
Aiding Java Developers with
Interactive Fault Localization in Eclipse IDE

Gergő Balogh, Ferenc Horváth, 
Árpád Beszédes
Department of Software 
Engineering,
University of Szeged, 
Hungary

0.1

0.8

0.2

0.6

0.5

0.
3

0.1

0.8 0.7

0.2

0.6

0.5

0.
3

Give me a name! 

0.
1

0.2

0.
3

Give me a name! 

Problem
Spectrum-Based 

Fault Localization 
methods are 

popular due to 
their relative 
simplicity to 
implement.

Studies 
highlighted some 

barriers to the 
adoption of SBFL 

in practical 
settings.

Goal
Increase the 

practical 
usefulness of SBFL 

tools.

Solution
The developer has 
additional 
information about 
the system of 
which the SBFL 
engine is not 
aware.

Involve 
interactivity 
between the user 
and the FL 
algorithm.

0.5

0.3

0.20.6

0.7

Developer’s Actions

The user investigates the recommended elements.

He/She gives one of the provided answers.

iFL Algorithm’s Responses

It calculates an initial SBFL rank.

The elements are shown to the user.

It recalculates the ranking and shows the updated list.

iFL for Eclipse

It is an Eclipse plug-in for supporting iFL for Java projects. It reads the tree of project 
elements and lists them in a table.

User sends feedback to the FL engine about 
the next element in the table.

Con�nue

Ranking
recalc.

0.8

0.60.
5

0.3

0.8

0.60.
5

0.3

iFL Engine

Program spectra 
(test coverage and

test results)

Ini�al SBFL 
ranking

Actual 
SBFL ranking

Next
suspicious

item

User

Item is not 
faulty, fault is 

in the con-

Don’t 
know

Item is 
not 
faulty, 
neither 
its 
context

Fault is 
found

Feedback

Challenges

Do not generate 
unnecessary 
overhead by 

disturbing the 
typical work�ow 

of the developers.

Tools should be 
extensible to make it 

possible to integrate 
various already existing 
SBFL algorithms and 
future iFL algorithm 
variants.

Researchers have to 
de�ne a set of 
meaningful options to 
select from.

Appropriate actions for 
various kinds of feedback 
and relevant code entity 
context should be 
de�ned.

Achievements

The knowledge of the 
user is exploited in the 
ranked list, with which 
larger code entities can 
be repositioned in their 
suspiciousness.

The process starts by 
calculating an initial rank 
based on some 
traditional SBFL.

The elements are then 
shown to the user, and 
the SBFL engine is 
waiting for user 
feedback.

The user investigates the 
recommended 
item and 
gives a 
feedback.

Simulation of User Actions

We implemented the approach to handle Java 
systems using simulated users instead of real 
programmer feedback.

Plugin Architecture

The main UI is an Eclipse part, a graphical 
panel, serving as the front end. It is connected 
to the back end components, whose purpose is 

the update of scores and the recalculation 
of the rank list based 
on user input.

Eclipse Plug-in Ifrastructure

Eclipse IDE UI

Developer

IDE Interfaces

iFL for Eclipse UI

JDTSWT

iFL Algorithm

Source
Code

for

Fault is found! I don't know...

Item is not faulty,
fault is the context.

Item is not faulty,
neither its context!?

He/She may change and 
re-run the software to 
better understand the 
causes of the error.

Fault is found:
process terminates.

User is not sure:
take the next item.

In other cases:
I adjust the scores.

Item is not faulty,
neither its context.

Whole context
gets 0 score.

Item is not faulty,
fault is in context.

Everything but
context gets 0 score.

Experimental Results

Goal to have a preliminary view of expected improvement in fault localization 
e�ectiveness of iFL.

item

method

context

other methods
of its class


