difficult as their size and complexity increases during
the development. The changing requirements can easily make
hours and days of work unnecessary, because the result of many
former modifications does not appear in the final version of
the source code. Similarly, temporarily accepted but imperfect
coding solutions cause extra coding work at a later point of
development.

Our partner experienced the obstructive nature of thrown-
away code during the development of a medium-sized, Java
Enterprise Edition based home security system. The motivation
of this paper is the investigation of a seven-month period in
the development of this web application, where we measured
the productivity of the work contributed by 17 developers.
The management reported that parts of the specification were
very inaccurate, which caused many iterations of modifications
related to the same components of the system. These parts
of the application are more difficult to maintain because the
frequent changes and corrections decreased the quality of the
source code. For the prevention of future maintenance problems,
we applied productivity-based measurement and analysis to
detect specific phases of the development process and parts
of the system, which need more accurate specifications and
design or any kind of intervention from the management. In this
paper we report our experiences in measuring and analyzing
productivity of the project.

III. FIELD EXPERIMENT

A. Subject System

We investigated the development of a medium-sized web
application, which is based on Java Enterprise Edition and Seam
2.3 platforms, and it contains approximately 2200 classes and
around 119k logical lines of code. The application is a part of a
home security system developed by AENSys Informatics Ltd.,
which is responsible for the management of various security
sensors installed at the end user’s apartment, and handling
security alerts sent by the sensors.

The development of the application was carried out iteratively
with some agile elements, so the project managers wanted to see
the effects of the changing requirements to the productivity of
the development in some measurable way to refine the further

iterations of the project. The technical leaders of the project
were interested in the productivity of different application layers
to see the sensitivity of the layers related to changes in the
application. The architecture of the system is divided into the
following five layers:

• User interface layer: it contains the implementation of
composite user interface components and general, complex
operations related to the user interface.

• Business logic layer: it is responsible for the management
of complex business processes and transactions. This layer
establishes connection between the persistence layer and
the user interface.

• Integration layer: it is responsible for the communication
with external systems and sensors.

• Utility classes: this layer provides general, common
functionality used by many other components and layers.

• Persistence layer: it contains the entities to be managed in
the system, and the high level implementation of database
operations related to the entities.

B. Measured Development Phases

We investigated a seven-month period (from 3 April 2013
to 7 November 2013) in the early stage of the development.
This period consisted of three main development phases:

• Phase 1 ("customer UI"): development of user interfaces
for customer users. It ended with Milestone 1 on 3 June
2013.

• Phase 2 ("provider UI"): development of user interfaces
for service provider users. It ended with Milestone 2 on
1 September 2013.

• Phase 3 ("Release"): development tasks related to the
preparation for the first release of the application.

During the investigated period 17 developers worked on
the project: 8 developers with at least 4 years of development
experience, 5 developers with 2-3 years of experience and 4
junior developers with less than 2 years of experience. All
developers committed their work to SVN version control system
at least once a day, therefore approximately 2200 revisions
were created by the developers.

Figure 1 shows an overview about the measured properties
of the project. Productivity data were collected from all three
phases. We identified the endpoints of each phase by an
SVN revision. Unfortunately we had to ignore the last one
(labelled as first release). Some developers did not use the
productivity measurement tool properly, so too few events
were collected from their work. Most of the data loss occurred
in the third phase, which caused that we could not collect
enough productivity data to analyze that phase properly.

C. Productivity Measurement Process

Our productivity measurement method relies on develop-
ment data including various developer actions in IDE, file
modifications and time logs. In order to accumulate important
project information, detailed traces are logged in the IDE.
Figure 2 depicts our productivity measurement process. In the
beginning of the development process, the project manager

392

Fig. 1. Overview of the history of the measured project

defines the tasks of the project on the productivity data collector
server. The developers work with the Eclipse IDE with the
productivity plug-in included, which monitors the detected
activities and uploads the collected events and data to the
server. The developers commit their source code modifications
to the SVN version control server. An internally developed
productivity data analysis toolkit processes and analyzes the
collected events, and calculates the real development time for
files in the project. A source code analyzer toolkit analyzes
the source code of revisions and compares them to each other
to find modifications between them. Using these two data sets,
productivity information can be calculated for the project.

Fig. 2. Measurement architecture

During the experiment developers used the productivity
measurement plug-in [1], which monitored the following types
of events and characteristics of the development:

• File events (opening, closing, creating, deleting, saving,
switching).

• Project events (creating, deleting, opening, closing).
• Events related to the user interface (editors, views, per-

spectives, dialogs, windows, etc.) in the IDE.
• Code execution events (starting, stopping, debugging,

profiling).
• Code editing events (cut, copy, paste).
• Keystroke and shortcut events from the keyboard.
• Detecting idle time intervals and interruptions. After a

predefined time limit is exceeded without any interactions
with the IDE, an idle time interval is detected, and a special
file event is raised, indicating that the actually opened
file is left unchanged by the developer. After another
interaction is performed with the IDE, the developer can
select that he/she worked on that file or not.

• The actual task of developer. The plug-in can download a
predefined list of tasks for the project, and the developer
can select his/her actual task and switch between tasks.
The task selector view of the productivity measurement
plug-in is shown in Figure 3.

• Every time a Java source file is saved, the structure of
the source file and some code quality metrics are logged.

Fig. 3. Task selector view of the productivity measurement toolkit

The collected productivity data can be used to calculate the
net development time of files in the project, by iterating over
the file events for each developer in the ascending order of
event timestamps. An example of a file event log entry in
JSON format can be seen in Listing 1. If the actually examined
file event is an open, switch or save event related to the file to
be investigated, its timestamp is the starting point of a time
interval which is relevant for the net development time of the
file. The ending point of the interval is the timestamp of the
next file event in the list. The net development time of the file
can be calculated by adding the lengths of all of these relevant
time intervals.

1 {
2 "registrationDate":"2013-06-05 15:14:54.446",
3 "file":"/TestProject/src/model/Person.java",
4 "project":"TestProject",
5 "type":"SAVE",
6 "developer":"developer1"
7 }

Listing 1. Example of a file event log entry in JSON format

D. Experiment Aims

To reason about project properties and help stakeholders, raw
productivity data must be processed. To analyze development
productivity data and reason about wasted effort, we use the
so-called Division based Micro-Productivity Profiles (MPPD
for short), which will be introduced in detail in the next
section. Using these productivity profiles we seek answers
to the following questions:

RQ 1 What differences are indicated by productivity
measurement about wasted effort in various parts
of the development process? More precisely:

1) What kind of relations can be observed between
the MPPD curves of various application layers?

2) Can we use the MPPD to show the changes
in the productivity during various phases of
development?

393

RQ 2 Which additional aspects of development productivity
can be revealed with the aid of the MPPD against a
naive diff-based approach?

IV. RESEARCH METHOD

In this section we give details on two key concepts of
our productivity measurement method: we introduce how
modification effort is expressed and present micro-productivity
profiles both in informal and formal ways.

A. Measuring Developer Productivity with Modification Effort

The first crucial component of measuring the overall devel-
oper productivity is to define a comparable measure of the effort
spent on various modifications. We model Modification Effort
during software development as the ratio of profit (program
code) and time spent to produce it [2]. To express the profit,
the natural metric is the produced lines of code. Instead of
counting the changed lines, we calculate profit using the count
of high level modifications, like method creation or deletion.
This adds an abstraction level to make difference between code
constructs, which require different effort but were written in
the same number of lines. Doing so this metric provides a more
detailed view about the various modifications in the source
code, than the CLOC tool or other the traditional metrics based
on the changed lines of code [17].

1 c l a s s I n t S e t
2 {
3 p r o t e c t e d double F i n d G r e a t e r (double l i m i t)
4 {
5 f o r (i n t _ i = 0 ; _ i < I t e m s . Count () ; _ i ++)
6 {
7 double _ c u r r e n t = I t e m s [_ i] ;
8 i f (_ c u r r e n t > l i m i t)
9 {

10 re turn _ c u r r e n t ;
11 }
12 }
13 }
14 }

Listing 2. Previous version (1)

1 c l a s s I n t S e t
2 {

3 p r o t e c t e d i n t- F i n d G r e a t e r (double l i m i t)
4 {
5 f o r (i n t _ i = 0 ; _ i < I t e m s . Count () ; _ i ++)
6 {

7 i n t- _ c u r r e n t = I t e m s [_ i] ;
8 i f (_ c u r r e n t > l i m i t)
9 {

10 re turn _ i ;-
11 }
12 }
13 }
14 }

Listing 3. Current version (2)

Modification Effort is a number to express the average
amount of performed modification during a unit of time. Let us
consider the following example. Code example in Listing 2 will

be used to illustrate the measures for expressing programmer
productivity.

The modified code in Listing 3 includes two changes over
the previous version occurring in three separate lines. The first
change refers to a “return type change” in line 3, while the
second one is a “method implementation change” in line 7 and
10. For the purpose of illustration let us assume that it takes 8
minutes for the programmer to implement both modifications
together.

Based on these values the modification effort can be
calculated by taking ratio of the sum of the modification and
the net development time:

1 return type ch. + 1 method imp. ch.
8 min

= 0.25

Notice that it is different from the naive method, which
only count the changed lines. We choose to use modification
effort, because during the implementation developers consider
methods and classes as logical units and not individual lines
of source code.

During our experiments the modifications of following source
code entities were collected:

• Attributes, for example int model.Person.age
• Methods, like int model.Person.getAge()
• Classes, consider the model.Person as an example
• Interfaces, for example java.lang.Iterable<T>

We count the existential (creation and deletion) and any other
changes of these elements. The fully qualified name is used
to identify an item. We note, that the sum can be weighted
according to the type of the modifications. In this study we
did not added weights to modification types to reduce the bias
of inaccurate weight vector assigned as determining proper
weights requires further research. In practice it means that we
count any modifications considering these four entities of the
source code.

B. Division based Micro-Productivity Profile

The central concept in our work is the Division based Micro-
Productivity Profile (MPPD for short), which measures the
frequency of changes in productivity at various granularity
levels. To understand the basic concept consider the following
scenario. Let us suppose we are able to measure the productivity
of the developer, i.e. the ratio of produced output and required
effort. The measured productivity depends on the sample size:
productivity measured on the whole development considers only
final program code, while measurements on weekly samples
consider thrown away program code as well. Thus, repeating
productivity measurement with various sample size lets us
estimate the wasted effort, i.e. where developers modified the
same code again. Informally, plotting these numbers as a curve
is what we call productivity profile.

Figure 4 shows the history of the source code, with its
revisions. We used a division based approach instead of the
approach with gradually growing the sampling window [18],
[19]. The figure illustrates both sampling methods: our division
based method (at the bottom) and the related window based

394

one (on the top). The window based method uses windows
with various size to swipe along the history. This let them
capture the wasted effort independently from the frequency of
the commits, but there are always a part of the history which
can not be measured, due the window extends over the last
revision.

To measure the neglected parts of the history we introduced
another technique for sampling the changes. To calculate the
initial value of the MPPD for the whole history (zero division
points), we compared the first and last revisions of the system,
i.e. the range is divided into one single part (P(0,0)) with no
intermediate points. The modifications were aggregated into
the Modification Effort metric. After that the algorithm moves
on to the next value for one, when we take one division point
in the middle of the range. It divides the history into two parts,
P(0,1) and P(1,1). In this iteration we compare each division
points with the subsequent ones – i.e. rev0-rev3, rev3-rev6 –
and compute the Modification Effort for these pairs. The value
of the MPPD is the sum of these values. As we continue with
two, three, four or more divisions, the range will be cut into
three, four, five or more parts and the productivity will be the
sum of more and more pairs. Notice that this method depends
on the frequency of the revisions, however in this particular
case the distribution of the commits allows us to use it without
any serious side effects.

Fig. 4. Equal division of revisions

A resulting curve (Figure 5) shows the superfluous effort
spent by developers during the implementation. In an ideal
case these would be zero and the MPPD would be a flat line.
In the real life these values are affected by the incomplete
specifications and requirements which are changing over time.
The steepness of the MPPD curve can be interpreted as the
ratio at which the developers re-modify the same code again.
Using these profiles instead the naive approach where only the
most fine- and coarse-gained divisions were compared, shows
not just the amount but the distribution (the frequency) of the
wasted effort.

While Figure 5 illustrates the underlying concept of MPPD,
Figure 6 shows a concrete example of the curve itself. The
measured productivity values are represented in the right,
vertical axis. As previously stated, these values increase for
higher number of divisions. There are nine distinct points each
for every sum of equal distance divisions parts.

Fig. 5. The underlying concepts of MPPD

Figure 6 shows a concrete curve based on repository commits
in the subject project. Besides the MPPD curve itself, the figure
compares time-based and revision-based division of the project
history. On the bar-chart at the top we displayed the average
number of SVN additions, deletions and modifications. At
the bottom part one can inspect the median and the average
elapsed time between the division points. Both the number
of SVN changes and elapsed times approximate a hyperbolic
function as it is expected from a gradually increasing division.
These facts confirm that our revision based approach provides
approximately equal divisions as dividing the development
phase based on elapsed time.

Fig. 6. Overview of MPPD over the whole history and its statistics

C. Formal Definitions

In this section we specify MPPD and the kind of data used
to compute it in a more formal way.

Definition 1. For a given software system we define R =
〈r0, . . . , rn〉 to be the ordered set of revisions of the source
code.

During the experiment various modification was collected
to grasp the effort spent by developers.

395

Definition 2. A modification m is any difference between any
two revisions, m ∈ diff(ri, rj) where i < j. We assign one
from a predefined set of types to each modification, based on
the affected source-code element and its affected property if
any, t(m) ∈ T .

Definition 3. δt(ri, rj) ∈ N is the count of modifications of
type t, between the revisions ri, rj . In other words δt(ri, rj) =
|M | where M ⊆ diff(ri, rj) and m ∈ M, t(m) = t.
Furthermore ∆(ri, rj) ∈ Nn is a vector over natural number
contains the counts of all predefined modification types between
the revisions ri, rj .

An equal distance division was used to determine points of
comparisons.

Definition 4. We define the equal distance divisions for an
ordered set as a list of indexes:

j =

⌊
i · n

d+ 1

⌋
Where n ∈ N is the number of revisions, i = 0, . . . , d+1 is the
index of parts and d ∈ N is a predefined number of divisions.
R

(d)
i is also used to simplify further definitions, which is the

ith revision of the equal distance division with d dividing point.

Definition 5. Productivity P
(d)
i for a given equal distance

division is

P
(d)
i =

∆(R
(d)
i , R

(d)
i+1)

tdeveloper

where tdeveloper is the net development time between R(d)
i and

R
(d)
i+1.

Definition 6. The division based micro-productivity profile is
defined as a function over natural numbers, mppd : Z→ Q.
It assigns the sum of all productivity values for a given equal
distance division:

mppd(x) =

x+1∑
i=0

P
(x)
i

Notice that in a perfect world the mppd is a constant
function, mppd(i) = mppd(0); however in real life software
development it is always increasing (mppd(i) ≤ mppd(i+1))
because of re-written code. Productivity values may incorporate
wasted effort, so a higher P (d)

i value does not necessarily mean
better overall productivity.

V. EVALUATION

Using the measurement architecture presented above, we
monitored the development activities of the developers in
the presented project, and examined the productivity data
of the developer team using the MPPD profiles produced
by our analysis tool-chain. We calculated MPPD profiles for
the following examination aspects: comparison of profiles of
different development phases and different application layers,
examining profiles of the developer team during the whole
7-month period of the project.

We present our findings grouped according to the research
questions in the following sections.

A. RQ1 – Division based Micro-Productivity Profile for the
Characterization of the Development Process

1) Productivity over Development Phases: We investigated
productivity over two phases of the development. During these
phases two main components were implemented: the customer
user interface in the first, and the provider user interface in
the second. The MPPD-s calculated for different development
phases are shown in Figure 7. The collected productivity data
and the calculated MPPD curves show different shapes. The
developers create more modifications during the implementation
of provider UI hence it has higher MPPD values. Furthermore
there is a slight increase in its steepness which denotes that
there are more unnecessary modifications (i.e. possibly wasted
effort) during this phase than the previous one.

Fig. 7. MPPD over development phases

These differences can be explained by the fact that there was
more rigid specification for the customer UI than the provider
UI as reported by the project manager. This means that the
developers of provider UI had to discover the possibilities
considering the technical details of the implementation. By
doing this they produce more code, and change more compo-
nents. They also need to adapt the existing solutions to the
new requirements which results in more rewritten parts of
the source code and more unnecessary modifications. In this
particular case it means that managers should rearrange they
resources and provide a more detailed specification for the
provider UI. The slightly higher steepness of this curve shows
a manageable amount of wasted effort, but we suggest that it
should address to prevent the further grow.

2) Productivity over Application Layers: Figure 8 shows
the MPPD-s for the development productivity of the developer
team related to the five layers of the application. The MPPD of
the utility layer has very high steepness, therefore differences
between MPPD-s of the other four layers are not clearly visible.
For this purpose, Figure 9 shows their differences without the
utility layer.

The higher productivity values near the right hand side of
the curve and steepness in the MPPD of the utility layer can
be explained by the fact that this layer has to provide the
most reusable solutions for the most general problems. Its

396

Fig. 8. MPPD over application layers (all)

Fig. 9. MPPD over application layers (exluding utility)

components should be easily usable from any of the other
layers, therefore the requirements related to the interface of
this layer changes very often. This may result in frequent
modifications in the source code of the layer, in addition, many
changes do not appear in the final revision of the application.
The developers also verified that most of the unnecessary
modifications were related to utility classes. However we do
not suggest that these modifications are strictly wasted effort
and developers should stop writing utility classes, but they
have to be aware of the nature of this layer and try to reduce
the amount of rewritten code. It can be achieved by careful
planning of the common functionalities and inspecting the
feature specification of other layers.

The user interface layer in this context contains only the
Java implementation of general, composite components and
operations used by the web pages of the application. This layer
also has to provide general solutions for different types of
pages, and the developers also stated that several components
in this layer needed many modifications to follow the changing
requirements. This fact explains that the MPPD of the user
interface layer has the second highest steepness.

Some slight increase can be observed in the MPPD of the
business logic layer which can be originated from the changing
requirements of the service provider related functions. The
MPPD curves of the other two layers are quite flat, which can
be verified by the facts, that the persistence layer has been
well designed, and the integration layer depended only on

the fixed interfaces of the external systems and sensors to
be integrated. Therefore these layers did not need significant
number of modifications after the implementation.

B. RQ2 – Division based Micro-Productivity Profile versus
Naive Diff-based Approaches

There are several approaches to measure the unnecessary
work of developers. The most simple and naive methods use
some kind of historical data about the development to calculate
the differences between the number of changes. For example
one can measure the amount of changes of code in every single
step of the implementation, then subtract the number of changes
between the first and last state of the system. The underlying
concepts of these type of algorithms are independent of the
method of change detection.

Fig. 10. Estimation of unnecessary changes from SVN logs

We implemented this naive diff-based concept using the
deletions and additions from the SVN log to estimate the amount
of unnecessary changes as shown in Figure 10. In practice
the precision of these methods highly depends on the unit of
the measurement. As stated before we use the modification
effort metric to express the productivity. It has more descriptive
power than the simple LOC based counterparts as reported in
by Balogh et al. [2]. While these approaches are able to capture
the total amount of unnecessary work, they fail to give any
insights about the processes that generate these superfluous
changes. Those methods, which are able to give useful help for
the participants to improve the processes are more successful
in practice. The MPPD curves provide details about subtle
productivity changes over time. To assign precise meaning to
the shape of these curves requires further analysis, but some
practical suggestion can be concluded already. These hints
concern mainly the development process and provide help for
the managers. For example the shape of the MPPD can be used
to plan the time of various activities during the project, like
code reviews and milestones (see discussion below).

The main difference between the two methods is that the
naive diff-based concept gives a very inaccurate approximation
for the development time of the changes. The time elapsed
between two commits of the same developer is necessarily
much greater than the real development time of the changes
by the developer. The intervals collected from SVN logs often
contain parts which are not related to working time (nights,

397

weekends, holidays etc.). These can be approximated by daily
working time of developers. But there are further problems
caused by other parts of the working time, which are not related
to the implementation of the software: meetings, activities
related to documentation or time spent on other parallel projects
etc. Our approach collects events related to interactions with
the IDE to give a more accurate approximation for the real
development time of the changes in the software.

VI. DISCUSSION

A. Benefits and Drawbacks of the Approach

Considerations shown in the previous section reveal that
MPPD curves provide a new viewpoint for the development
process and can be used to help managers plan the monitoring
of future developments. In this section we discuss benefits and
drawbacks of the method and highlight future possibilities for
project leaders opened by MPPD measurements.

One benefit of MPPD curves is that they show not just how
much effort was spent or wasted, but the time periods when
these more likely to happen, i.e. the frequency of productivity
changes. To utilize this we distinguished two types of regions
during the analysis of the MPPD curve in Figure 11, which
represents the frequency of the productivity changes over the
whole project. There are plateaus where the steepness of the
function is closer to zero and ramps where it is higher. Suppose
that the project managers plan to monitor the efficiency of
the further development, but they have limited resources and
would like to minimize the number of code review sessions.
Our suggestion is to place these sessions either before or after
each ramp, and do not measure quality more than once inside
a plateau. If a review is placed after each ramp, the suggested
frequencies can be calculated as the lengths of intervals created
by the given numbers of division points at the end of the ramps.
In this particular case, the whole measured period of the project
was 218 days long, therefore the best frequencies of reviews are
218
2+1 ≈ 72, 218

5+1 ≈ 36 and 218
8+1 ≈ 24 days. These are close to

the one-month period, which means the manager needs to hold
a review session once every month. The MPPD curve shows that
increasing the frequency will introduce measurement where
productivity value do not change significantly, i.e. measuring
more than once per plateau. On the other hand, if they decrease
the period there will be left over phases when the developers
make many unnecessary modifications, which will be visible
for the management only in a later phase of the project.

Another benefit of the productivity measurement is that the
results can be used to improve the efficiency of the developer
team. In the future, we would like to examine the MPPD curves
of different developers, which can be used to determine whether
a developer can work effectively with a given technology or
on a given application layer. Therefore, developers can be
educated more effectively, and they can be assigned to tasks
that are the most suitable for them.

Project managers and technical leaders of AENSys Infor-
matics Ltd. examined the MPPD curves, and they concluded
that their development model should be changed in the future.

Fig. 11. MPPD over the whole range

Based on the measurement results, the new development model
will have the following properties:

• A testable application prototype should be created as
soon as possible in every iteration. The customer can
make decisions more easily with the testing of a working
application prototype, than with the examination of
documents with a lot of mockups and flow charts.

• It should concentrate on the detailed elaboration of short-
term tasks, and the appropriate selection of developers for
the critical application layers (e.g., utility layer) to avoid
unnecessary code modifications.

• It should allow the dynamic reallocation of resources to
neutralize the differences between MPPD-s of different
application layers.

• It should use a scheduling with one-month periods, as it
was suggested earlier.

We need to discuss drawbacks of the method as well. The
success of the productivity measurement depends on the active
and proper use of the Eclipse plug-in by the developers. The
amount of extra effort due to measurements is critical. The
plug-in is designed to be seamlessly incorporated into the
daily work of developers. The developers were required to
maintain one extra information: the task they are actually
working on. Although the task information is only a small plus,
we experienced that some programmers did not use the plug-
in properly, which caused a significant data loss in the third
development phase. Based on the analysis of the experiences
of the team after the project, the reason for improper use fo the
tool was not the high amount of extra effort, but insufficient
motivation by the management and also some technical issues.

Despite the careful design, interaction-based measurements
in general require additional effort compared to solutions solely
based on version control systems. On the other hand, the ease of
information extraction may be a trap in this latter case. Rough
approximations in the base data – like time estimation based on
commit timestamps – may provide uncertain results. Interaction
data contains more accurate and detailed information. The plug-
in collects per user and per task data as well, which enables
low level evaluation of the work in progress. This is invaluable
when the stakeholders aim to make evidence-based decisions.

398

B. Lessons Learned
In the following we present a brief take away message of

our experiences.
• Interaction based productivity measurement can be (al-

most) transparent. A primary expectation was that the
experiment must not hinder the work of the developers.
The IDE plugin required small extra effort and significant
part of the collected data could be finally used.

• The vertical position of the profile enables the comparison
of productivity and wasted effort. In this particular case
project managers noticed that the curve of provider UI
is always above customer UI, so they can rearrange the
resources in the future.

• Identified wasted effort does not always originate from bad
design or planning, but from the nature of the task at hand.
As Figure 8 clearly shows, the steepness of the MPPD
related to the utility application layer is much higher then
the other ones. In this particular case utility classes were
continuously rewritten to reflect the needs of evolving
features in other layers. We found these changes much
likely to be updates and not reimplementation of existing
features.

• The additional time related information, which are en-
coded into the shape of the MPPD can be used to plan the
project. Especial the frequency of the milestone and larger
code review sessions can be adjusted by considering the
position of plateaus and ramps, introduced in previous
section and shown on Figure 11. By doing so managers
have more chances to capture wasted effort with low
additional overhead.

C. Threats to Validity
The presented experiment is conducted on a single project,

thus it is appropriate for introducing the advantages and
usefulness of the proposed method, and not for modeling
productivity or for drawing general conclusions on productivity
factors for other systems. Likewise, the measurement strongly
relied on the fact that the investigated application was developed
in Java programming language with Eclipse IDE.

As already mentioned, we experienced a significant data loss
in the third development phase. To overcome this threat, we
measured the ratio of data loss alongside productivity. There
are two major factors of data corruption in this research. First
is the improper measurement of source code modifications, the
second is the missing information about the net development
time, caused by improper use of the Eclipse plug-in by the
developers. We are able to eliminate the first of these by using a
sophisticated static code analyzer. On the other hand there was
6% of data corruption caused by the second kind. These are
concentrated to the third phase of the project. This seemingly
low error level render the calculated profile useless so we had
to drop these data altogether from the analysis.

The used method is highly sensitive of the predefined
modification types and their weights. The current measurement
used the trivial unit weight function, however this may blur
some aspect of the development process (e.g., addition is more

complex than deletion). The modification detection component
of the model was designed for object oriented languages, hence
it can not be applied in the case of systems with other paradigm.
However, we believe that with necessary modifications the
concept can be easily adapted to other paradigms as well.

Another internal threat is the sensitivity of the MPPD curves
to the homogeneity of measurement points in time. To eliminate
this dependency we plan to introduce a new sampling algorithm
over the history of the source code.

VII. RELATED WORK

The area of cost and productivity estimation is constantly a
frequent topic in software engineering literature. Productivity
research is mainly centered around productivity influence
factors. Traditional factor-based models for measurement and
prediction include Putnam’s SLIM, Albrecht’s FP method of
estimation, the COnstructive COst MOdel (COCOMO and
COCOMO II) [3]. One may distinguish technical and soft
factors that influence productivity [23]. We refer the interested
reader to the survey of Trendowicz and Münch [20].

An effort estimation model was introduced by Mockus et
al. [11], which predicts the amount and the distribution of
maintenance effort over time. Several change oriented factors
were included like change type, status, size, rate of size and
complexity. It is found that the elapsed time collected from the
version control system is not an appropriate indicator of effort.
We overcome this inaccuracy by collecting net development
time directly from the IDE.

Product metrics are often used for prediction of maintenance
effort, such as the the well-known group of object-oriented
product metrics has been proposed by Chidamber-Kemerer [4].
Soft factors like developer’s expertise has already been inves-
tigated in the fault prediction area. Mockus and Weiss [10]
found that change diffusion and developer’s expertise were
essential to predict failures. Apart from measuring productivity,
it is also studied how to increase productivity of developers
through motivation factors [22].

Our approach aims at micro-productivity, where fine granular-
ity data are collected and used from lower levels of operation
in the projects. Donzelli [5] used data from a real project
to show that using a combination of different maintenance
practices is needed to maximize maintenance performance.
Junio et al. [8] applied the k-means clustering algorithm for
partitioning and grouping the maintenance requests. By their
PASM process the grouping of maintenance requests helps to
improve productivity.

To measure the productive effort, several development
monitoring tools can be used. They collect data about the
actual task of the developer, time to be spent on a task, lines
of code or bug details (e.g. Jasmine [15], Dashboard [14],
PSP [16], Hackystat [7]). Others can be used for the monitoring
of activities and interactions on the user interface of the
development environment. Most of these IDE usage monitoring
tools were developed for the Eclipse IDE. A usage monitoring
tool was included in the Eclipse IDE itself until version 3.7,
which is called Usage Data Collector (UDC) [6]. It could

399

capture events related to perspectives, views, menus, toolbars,
and editors. The collected data were uploaded to servers hosted
by the Eclipse Foundation. The Mylar Monitor [12] can also
collect many types of user interface events and commands in
the Eclipse IDE. The CodingSpectator plug-in can monitor the
usage of refactoring commands in Eclipse, but its extended
version, the CodingTracker plug-in can capture events related
to files, Version Control System interactions, and application
runs [21]. Our productivity plug-in combines the advantages
of both types of monitoring tools, since it handles higher level
tasks and provides detailed logs of developer activities.

VIII. CONCLUSIONS AND FUTURE PLANS

In this paper we presented a productivity measurement
method applied in an ongoing development project with 17
developers for a 7 months period. We propose division based
micro-productivity profiles, a novel approach to model and
measure productivity at fine grained level to reason about
productivity at various granularity views of the project. We used
micro-productivity profiles for in depth productivity analysis
of project milestones and application layers. We showed
the advantages of using profile curves over traditional, diff
based measures that provide only one final value about the
investigated phase of development.

Our experiment showed that MPPD curves are capable to
encapsulate and present different aspects of the amount of
productivity and its changes over the development process.
Besides detecting the amount and the frequency of wasted
effort, these profiles are able to show the amount of required
effort for the whole project or just a specific application layer.
These properties let the management fine tune the schedule of
the project and reassign resources to the most sensitive tasks.

Productivity profiles could be used for analyzing other
aspects of the development process as well. For example,
MPPD curves can be computed for each developer working on
a project, to compare their productivity. In the future, we plan
to apply the proposed method on developer data to analyze per
developer behavior and to investigate the effect of soft factors
on productivity.

REFERENCES

[1] Gábor Antal, Ádám Zoltán Végh, and Vilmos Bilicki. A methodology
for measuring software development productivity using Eclipse IDE. In
Proceedings of the 9th International Conference on Applied Informatics
(ICAI 2014), 2015. Accepted.

[2] Gergő Balogh, Ádám Zoltán Végh, and Árpád Beszédes. Prediction
of Software Development Modification Effort Enhanced by a Genetic
Algorithm. SSBSE Fast Abstrackt track, pages 1–6, 2012.

[3] Barry W Boehm. Software Engineering Economics. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1981.

[4] Shyam R Chidamber and Chris F Kemerer. A metrics suite for object
oriented design. IEEE Transactions on Software Engineering, 20(6):476–
493, 1994.

[5] Paolo Donzelli. Tailoring the software maintenance process to better
support complex systems evolution projects. Journal of Software
Maintenance, 15(1):27–40, January 2003.

[6] Eclipse Usage Data Collector. http://www.eclipse.org/org/usagedata/.
Accessed: 2015-03-30.

[7] P.M. Johnson, Hongbing Kou, J. Agustin, C. Chan, C. Moore, J. Miglani,
Shenyan Zhen, and W.E.J. Doane. Beyond the personal software process:
Metrics collection and analysis for the differently disciplined. In 25th
International Conference on Software Engineering (ICSE 2003), pages
641–646, May 2003.

[8] Gladston Aparecido Junio, Marcelo Nassau Malta, Humberto de Almeida
Mossri, Humberto T Marques-Neto, and Marco Tulio Valente. On the
Benefits of Planning and Grouping Software Maintenance Requests. In
15th European Conference on Software Maintenance and Reengineering
(CSMR 2011), CSMR ’11, pages 55–64, Washington, DC, USA, 2011.
IEEE Computer Society.

[9] Robert Lagerström, LivMarcks von Würtemberg, Hannes Holm, and
Oscar Luczak. Identifying factors affecting software development cost
and productivity. Software Quality Journal, 20(2):395–417, 2012.

[10] A Mockus and D M Weiss. Predicting risk of software changes. Bell
Labs Technical Journal, 5(2):169–180, 2000.

[11] Audris Mockus, David M Weiss, and Ping Zhang. Understanding
and Predicting Effort in Software Projects. In In 2003 International
Conference on Software Engineering, pages 274–284. ACM Press, 2002.

[12] G.C. Murphy, M. Kersten, and L. Findlater. How are Java software
developers using the Eclipse IDE? Software, IEEE, 23(4):76–83, July
2006.

[13] R. Premraj, M. Shepperd, B. Kitchenham, and P. Forselius. An empirical
analysis of software productivity over time. In Software Metrics, 2005.
11th IEEE International Symposium, pages 10 pp.–37, Sept 2005.

[14] Process Dashboard homepage. http://www.processdash.com/, 2015.
[15] Hyunil Shin, Ho-Jin Choi, and Jongmoon Baik. Jasmine: a PSP

supporting tool. In Proceedings of the 2007 international conference
on Software process, ICSP’07, pages 73–83, Berlin, Heidelberg, 2007.
Springer-Verlag.

[16] Raymund Sison, David Diaz, Eliska Lam, Dennis Navarro, and Jessica
Navarro. Personal Software Process (PSP) Assistant. In Proceedings of
the 12th Asia-Pacific Software Engineering Conference, pages 687–696,
Washington, DC, USA, 2005. IEEE Computer Society.

[17] Gabriella Tóth, Ádám Zoltán Végh, Árpád Beszédes, and Tibor Gyimóthy.
Adding Process Metrics to Enhance Modification Complexity Prediction.
In Proceedings of the 19th IEEE International Conference on Program
Comprehension (ICPC’11), pages 201–204. Ieee, June 2011.

[18] Gabriella Tóth, Ádám Zoltán Végh, Árpád Beszédes, Lajos Schrettner,
Tamás Gergely, and Tibor Gyimóthy. Adjusting Effort Estimation
Using Micro-Productivity Profiles. In 12th Symposium on Programming
Languages and Software Tools (SPLST’11), pages 207–218, 2011.

[19] Gabriella Tóth, Ádám Zoltán Végh, Árpád Beszédes, Lajos Schrettner,
Tamás Gergely, and Tibor Gyimóthy. Adjusting effort estimation using
Micro-Productivity Profiles. Proceedings of the Estonian Academy of
Sciences, 62(1):71–80, 2013.

[20] Adam Trendowicz and Jürgen Münch. Chapter 6: Factors Influencing
Software Development Productivity – State-of-the-Art and Industrial
Experiences. In Social networking and the web, volume 77 of Advances
in Computers, pages 185 – 241. Elsevier, 2009.

[21] Mohsen Vakilian, Nicholas Chen, Stas Negara, Balaji Ambresh Rajkumar,
Roshanak Zilouchian Moghaddam, and Ralph E. Johnson. The need for
richer refactoring usage data. In Proceedings of the 3rd ACM SIGPLAN
Workshop on Evaluation and Usability of Programming Languages and
Tools, PLATEAU ’11, pages 31–38, New York, NY, USA, 2011. ACM.

[22] J.M. Verner, M.A. Babar, N. Cerpa, T. Hall, and S. Beecham. Factors
that motivate software engineering teams: A four country empirical study.
Journal of Systems and Software, 92(0):115 – 127, 2014.

[23] Stefan Wagner and Melanie Ruhe. A systematic review of productivity
factors in software development. Technical report, Technische Universität
München, 2008.

[24] C. E. Walston and C. P. Felix. A method of programming measurement
and estimation. IBM Syst. J., 16(1):54–73, March 1977.

400

