
Static Execute After/Before as a Replacement of Traditional Software
Dependencies

Judit Jász, Árpád Beszédes and Tibor Gyimóthy
University of Szeged, Department of Software Engineering

Árpád tér 2., H-6720 Szeged, Hungary, +36 62 544145
{jasy,beszedes,gyimi}@inf.u-szeged.hu

Václav Rajlich
Wayne State University, Department of Computer Science

427 State Hall, Detroit, MI 48202, (313) 577-5423
rajlich@wayne.edu

Abstract

The paper explores Static Execute After (SEA) depen-
dencies in the program and their dual Static Execute Before
(SEB) dependencies. It empirically compares the SEA/SEB
dependencies with the traditional dependencies that are
computed by System Dependence Graph (SDG) and pro-
gram slicers. In our case study we use about 30 subject
programs that were previously used by other authors in em-
pirical studies of program analysis. We report two main
results. The computation of SEA/SEB is much less expen-
sive and much more scalable than the computation of the
SDG. At the same time, the precision declines only very
slightly, by some 4% on average. In other words, the pre-
cision is comparable to that of the leading traditional algo-
rithms, while intuitively a much larger difference would be
expected. The paper then discusses whether based on these
results the computation of the SDG should be replaced in
some applications by the computation of the SEA/SEB.

Keywords

Source code analysis, program dependencies, System
Dependence Graph, program slicing, Static Execute After.

1. Introduction

In order to understand and evolve software, program-
mers must understand not only the components that com-
prise the software, but also the dependencies among them.
These dependencies play a key role during software change
and they guide the activities of impact analysis, change

propagation, regression testing, and so forth. The im-
portance of understanding dependencies among program
components has been illustrated many times; some of the
most dramatic examples are the software-based catastro-
phes caused by misunderstood dependencies [10], [16].

Source code analysis is a discipline that started in com-
piler research but found many applications in software engi-
neering [6]. One of the central topics for source code analy-
sis is to find dependencies among program components. A
classical result of source code analysis is the work on the
System Dependence Graph (SDG) [15]; a range of sophis-
ticated algorithms analyses the source code and produces
the SDG that, among other information, contains dependen-
cies between the modules. The SDG dependencies and their
transitive closure can be retrieved from the source code with
the techniques of classical program analysis and they are
currently computed by leading commercial software tools.
In this work, we define these dependencies and call them
Traditional Software Dependencies (TSD). They are a foun-
dation of program slices, that are subsets of a program rele-
vant to a specific computation [6, 22, 24].

While TSD are widely used in the current software tools,
there are two major problems: their computation requires
very expensive algorithms, and in some cases TSD may
miss some important software dependencies [25], therefore
there is a strong incentive to search for new algorithms and
new techniques that would be simpler and at the same time
to provide larger dependency set than TSD. Static Execute
After/Before (SEA/SEB) is such a new algorithm; it deter-
mines the dependencies among program procedures by sim-
ply considering their execution order.

However, there is an immediate concern: when moving
from TSD to SEA/SEB, are we going to give programmers



a huge set of dependencies, most of them irrelevant? This
paper reports a surprising answer to this question: when
moving from TSD to SEA/SEB, the set of dependencies in-
creases only very slightly, by some 4% on average, or in
other words, the results are comparable to that of the leading
TSD algorithms. Intuitively, a much larger difference would
be expected. This raises a question: given such a small dif-
ference between TSD and SEA/SEB, and at the same time
SEA/SEB being a simpler and more scalable algorithm with
a chance of providing some additional important dependen-
cies, would it be advisable to replace TSD by SEA/SEB in
some applications?

The paper is organized as follows. Section 2 reviews
related work, particularly TSD and its relation to SEA/SEB.
The SEA/SEB are described in Section 3. In Section 4 we
empirically investigate relation of SEA/SEB and TSD and
we conclude in Section 5.

2. Previous work

2.1. TSD in imperative programs

In this work, we use TSD of imperative programs that are
based on System Dependence Graphs [15]. The SDG con-
struction includes calling context problem, the existence of
arbitrary control flow, the use of pointers, and other related
issues, and has been a challenge for the slicing community
for decades [6], [22].

In this paper, we mainly deal with procedure level TSD
(or procedure level slices); we illustrate such TSD through
an example of four simple procedures, shown in Figure 1.
Figure 2 shows the SDG of the program obtained by ap-
plying the algorithm of Horwitz et al. [15]; some simplifi-
cations have been made to improve readability. Parameter,
call and summary edges represent procedure calls. A con-
trol dependency between two program points means that the
execution at the dependent point is determined by the start-
ing point, while a data dependency exists between a point
where a variable value is defined and another point where it
is used without redefinition [18].

Traversal of the SDG will yield procedure level TSD de-
pendencies shown in Table 1. In this simple example, these
dependencies are easily readable directly from the code of
Figure 1.

2.2. Flow-based dependencies

There is a simple, yet very effective alternative to com-
pute software dependencies. In Interprocedural Control
Flow Graph (ICFG) [14, 17] dependencies can be com-
puted using the graph reachability approach [5]. Figure 3
shows ICFG program representation for our example pro-
gram. In it, we can easily verify that all dependencies cap-

texts[] = {...}
procedure getIndex(out index){

read(index);
}

procedure printParam(in index){
write(texts[index]);

}

procedure printLast(){
write(texts[texts.length]);

}

procedure main(){
i = 0;
while (i >= texts.length)
getIndex(i);

if (i != 0)
printParam(i);

printLast();
}

Figure 1. Example program

Procedure printLast printParam
dependent on dependent on

main
√ √

getIndex
√

printLast [
√

]
printParam [

√
]

Table 1. Static dependence sets of the exam-
ple (self-dependency may be considered in
some situations)

tured by the SDG are captured by the ICFG as well. This
replacement is safe, meaning that all dependencies captured
by SDG will be captured by ICFG (as any data- and control-
dependency implies a flow-based dependency),1 but there
will always be additional dependencies with this approach
which do not correspond to any data or control dependency
as computed by the SDG.

We are not aware of any other work that investigated this
approach as thoroughly as we do in this paper. Orso et al.
mention in their work on impact analysis [20] that they also
employ reachability on the ICFG, however no further details
are given. Our work was in part motivated by the works of
Orso et al. [20] and Apiwattanapong et al. [1].

1If TSD is determined in a flow-insensitive manner then there may be
some (false) TSD dependencies not covered by the ICFG-based approach.



i=0 while ...

control dependence edges
data dependence edges
parameter and call edges

call getIndex

if (i!=0)

call printParam

call printLast

printParam

index=indexin write(texts[index])

printLast
i=indexout indexin=i

getIndex

main

indexout=indexread(index)
write(texts[texts.length])

Figure 2. The SDG of the example

In [5], we proposed SEA relations as a technique to dis-
cover hidden dependencies, i. e. software dependencies that
are not directly captured by TSD, hence we concentrated
on the dependencies that are SEA but are not TSD. In the
present paper we present an evidence that there actually
may be a small difference between SEA/SEB and TSD. We
conduct an extensive case study about the relationships be-
tween TSD and SEA/SEB and provide a description of a
practical tool support for the approach. Hence this paper
complements and completes the work presented in [5].

2.3. Other relevant work

Since computation costs and the space requirements of
the SDG are significant, especially in the case of large
software systems, there have been attempts to cut down
these costs. In the approach of Atkinson and Griswold [2],
although there can be a-priori determined representations
such as the callers of a procedure, other easily computable
representations are computed or recomputed on demand.
Also at instruction level, Tonella et al. presented a variable
precision algorithm to determine reachability for program
understanding [23].

Another possibility for reducing the costs is the reduc-
tion of the program representation, as we do in our ap-
proach. Badri et al. [3] use the so-called control call graph
in which nodes which do not influence the execution of the
procedure calls are left out. This approach is similar to ours
in that it also considers procedure level dependencies for
impact analysis purposes. However, they use a different
algorithm for computing the dependencies and present no

main

i=0

while ... call return

call printParam

call return

read(index)

getIndex

exit

printParam

printLast

write(texts[texts.length])

call getIndex

exit

write(texts[index])

exit

if (i!=0)

call printLast

call return

exit

Figure 3. The ICFG of the example

findings about the efficiency and precision of the method.
The Context Sensitive Control Flow Graph (CSCFG) in-

troduced by Ng is used for visualization purposes [19]. In
this approach the details of unimportant parts of the in-
traprocedural control flow graph are collapsed into single
nodes in order to simplify the graph. Yu and Rajlich used
the Abstract System Dependence Graph (ASDG) to compute
hidden dependencies [25], which is based on the detailed
SDG and represents both data and control dependencies.

Binkley et al. investigated the size of static program
slice in their large scale empirical study [7]. Among other
issues, the authors compared the size of statement-level
slices with the size of function-level slices. They found that
while function-level slices are 33% larger than correspond-
ing statement-level slices, they may be useful predictors of
the statement-level slice size.

3. The Static Execute After/Before relation-
ships

In this section we define the notion of Static Execute Af-
ter (SEA) and its counterpart Static Execute Before (SEB),
which will be used to formulate more accurately the flow-
based dependencies mentioned above. We say that (f, g) ∈
SEA if and only if it is possible that any part of g is ex-
ecuted after any part of f . Similarly, procedures f and g
are in SEB relation if and only if, it is possible that any
part of g is executed before any part of f . It can be ob-
served that these relations are inverse to each other just as
is the case with backward and forward slices. A dynamic
counterpart of this relation has been defined previously by
Apiwattanapong et al. [1]. The dynamic Execute After re-
lation is based on the analysis of execution traces and not
static program representations.



Following the notation of Apiwattanapong et al. [1] and
Beszédes et al. [4] we may formally define the SEA relation
involving (f, g) as follows:

SEA = CALL ∪RET ∪ SEQ [∪ ID],

where

(f, g) ∈ CALL ⇐⇒ f (transitively) calls g,

(f, g) ∈ RET ⇐⇒ f (transitively) returns into g,

(f, g) ∈ SEQ ⇐⇒ ∃h : h (transitively) calls f first,
then h (transitively) calls g, and
the second call site is flow-reachable
from the first one.

Here, ID is used to denote the identity relation that can
optionally be part of SEA/SEB since some notions of tradi-
tional dependencies are also reflexive. The SEB relation is
defined as an inverse of SEA.

In order to compute SEA/SEB, the traditional call graph
representation [21] is not sufficient since it says nothing
about the order of the procedure calls within a procedure
body. It is easily readable from Figure 3 that the de-
pendency between getIndex and printParam will be
missed when using the call graph. On the other hand, the
ICFG of the previous section contains too much informa-
tion, which is not necessary for deriving flow-based depen-
dencies between procedures.

Hence, we propose a specialized program representa-
tion called the intra- and interprocedural Component Con-
trol Flow Graph (CCFG and ICCFG, respectively). Each
CCFG represents a procedure’s intraprocedural CFG but
only call site nodes and corresponding flow edges are con-
sidered. It contains one entry node and several compo-
nent nodes which are connected by control flow edges.
Component nodes are obtained by collapsing strongly con-
nected subgraphs into single nodes.2 The ICCFG consists
of CCFG of each procedure and in addition it includes call
edges from each call site (a component) to the entry nodes
of the called procedures.

Figure 4 shows the ICCFG graph of our example pro-
gram. The nodes with the procedure names represent proce-
dure entry nodes, while the darkly filled nodes correspond
to the components. These are connected by control flow
(solid) and call edges (dotted). Procedures getIndex,
printLast and printParam are represented only by
their entry nodes as these procedures do not have any call
sites. We can easily see that this program representation
is suitable for deriving SEA and SEB relations: we just
need to traverse the flow and call edges in the respective

2For technical reasons, if the call sites in a component node are part of
a loop the component will have a reflexive control flow edge.

direction. For example, we can follow that printParam
may be executed after the procedures main, getIndex
(and printParam itself), while printLast may be
executed after all the procedures of the program includ-
ing itself. Note, that there are two false dependen-
cies with printLast, the procedures getIndex and
printParam, which are the consequence of the impre-
cision of the approach.

printLast

printParam

main

getIndex

Figure 4. The ICCFG of the example

3.1 Building ICCFG and computing
SEA/SEB dependencies

To compute the ICCFG we start from the ICFG of the
program, which can be obtained using traditional compiler
algorithms and which is available in many source code anal-
ysis front ends. The computational complexity of deter-
mining the strongly connected components in the ICCFG is
O(n+ e) where n is the number of basic blocks and e is the
number of the control and call edges among these nodes [9].

For computing a dependency set for a particular proce-
dure, a reachability algorithm can be used, similar to the
SDG reachability algorithm. An example of such algorithm
for computing SEB relations is provided in Figure 5. The al-
gorithm first traverses the ICCFG in backward direction and
colors certain nodes that will be part of the dependency set
as white and some other nodes that need to be further inves-
tigated as grey. Then in the second pass it iterates through
the dependencies in forward direction coloring them black,
and in this way it completes the dependency set.

A similar algorithm can be constructed for computing
SEA relations as well.

Based on the algorithm in Figure 5, we designed a more
complex but optimized algorithm which reuses already
completed dependencies and produces the whole SEA/SEB
relation globally, which is more suitable for our empirical
investigations. The details of this algorithm can be found in
our earlier work [5].

4. Empirical study

The first hypothesis of our empirical study states
that TSD can be approximated to a sufficient extent by



program computeSEB(P, f)
input: P : ICCFG of program

f : a procedure in P

output: S : set of procedures that are in SEB
relation with f

begin
Empty S
Mark procedure entry nodes of P uncolored
Color entry node of f to grey
Traverse P from entry node of f in backward direction

If component c is reached from another component
(not from an entry) then color the entry nodes of pro-
cedures called by c to grey

If entry e is reached by the traversal and it is not grey
color it to white

During the traversal each edge may be touched at
most once

While there are grey entry nodes

Let e be a grey entry node

Color e to black

Color the uncolored and white entry nodes of proce-
dures called by components of e to grey

Insert all colored procedures into S
Output S
end

Figure 5. Computation of SEB relation by
graph reachability

SEA/SEB. The second hypothesis states that computation
of SEA/SEB is significantly more efficient than computa-
tion of TSD, which makes it applicable to larger programs.

4.1. Design

To prove our hypotheses, we set off to perform prac-
tical experiments with a significant number of measure-
ment data. We decided to treat the procedure level TSD
as the “golden standard” and investigate the precision of
SEA/SEB, i. e. the amount of false additional dependen-
cies identified by SEA/SEB which do not correspond to any
TSD.

Choosing procedure level granularity was natural for
several reasons. We deal with large scale software some-
times comprised of millions of lines of code and statement

level analysis would be too fine and cluttered. Also, from
performance point of view procedure level analysis is more
beneficial while still having the ability to predict statement
level analysis [7]. We perform our case study for C pro-
grams where coarse granularity (files, for instance) would
be too abstract. Finally, in many applications of dependency
analysis, like in change impact analysis, this kind of gran-
ularity is typical. Nevertheless, extending the approach to
other granularities, like classes in object oriented programs,
would be possible; in fact, we already implemented a class-
level analysis in our previous work [5].

To check the precision of SEA/SEB we compute a large
number of dependencies for medium size subject programs
and compare different sizes and size distributions gained for
TSD and SEA/SEB sets. The efficiency of the algorithms is
verified on several large software systems in order to find
the limits of the different approaches in terms of space and
time costs.

An additional goal was to verify that the recall is 100% in
every case, meaning that SEA/SEB does not produce false
negatives with respect to TSD. (Note, that recall less than
100% is conceivable if flow-insensitive TSD algorithms are
used.)

We wanted to minimize internal validity threats so we
designed our experimental architecture so that the two dif-
ferent approaches share as many common parts as possible.

4.2. Tools used

One of the most popular program slicing tools is
CodeSurfer of Grammatech Inc. [13]. Various program
analyses can be performed using it on C/C++/Ada pro-
grams, and CodeSurfer has been reported as one of the most
accurate, robust and efficient program slicers available. Fur-
thermore, it includes a highly usable Application Program-
ming Interface with which different program analyses can
be performed by plug-ins. We decided to use CodeSurfer as
a basis for our tool architecture, which is supplemented by
our own experimental algorithm implementations. We used
in our experiment the version 2.1p1 of CodeSurfer.

It turned out that the Codesurfer API is appropriate for
our SEA/SEB plug-in. It is important to note, though, that
our method is language independent and requires only an
ICFG to be available.

4.3. Architecture

The CodeSurfer API provides sufficient functionality for
extracting all the necessary data to compare the TSD and
the SEA/SEB relations. Therefore our experimental plug-in
tool supports two separate dependency computation parts
for TSD and SEA/SEB sets (see Figure 6). CodeSurfer is
used as the common front end which performs source code



src1 srcn

IR

ICCFGSDG

computations
dependence

computations
dependence

slicing
statement level

...

SDG building ICCFG building

parsing

Figure 6. Experimental tool architecture

parsing and produces the common internal representation
(IR), which may be slightly different in the case of the two
dependence computation parts. After this the computation
separates into two different program representations, SDG
for program slices and the procedure level TSD, and ICCFG
for SEA/SEB relations.

We used different presets of the front end for the two
methods in order to gain a more optimal performance for
each of the approaches (see Table 2). These presets are dif-
ferent in the SEA/SEB computation and in slicing, because
the SEA/SEB computation requires less information and
also uses less expensive computations than TSD. Namely,
for SEA/SEB we generate the ICCFG graph on the basis
of the call and the control flow information among basic
blocks, while TSD requires that the SDG graph contains all
the necessary dependence edges, including the control, the
data and the summary edges as well. If any of the data-
or control-depedencies are not taken into account or if call
relations are incomplete (due to, for example, inappropri-
ate handling of function pointers) then the computed TSD
would be incomplete as well.

Preset of CodeSurfer SDG ICCFG
-control-dependence yes no
-data-dependence yes no
-compute-gmod yes no
-compute-summaries yes no
-cfg-edges no yes, both directions
-basic-blocks no yes

Table 2. Different presets of CodeSurfer used

4.4. Subject programs

For experiments, we started with the suite of C programs
of Binkley and Harman [8], but in some cases we used dif-
ferent versions and also added several new programs; in
some cases the version of the program was unknown. Ta-
ble 3 lists the subject programs programs and their number
of procedures and lines of code (TL means the total lines
in the project while LCode means the number of non blank
lines). For the experiments with the efficiency of the tech-
niques we use several large C/C++ software systems avail-
able as open source. The basic features of these systems are
listed in Table 4.

Program Number
of

procedures

TL LCode

time v1.7 12 1 314 757
replace v? 21 563 512
compress v? 24 1 937 1 335
wdiff v0.5 27 1 862 1 080
which v2.17 28 1 989 1 246
acct v6.3 50 3 510 1 996
termutils v2.0 57 3 685 2 518
barcode v0.98 62 3 885 2 331
indent v2.29 111 11 539 7 582
ed v0.8 120 3 052 2 267
EPWIC v? 149 9 597 5 249
flex v2.4.7 152 14 184 9 134
byacc v1.9 178 3 553 2 737
diffutils v2.8 192 15 022 9 735
bc v1.06 204 7 794 5 290
userv v0.95.0 239 7 909 6 016
copia v? 242 1 168 1 085
gnuchess v5.07 261 16 533 11 045
tile-forth v2.1 286 5 730 3 549
li v? 357 7 597 4 793
espresso v? 361 22 050 21 780
go v? 372 29 629 22 118
ijpeg v? 467 28 185 15 253
ctags v5.0 518 13 750 10 018
sendmail v8.14 548 123 965 77 950
findutils v4.2.31 608 41 661 27 261
a2ps v4.13 902 54 954 33 573
gnubg v1.2 192 6 705 4 330
gnugo v3.6 2 188 151 376 110 631

Table 3. C language test programs for preci-
sion measurements



System Number of TL LCode
procedures

valgrind 5 318 228 763 141 631
v3.3.0 (C)

gdb (C) 8 095 473 793 303 552
v6.7.1

gcc (C) 16 108 1 052 353 725 620
v4.0

mozilla (C++) 83 432 2 382 459 1 414 946
v1.6

Table 4. C/C++ language test systems for ef-
ficiency measurements

4.5. The empirical process

We computed TSD and SEA/SEB dependency sets for
all procedures of the subject programs. A TSD dependency
set of a particular procedure f included those procedures
of the program that were involved in statement level slices
having their criterion in f , while SEA/SEB dependency sets
were obtained as described previously. An additional pro-
gram was used for the calculation of precision and to record
performance of the tools, namely running times of the anal-
ysis phases and information about the sizes of the graphs
produced.

We must note here a deficiency of CodeSurfer, which
has a problem in the handling of some code structures
related to unstructured control when determining forward
slices (in these cases false dependencies are computed by
the tool). Fortunately, this problem is not present with back-
ward slices, so in all of the remaining parts of the study we
use solely SEB relations, and the TSD consist of the de-
pendencies in the backward direction only. Note that this
restriction does not invalidate our results regarding preci-
sion since the overall size of forward dependencies is the
same as for the backward dependencies.

4.6. Precision

We calculated precision of SEB compared to backward
TSD as the golden standard and therefore we investigated
the differences in the sizes of the respective dependency
sets. For a given procedure, the precision value is the ratio
of size of the set of dependencies identified by TSD divided
by size of the set of SEB dependencies.

Since SEA/SEB does not produce false negatives, we
always get 100% recall; TSD set is always a subset of a
SEA/SEB dependency set. In our first experiment we in-
vestigated such precision values by determining, for each
subject, the average precision values of the procedures of
the given program. Figure 7 shows the average precision

data for all of the programs. It can be observed that, apart
from one outlier where the precision is only about 67%, we
get values between 77,28% and 98,77%, which we think is
very high.

Precision

0%
20%
40%
60%
80%

100%

tim
e

re
pla

ce

co
m

pr
es

s
wdif

f

whic
h
ac

ct

te
rm

ut
ils

ba
rc

od
e

ind
en

t
ed

EPW
ICfle

x

by
ac

c

dif
fu

tils bc
us

er
v
co

pia

gn
uc

he
ss

tile
-fo

rth li

es
pr

es
so go

ijp
eg
cta

gs

se
nd

m
ail

fin
du

tils
a2

ps

gn
ub

g

gn
ug

o

Figure 7. Precision of the SEB sets relative to
backward TSD (recall is always 100%)

It is also interesting to see how the sizes of average de-
pendency sets relate to each other and the size of the pro-
gram. Figure 8 compares the average sizes of the sets of
backward TSD with the average sizes of the sets of the SEB
dependencies. It can be seen also visually that the SEA/SEB
relations are very close approximations of the TSD rela-
tions.

0%

20%

40%

60%

80%

100%

tim
e

re
pla

ce

co
m

pr
es

s
wdif

f

whic
h
ac

ct

te
rm

ut
ils

ba
rc

od
e

ind
en

t
ed

EPW
ICfle

x

by
ac

c

dif
fu

tils bc
us

er
v

co
pia

gn
uc

he
ss

tile
-fo

rth li

es
pr

es
so go

ijp
eg
cta

gs

se
nd

m
ail

fin
du

tils
a2

ps

gn
ub

g

gn
ug

o

TSD average
SEB average

Figure 8. Dependency set sizes relative to
program size

Figure 9 shows the distribution of the sizes of differ-
ences between TSD and SEB. The differences have been
computed for each procedure as the ratio of the false depen-
dencies of SEB over the total number of procedures of the
given program. In most cases the differences of the sizes of
the two sets are below 15%, the average being 4,27%.

However, there are some outliers as well. We found that
three programs were solely responsible for the cases where
the difference was greater than 25%. We investigated these
situations and found that 13 procedures out of the 21 pro-
cedures in this group belong to the program wdiff. We



0

500

1000

1500

2000

0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

Difference

N
u

m
b

er
 o

f 
m

et
h

o
d

s

av
er

ag
e

Figure 9. Distribution of the extent of differ-
ences between SEB set and backward TSD
set sizes

found that some of the dependencies in SEB were cor-
rect dependencies that have not been identified by TSD be-
cause the slicing algorithm has certain problems related to
structure-fields. Hence SEA/SEB in these cases improves
recall of the analysis, giving the programmer important de-
pendencies that are missed by TSD algorithm. Besides that,
there were also several true false dependencies in SEB that
can be attributed to the conservatism of the SEA/SEB ap-
proach. A typical example is when a specific data is ac-
cessed by two different procedures interchangeably, for in-
stance when they are part of a loop, and none of them mod-
ifies the data. Then there will be no TSD between these
procedures, but SEB will identify a dependency due to the
sequential execution of them.

As an interesting aside, we were able to compute call
graph dependencies easily and we investigated them from
the point of view of precision and recall as well. It is in-
teresting to observe that in this case the precision will be
100% every time, but the recall will be very low as shown
in Figure 10.

To conclude, we may say that our hypothesis about pre-
cision of SEA/SEB is correct and that SEA/SEB is a real
alternative to TSD in this respect, see the summary in Ta-
ble 5.

precision recall
SEA/SEB good 100%
Call graph 100% bad

Table 5. Summary of precision and recall

4.7. Performance

The two program representations used in our case study
share the same structure on the highest level, namely both
include a node for each procedure of the program. There
are, however, significant differences in the amount of data

0%

20%

40%

60%

80%

100%

tim
e

re
pla

ce

co
m

pr
es

s
wdif

f

whic
h
ac

ct

te
rm

ut
ils

ba
rc

od
e

ind
en

t
ed

EPW
IC fle

x

by
ac

c

dif
fu

tils bc
us

er
v
co

pia

gn
uc

he
ss

tile
-fo

rth li

es
pr

es
so go

ijp
eg
cta

gs

se
nd

m
ail

fin
du

tils
a2

ps

gn
ub

g

gn
ug

o

Figure 10. The recall values of dependency
sets using call graphs only (precision is al-
ways 100%)

to be stored for a procedure. Table 6 contains the relevant
numbers. It can be easily deduced that ICCFGs require a
significantly smaller number of nodes and edges and the
difference is about two degrees of magnitude.3 CodeSurfer
could not handle the SDG of the biggest program so the
corresponding data are missing from the table.

valgrind
SDG vertices 1 920 150

edges 6 947 024

ICCFG vertices 154 509
edges 179 626

gdb
SDG vertices 10 086 409

edges 48 876 108

ICCFG vertices 160 340
edges 185 611

gcc
SDG vertices 18 775 143

edges 81 492 908

ICCFG vertices 467 185
edges 584 972

mozilla
SDG vertices N/A

edges N/A

ICCFG vertices 1 587 499
edges 1 723 611

Table 6. The sizes of the different graph rep-
resentations

Finally, we compared the analysis times of the two meth-
ods using an AMD Opteron 2.2 GHZ processor with 4G
memory. Table 7 shows the parsing times (the common
front end part) and the required building times of the SDG
and the ICCFG graphs. Due to the size differences in the
program representations and the computation costs for the
required additional dependencies, the building time of the

3Theoretically, in one moment of time the ICFG must be completely
stored in the memory to derive ICCFG, however in a practical implementa-
tion it could be done in an optimized way by the analysis of one procedure
at a time, for instance.



SDG is substantially longer; the SDG for the largest pro-
gram, mozilla, could not be built at all due to resource
exhaustion, while the ICCFG could be built in reasonable
time.

System Parsing SDG ICCFG
time building building

time time
valgrind 5 min 16 min 2 min
gdb 8 min 124 min 4 min
gcc 69 min 571 min 11 min
mozilla 113 min N/A 54 min

Table 7. Graph representations’ building
times

We note that we did not investigate the times for per-
forming the actual dependency computations themselves,
since we treat the complexity of these reachability-based
operations as being similar and inexpensive.

With these results we can support the other hypothesis
that there is a superior performance of SEA/SEB approach
over TSD. Furthermore, it is to be expected that a special-
ized and optimized implementation of this approach could
produce even better performance than the one listed in Ta-
ble 7. In experiments shown here we used a general source
code analysis framework which probably performs many
superfluous operations that are unnecessary for SEA/SEB
computation; a specialized implementation would further
improve efficiency.

4.8. Threats to validity

Several issues may limit interpretation of our results.
As noted previously, the precision was computed for the
comparison between a traditional slicer that provided the
golden standard and new SEA/SEB algorithm, which raises
the issue of construct validity. These results are applicable
where a traditional slicer is considered to be the standard
tool against which the results of an analysis are to be mea-
sured, and may not translate to other situations.

Although different program sizes have been used in the
empirical work, we are aware of the fact that the selected
test programs may not fully represent all programs, par-
ticularly programs that employ different technology. The
results reported here are obtained for specific subject pro-
grams and specific tools and should be generalized to other
situations with caution. In particular, we used procedural
programs written in C in our experiments, while object ori-
ented programs may behave differently in terms of the struc-
ture of ICCFG and SDG, which determines the precision of
the approach.

We performed the study on granularity of procedures;
other granularities (statements, files or classes) may pro-
duce different results.

5. Conclusion

In this paper, we presented data that compare TSD that
are used in slicing and other software tools, and SEA/SEB
relation. The data we explored show that the computation
of SEA/SEB is much more efficient while the precision de-
clines only very slightly, by some 4% on average. In the ma-
jority of the cases this difference remains below 15%. Be-
cause of the higher efficiency, SEA/SEB scales up to larger
programs.

In order to explain our results, we believe that algorithms
that compute TSD contain numerous small imprecisions.
For instance, often more efficient but less precise algorithm
is used for handling points-to information, arbitrary con-
trol flow, structure fields, arrays, and so forth. These lit-
tle imprecisions accumulate and lead to a situation where
the big picture, computed by TSD algorithms, is imprecise.
SEA/SEB algorithms have intuitive imprecision built into
them from the beginning, but in the end they produce com-
parable results. We are aware that dependencies observed
at the granularity of procedures are less precise than de-
pendencies observed at the granularity of statements. Be-
cause of this issue and since statement-level slicing tools
are so popular, we are going to investigate statement level
SEA/SEB tool in the near future and compare the size of the
slice generated by such tool with the size of the traditional
slice. However we also note in this context that according to
Binkley et al. [7], the dependencies at different granularities
correlated well to each other.

There are several obvious optimizations that can further
improve efficiency of SEA/SEB. We are planning to design
and implement an optimized demand driven SEA/SEB al-
gorithm. We are also planning to implement a specialized
front end that may produce additional efficiency. Based
on these observations, we are planning to implement the
SEA/SEB algorithm in the Columbus tool [11, 12].

Finally, there is still the problem of a realistic set of soft-
ware dependencies that the software contains. We want
to continue with the research of hidden dependencies, see
whether SEA/SEB still misses some of them, and develop
further algorithms that would produce a more complete de-
pendency set.

Acknowledgements

The authors wish to thank the help of Tamás Gergely in
designing the algorithms and we also want to acknowledge
several useful discussions with Radu Vanciu. We are also



grateful to Dave Binkley for sharing with us some of the
test programs, and to GrammaTech, Inc. for providing help
with using CodeSurfer.

This work was supported in part by Hungarian National
grants no. RET-07/2005 and OTKA K-73688. Václav Ra-
jlich was supported in part by grants from the National Sci-
ence Foundation (CCF-0438970) and by the 2005 and 2006
IBM Faculty Award. Any opinions, findings, conclusions,
or recommendations expressed in this material are those of
the author and do not necessarily reflect the views of the
NSF or IBM.

References

[1] T. Apiwattanapong, A. Orso, and M. J. Harrold. Efficient
and precise dynamic impact analysis using Execute-After
sequences. In Proceedings of the 27th International Confer-
ence on Software Engineering (ICSE’05), pages 432–441,
May 2005.

[2] D. C. Atkinson and W. G. Griswold. The design of whole-
program analysis tools. In Proceedings of the 18th Interna-
tional Conference on Software Engineering, pages 16–27,
Berlin, Germany, Mar. 1996.

[3] L. Badri, M. Badri, and D. St-Yves. Supporting predictive
change impact analysis: A control call graph based tech-
nique. In Proceedings of the 12th Asia-Pacific Software En-
gineering Conference (APSEC’05), pages 167–175. IEEE
Computer Society, 2005.

[4] Á. Beszédes, T. Gergely, Sz. Faragó, T. Gyimóthy, and
F. Fischer. The dynamic function coupling metric and its
use in software evolution. In Proceedings of the 11th Euro-
pean Conference on Software Maintenance and Reengineer-
ing (CSMR’07), pages 103–112, Mar. 2007.

[5] Á. Beszédes, T. Gergely, J. Jász, G. Tóth, T. Gyimóthy,
and V. Rajlich. Computation of Static Execute After rela-
tion with applications to software maintenance. In Proceed-
ings of the 2007 IEEE International Conference on Software
Maintenance (ICSM’07), pages 295–304, Oct. 2007.

[6] D. Binkley. Source code analysis: A road map. In Future of
Software Engineering (FOSE’07), at 29th Int. Conference
on Software Engineering, pages 104–119. IEEE Computer
Society, May 2007.

[7] D. Binkley, N. Gold, and M. Harman. An empirical study
of static program slice size. ACM Transactions on Software
Engineering and Methodology, 16(2), Apr. 2007.

[8] D. Binkley and M. Harman. A large-scale empirical study
of forward and backward static slice size and context sen-
sitivity. In Proceedings of the International Conference on
Software Maintenance (ICSM’03), pages 44–53, Sept. 2003.

[9] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduc-
tion to Algorithms. MIT Press/McGraw-Hill, 1990.

[10] D. C. de Leon and J. Alves-Foss. Hidden implementa-
tion dependencies in high assurance and critical comput-
ing systems. IEEE Transactions on Software Engineering,
32(10):790–811, 2006.

[11] R. Ferenc, Á. Beszédes, M. Tarkiainen, and T. Gyimóthy.
Columbus – Reverse Engineering Tool and Schema for C++.

In Proceedings of the 18th International Conference on Soft-
ware Maintenance (ICSM’02), pages 172–181. IEEE Com-
puter Society, Oct. 2002.

[12] FrontEndART Software Ltd.
http://www.frontendart.com.

[13] Homepage of GrammaTech’s CodeSurfer.
http://www.grammatech.com/products/
codesurfer.

[14] M. S. Hecht. Flow Analysis of Computer Programs. Elsevier
Science Inc., New York, NY, USA, 1977.

[15] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs. ACM Transactions on Program-
ming Languages and Systems, 12(1):26–61, 1990.

[16] J.-M. Jézéquel and B. Meyer. Design by contract: The
lessons of ariane. Computer, 30(1):129–130, 1997.

[17] W. Landi and B. G. Ryder. Pointer-induced aliasing: a prob-
lem taxonomy. In POPL ’91: Proceedings of the 18th ACM
SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pages 93–103. ACM Press, Jan. 1991.

[18] S. S. Muchnick. Advanced Compiler Design and Implemen-
tation. Morgan Kaufmann, 1997.

[19] J.-K. Ng. Context-sensitive control flow graph. Master’s
thesis, Iowa State University, Ames, Iowa, USA, 2004.

[20] A. Orso, T. Apiwattanapong, and M. J. Harrold. Leveraging
field data for impact analysis and regression testing. In Pro-
ceedings of the 11th ACM SIGSOFT Symposium on Foun-
dations of Software Engineering held jointly with 9th Eu-
ropean Software Engineering Conference (ESEC/FSE’03),
pages 128–137, Sept. 2003.

[21] B. G. Ryder. Constructing the Call Graph of a Program.
IEEE Transactions on Software Engineering, SE-5(3):216–
226, May 1979.

[22] F. Tip. A survey of program slicing techniques. Journal of
Programming Languages, 3(3):121–189, Sept. 1995.

[23] P. Tonella, G. Antoniol, R. Fiutem, and E. Merlo. Variable
precision reaching definitions analysis for software mainte-
nance. In Proceedings of the First Euromicro Conference
on Software Maintenance and Reengineering, pages 60–67,
Mar. 1997.

[24] M. Weiser. Program slicing. IEEE Transactions on Software
Engineering, SE-10(4):352–357, 1984.

[25] Z. Yu and V. Rajlich. Hidden dependencies in program
comprehension and change propagation. In Proceedings of
the 9th International Workshop on Program Comprehension
(IWPC’01), pages 293–299. IEEE Computer Society, 2001.


