
Code Coverage Measurement Framework for

Android Devies

Szabols Bognár

1
, Tamás Gergely

1
, Róbert Ráz

1
, Árpád Beszédes

1
, and

Vladimir Marinkovi

2

1
University of Szeged, Department of Software Engineering

{bszabi,gertom,rrobi,beszedes}�inf.u-szeged.hu

2
University of Novi Sad, Faulty of Tehnial Sienes vladam�uns.a.rs

Abstrat. Software testing is a very important ativity in the software

development life yle. Numerous general blak- and white-box teh-

niques exist to ahieve di�erent goals and there are a lot of praties for

di�erent kinds of software. The testing of embedded systems, however,

raises some very speial onstraints and requirements in software testing.

Speial solutions exist in this �eld, but there is no general testing method-

ology for embedded systems. One of the goals of the CIRENE projet

was to �ll this gap and de�ne a general testing methodology for em-

bedded systems that ould be speialized to di�erent environments. The

projet inluded a pilot implementation of this methodology in a spei�

environment: on an Android-based Digital TV reeiver (Set-Top-Box).

In this pilot, we implemented method level ode overage measurement of

Android appliations. This was done by instrumenting the appliations

and reating a framework for the Android devie that olleted basi

information from the instrumented appliations and ommuniated it

through the network towards a server where the data was �nally pro-

essed. The resulting ode overage information was used for many pur-

poses aording to the methodology: test ase seletion and prioritiza-

tion, traeability omputation, dead ode detetion, et.

In this paper, we introdue this pilot implementation and, as a proof-

of-onept, present how the overage results were used for di�erent pur-

poses.

1 Introdution

Software testing is a very important quality assurane ativity of the software

development life yle. With testing, the risk of a residing bug in the software an

be redued, and by reating to the revealed defets, the quality of the software

an be improved. Testing an be performed in various ways. Stati testing � for

example � an be performed on any workproduts of the projet; it inludes

the manual heking of douments and the automati analysis of the soure

ode without exeuting the software. During dynami testing the software or a

spei� part of the software is exeuted. Many dynami test design tehniques

exist, the two most well known groups among them are blak-box and white-box

tehniques.



Blak-box test design tehniques onentrate on testing funtionalities and

requirements by systematially heking whether the software works as intended

and produes the expeted output for a spei� input. The tehniques take the

software as a blak box, examine �what� the program does without having any

knowledge on the struture of the program, and they are not intrerested in the

question �how?�.

On the other hand, white-box testing examines the question �How does the

program do that?�, and tries to exhaustively examine the ode from several

aspets. This exhaustive examination is given by a so-alled overage riterion

whih de�nes the onditions to be ful�lled by the set of instrution sequenes

exeuted during the tests. (E.g. 100% instrution overage riterion is ful�lled if

all instrutions of the program are exeuted during the tests.) Coverage measures

give a feedbak on the quality of the tests themselves.

The reliability of the test an be improved, by ombining blak-box and

white-box tehniques. During the exeution of test ases generated from the

spei�ations using blak-box tehniques, white-box tehniques an be used to

measure how ompletely the atual implementation is heked. If neessary, re-

liability of the tests an be improved by generating new test ases for the not

veri�ed ode fragments.

1.1 Spei� problems with embedded system testing

Testing in embedded environments has speial attributes and harateristis.

Embedded systems are neither uniform nor general-purpose. Eah embedded

system has its own hardware and software on�guration typially designed and

optimized for a spei� task, whih a�ets the development ativities on the

spei� system. Development, debugging, and testing are more di�ult sine

di�erent tools are required for di�erent platforms.

However, high produt quality and testing that ensures this high quality

is very important as the orretion of residual bugs an be very di�ult for

these systems. For example, the software of a digital TV with play-from-USB

apabilities fails to reover after opening a spei� media �le format and this

bug an only be repaired by replaing the ROM of the TV. One the TVs are

produed and sold, it might be impossible to orret this bug without spending

a huge amount of money on logisti issues. Although there are some solutions

aiming at the uniformisation of the software layers of embedded systems (e.g. the

Android platform [1℄), there has not been a uniform methodology for embedded

systems testing.

1.2 The CIRENE projet

One of the goals of the CIRENE projet [2℄ is to �ll this gap and de�ne a

general testing methodology for embedded systems that opes with the above

mentioned speialities and whose parts an be implemented on spei� systems.

The methodology ombines blak-box tests responsible for the quality assesment

of the system under test and white-box tests responsible for the quality assesment



of the tests themselves. Using this methodology the reliability of the test results

and the quality of the embedded system an be improved. As a proof-of-onept,

the CIRENE projet inluded a pilot implementation of the methodology for

a spei�, Android-based digital Set-Top-Box system. Although the proposed

solution was developed for a spei� embedded environment, it an be used for

any Android-based embedded devies suh as smart phones or more general-

purpose tablets.

The methodology speialized to the Set-Top-Box in the pilot implementation

an be seen on Figure 1. The overagemeasurement toolhain plays an important

role in the methodology. Many overage measurement tools (e.g. EMMA [3℄)

exist that are not spei� but an be used on Android appliations. However,

these are appliable only during the early development phases as they are able to

measure ode overage on the development platform side. This kind of testing

ommits to test the real environment, misses the hardware-software o-existane

issues whih an be essential in embedded systems. We are not aware of any

ommon toolhain that measures ode overage diretly on Android devies.

Our overage measurement toolhain starts with the instrumentation of the

appliation we want to test, whih allows us to the measure ode overage of the

given appliation during test exeution. As the devie of the pilot projet runs the

Java-based Android operation system, Java instrumentation tehniques an be

used. Then, the test ases are exeuted and the overage information is olleted.

In the pilot implementation, the olletion is split between the Android devie

and the used testing tool RT-Exeutor [4℄: the servie ollets the information

from the individual appliations of the devie, while the testing tool proesses

the information (through its plug-ins).

Fig. 1. Coverage olletion methodology on the Set-Top-Box



The overage information gathered with the help of the overage framework

an be utilized by many appliations in the testing methodology. They an be

used for seleting and prioritizing test ases for further test exeutions, or for

helping to generate additional test ases if the overage is not su�ient. It is

also useful for dead ode detetion or traeability links omputation.

The rest of the paper is organized as follows. In Setion 2, we give an overview

on the related work. In Setion 3, the implementation of the overage measure-

ment framework is presented. In Setion 4, some use ases are presented to

demonstrate the usefulness of overage information. In Setion 5, we summarize

our ahievements and elaborate on some possible future works.

2 Related Work

Software testing is a very important ativity during the software development

proess. It helps reduing the risk of residual bugs and so ontributes to the

quality of the released software. Di�erent testing tehniques an be ategorized

by many riteria. One of these ategories ontain the dynami testing meth-

ods where testing inludes the exeution of the program under test. There are

two well known groups of dynami testing tehniques: blak-box and white-box

testing tehniques. While blak-box tehniques help to assess the quality of the

software under test, white-box tehniques rather assess the quality of the exe-

uted test sets. A good test inludes a wide range of testing tehniques, ombines

them to lessen the weaknesses of the individual methods, and utilizes the advan-

tages of the ombination. For example, tests prepared using blak-box tehniques

are usually measured for ode overage (a white-box tehnique), whih helps to

estimate the remaining risks more aurately.

In the CIRENE projet, one of our �rst tasks was to assess the state-of-the-art

in embedded systems testing tehniques with speial attention to the ombined

use of blak and white-box tehniques. We prepared a tehnial report on it [5℄.

In this paper, we report only a few number of ombined testing tehniques that

have been speialized and implemented in the embedded environment.

Gotlieb and Petit presented a path-based test ase generation method [6℄.

They used symboli program exeution and did not exeute the software on

the embedded devie prior to the test ase de�nitions. We use ode overage

measurement of real exeutions to determine information that an be used in

test ase generation.

José et al. de�ned a new overage metri for embedded systems to indiate

instrutions that had no e�et on the output of the program [7℄. Their im-

plementation used soure ode instrumentation and worked for C programs at

instrution level, and had a great in�uene on the performane of the program.

Biswas et al. also utilized C ode instrumentation in embedded environment

to gather pro�ling information for model-based test ase prioritization [8℄. We

use binary ode instrumentation at method level, use traditional metri that

indiates whether the method is exeuted during the test ase or not, and our



solution has a minimal overhead on exeution time. The resulting overage in-

formation an also be used for test ase seletion and prioritization.

Hazelwood and Klauser worked on binary ode instrumentation for ARM-

based embedded systems [9℄. They reported the design, implementation and

appliations of the ARM port of the Pin, a dynami binary rewriting framework.

However, we are working with Android systems that hides the onrete hardware

arhiteture but provides a Java-based one.

There are many solutions for Java ode overage measurement. For example,

EMMA [3℄ provides a omplete solution for traing and reporting ode overage

of Java appliations. However, it is, as well as others are general solutions not

onerning the speialities of Android or any embedded systems.

Most of the overage measurement tools utilize ode instrumentation. In

Java-based systems, byte ode instrumentation is more popular than soure ode

instrumentation. There are many frameworks providing instrumenting funtion-

alities (e.g. DiSL [10℄, InsECT [11,12℄, jCello [13℄, BCEL [14℄, et.) for Java.

These are very similar to eah other regarding their provided funtionalities. We

hose Javassist [15℄ to be our instrumentation framework in the pilot projet.

3 Coverage Measurement Toolhain

The implemented overage measurement toolhain onsists of several parts.

First, the appliations seleted for measurement have to be prepared. The prepa-

ration proess inludes program instrumentation that inserts extra ode in the

appliation so that the appliation an produe the information neessary for

traing its exeution path during the test exeutions. The modi�ed appliations

and the environment that helps ollet the results must be installed on the devie

under test.

Next, tests are exeuted using this measurement environment and the pre-

pared appliations, and overage information is produed. In general, test exe-

ution an be either manual or automated. In the urrent implementation, we

use the RT-Exeutor [4℄ for test automation. The RT-Exeutor is a blak-box

test automation tool developed for testing multimedia devies by RT-RK orpo-

ration in Novi Sad [16℄. During the exeution of the test ases, the instrumented

appliations produe their traes whih are olleted, and overage information

is sent bak to the automation tool.

Third, the overage information resulted from the previous test exeutions

is proessed and used for di�erent purposes e.g. for test seletion and prioriti-

zation, additional test ase generation, traeability omputation, and dead ode

detetion.

In the rest of this setion, we desribe the tehnial details of the overage

measurement toolhain.

3.1 Preparation

In order to measure ode overage, we have to prepare the environment and/or

the programs under test to produe the neessary information on the exeuted



items of the program. In our ase, the Android system uses the Dalvik virtual

mahine to exeute the appliations. Although modifying this virtual mahine

to produe the neessary information would result in a more extensive solution

that would not require the individual preparation of the measured appliations,

we deided not to do so, as we assumed that modifying the VM itself had higher

risks than modifying the individual appliations. With individual preparation

it is muh easier to deide what to measure and at what level of details. So,

we deided to individually prepare the appliations to be measured. As we were

interested in method level granularity, the methods of the appliations were

instrumented before test exeution, and this instrumented version of the appli-

ation was installed on the devie. In addition, a servie appliation serving as

a ommuniation interfae between the tested appliations and the network was

also neessary to be present on the devie.

Instrumentation During the instrumentation proess, extra instrutions are

inserted in the ode of the appliation. These extra instrutions should not mod-

ify the original funtionality of the appliation exept that they are logging the

neessary information and slowing down the exeution. Instrumentation an be

done on the soure ode or on the binary ode.

In our pilot implementation, we are interested in method level ode overage

measurement. It requires the instrumentation of eah method inserting a ode

that logs the fat that the method is alled. As our targets are Android applia-

tions usually available in binary form, we have hosen binary instrumentation.

Fig. 2. Instrumentation toolhain

Android is a Java-based system whih in our ase means that the appli-

ations are written in Java language and ompiled to Java Byteode before a

further step reates the �nal Dalvik binary form of the Android appliation.

The transformation from Java to Dalvik is reversible, so we an use Java tools

to manipulate the program and instrument the neessary instrutions. We used

the Javassist [15℄ library for Java byteode instrumentation, apktool [17℄ for

unpaking and repaking the Android appliations, the dex2jar [18℄ tool for on-

verting between the Dalvik and the Java program representations, and aapt [19℄



tool for sign the appliation. The Instrumentation toolhain (see Figure 2) is the

following:

� The Android binary form of the program needs to be instrumented. It is an

.apk �le (a speial Java pakage, similar to the .jar �les, but extended with

other data to beome exeutable).

� Using the apktool the .apk �le is unpaked and .dex �le is extrated. This

.dex �le is the main soure pakage of the appliation, it ontains its ode

in a speial binary format. [19,20℄

� For all .dex �les the dex2jar is used to onvert them to .jar format.

� On the .jar �les we an use the JInstrumenter. The JInstrumenter is our

Java instrumentation tool based on the Javassist library [15℄.

JInstrumenter �rst adds a new olletor lass with two responsibilities to

the appliation. On the one hand, it ontains a overage array that holds the

numbers indiating how many times the methods (or any other items that is

to be measured) were exeuted. On the other hand, this lass is responsible

for the ommuniation with the servie layer of the measurement framework.

Next, the JInstrumenter assigns a unique number as ID to eah of the

methods. This number indiates the method's plae in the overage array of

the olletor lass. Then a single instrution is inserted in the beginning of

all methods whih updates the orresponding element of the overage array

on all exeutions of the method.

The result of the instrumentation is a new .jar �le with instrumented meth-

ods and another �le with all the methods' names and IDs.

� The instrumented .jar �les are onverted to .dex �les using the dex2jar

tool again.

� Finally, the .apk �le instrumented appliation is reated by repaking the

.dex �les with the apktool and signing it with the aapt tool.

During the instrumentation, we give a name to eah appliation. This name

will uniquely identify the appliation in the measurement toolhain, so the ser-

vie appliation an identify and separate the overage information of di�erent

appliations.

After the instrumentation, the appliation is ready for installation on the

target devie.

Servie appliation In our overage measurement framework implementation

it is neessary to have an appliation that is ontinuously running on the An-

droid devie in parallel with the program under test. During the test exeution,

this appliation is serving as a ommuniation interfae between the tested ap-

pliations and the external tool olleting and proessing the overage data. On

the one hand this is neessary beause of the rights management of the Android

systems. Using the network requires speial rights from the appliation and it

is muh simplier and more ontrollable to give these rights to only a single ap-

pliation than to all of the tested appliations. On the other hand, this solution



provides a single interfae to query the overage data even if there are more

appliations tested and measured simultaneously.

In Android systems, there are two types of appliations: �normal� and �ser-

vie�. Normal appliations start, do something while they are visible on the

sreen, and are destroyed on losing. Servies are running in the bakground

ontinuously and are not destroyed on losing. So, we had to implement this

interfae appliation as a servie. It serves as a bridge between the Android

appliations under test and the �external world� as it an be seen on Figure 3.

The tested appliations are measuring their own overage and the servie queries

these data on-demand. As the ommuniation is usually initiated before the start

and after the end of the test ases, this means no regular ommuniation over-

head in the system during the test ase exeutions.

Fig. 3. Servie Layer

Messages are aepted from and sent to the external overage measurement

tools. The ommuniation uses JSON [21℄ objets (type-value pairs) over the

TCP/IP protool. Implemented messages are:

NEWTC The testing tool sends this message to the servie to sign that there

is a new test ase to be exeuted and asks it to perform the required ations.

ASK The testing tool sends this message to query the atual overage informa-

tion.

COVERAGE DATA The servie sends this message to the testing tool in

response to the ASK message. The message ontains overage information.

Internally, the servie also uses JSON objets to ommuniate with the in-

strumented appliations. Implemented messages are:

reset The servie sends this message to the appliation to reset the stored ov-

erage values.



ask The servie sends this message to query the atual overage information.

overage data The appliation sends this message to the servie in response

to the ask message. The message ontains overage information.

Installation To measure overage on the Android system, two things need to

be installed: the partiular appliation we want to test and the ommon servie

appliation that ollets overage information from any instrumented appliation

and provides a ommuniation interfae for querying the data from the devie.

The servie appliation needs to be installed on a devie only one; this single

entity an handle the ommuniation of all tested appliations.

The instrumented version of eah appliation that is going to be measured

must be installed on the Android devie. The original version of suh an ap-

pliation (if there was one) must be removed before the instrumented version

an be installed. It is neessary beause Android ideti�es the appliations by

their speial android-name and pakage, and our instrtumentation proess does

not hange these attributes of the appliations; it only inserts the appropriate

instrutions into the ode. Our toolhain uses the adb tool (an be found in

Android Development Kit) to remove and install pakages.

3.2 Exeution

During test exeution, the Android devie exeutes the program under test and

the servie appliation simultaneously. The program under test ounts its own

overage information and sends this information when the servie layer appli-

ation asks for it. The overage information an be queried from this servie

layer appliation through network onnetion. We implemented a simple query

interfae in Java for manual testing and a plugin for the RT-Exeutor [4℄ (a

blak-box test automation tool we used in this projet) for automated testing.

In our pilot projet, we used two possible modes of test exeution: manual and

automatized. Either mode is used, the servie layer appliation must be started

prior to the beginning of the exeution of the test ases. It is done automatially

by the instrumented appliations if the servie is not running already.

In the ase of automated testing, the RT-Exeutor reads the test ase sripts

and exeutes the test ases. The lient side of the measurement framework is

ontained in a plug-in of the automation tool, and this plug-in must be ontrolled

from the test ase itself. Thus, the test ase sripts must be prepared in order

to measure the ode overage of the exeuted appliations.

The plug-in an indiate the beginning and the end of the partiular test ases

to the servie, so the servie an distinguish the test ases and an separate the

olleted information. In order to measure the test ase overages individually,

one instrution must be inserted in the beginning of the test sript to reset the

overage values and one instrution must be inserted in the end instruting the

plug-in to ollet and store overage information belonging to the test ase.

During test exeution the following steps are taken:

� Start the program under test.



� The start of the program triggers the start of the measurement servie if

neessary. Then the program under test onnets to the servie and registers

itself by its unique name given to it in instrumetnation proess.

� The test automation system starts a test ase. The test ase fores the au-

tomation system plug-in to send a NEWTC message to the servie. The

servie sends the reset message to the program under test. The PUT resets

the overage array in its olletor lass. The servie returns the atual time

to the plug-in.

� The test automation system performs the test steps. The PUT ollets the

overage data.

� The test ase ends. The automation tool plug-in sends the ASK signal to

the servie. The servie sends the ask signal to the PUT. The PUT sends

bak the overage data to the servie. The servie sends bak the overage

data and the atual time to the automation tool plug-in.

� The plug-in alulates the neessary information from the overage data and

stores it in the loal �les. The stored data are: exeution time, trae length,

overage value, lists of overed and not overed methods. Another plug-in

deides if the test ase was passed or failed and stores this information in

other loal �les.

These steps are repeated during the whole test suite exeution. At the end,

the overage information of all the exeuted test ases are stored in loal �les

and are ready to be proessed by di�erent stages of the testing methodology.

3.3 Proessing the Data

As we mentioned above, the lient side of the overage measurement system is

realized as a plug-in of the RT-Exeutor tool.

The plug-in is ontrolled from the test ases. It indiates the beginning and

the end of a test ases to the servie layer appliation. The servie replies to

these signals by sending the valuable data bak. When the measurement lient

indiates the start of a test ase (by sending the NEWTC message to the

servie), the servie replies with the urrent time whih is stored by the lient.

At the end of a test ase (when the ASK signal is sent by the lient), the

servie replies with the urrent time and the olleted overage information of

the methods.

When the overage data is reeived, the measurement lient omputes the

exeution time, trae length (the number of method alls), and the list of overed

and not overed methods' IDs. Then, the lient stores these data in a result �le

for further use. The lient makes other �les, the trae �les, separately for eah

test ase. Suh a trae �le stores the identi�ers of the methods overed during

the exeution of the test ase.

As an alternative lient, we implemented a simple standalone java applia-

tion that is able to onnet to the measurement servie (and this way it replaes

the RT-Exeutor plug-in). This lient is able to visualize the ode overage in-

formation online, and is useful during the manual testing ativities (e.g. during

exploratory tests).



Fig. 4. Test exeution framework with overage measurement

3.4 Appliations on the Measurement Framework Results

The ode overage and other information olleted during the test exeution

an be used in various ways. In the pilot projet, we implemented some of the

possible appliations. These implementations proess the data �les loally stored

by the lient plug-in.

Test Case Seletion and Prioritization Test ase seletion is a proess that

de�nes a subset of a test suite based on some properties of the test ases. Test

ase prioritization is a proess that sorts the test suite elements aording to

their properties [22℄. A prioritized list of test ases an be ut at some points

resulting in a kind of seletion.

Code overage data an be used for test ase seletion and prioritization.

We implemented some seletion and prioritization algorithms as a plug-in of

the RT-Exeutor, whih utilizes the ode overage information olleted by the

measurement framework:

� A hange-based seletion algorithm was implemented that used the list of

hanged methods and the ode overage information to selet the test ases

that overed some of the hanged methods. Exeuting the seleted test ases

an only redue the time required for regression test exeution while the

failure detetion apability of the suite is not redued.

� We implemented two well-known overage-based prioritization algorithms:

one that prefers test ases overing more methods; and another that aims at

higher overall method overage with less test ases.

� We also implemented a simple prioritization that used the trae length of the

test ases. It an prioritize the tests either in the desending or the asending

order of the length of their traes.

Not Covered Code Not overed ode plays an important role in program

veri�ation. There are two possible reasons for a ode part not being overed by

any test ase exeutions. The test suite an simply omit its test ase, in whih



ase we have to de�ne some new test ases exeuting the missed ode. It an also

happen that the not overed ode annot be exeuted by any test ases, whih

means that it is a dead ode. In the latter ase, the ode an be dropped from

the odebase.

In our pilot implementation, automati test ase generation is not imple-

mented. We simply alulate the lists of methods overed and not overed during

the tests. These lists an be used by the testers and the developers to examine

the methods in question and generate new test ases to over the methods, or

to simply eliminate the methods from the ode.

Traeability Calulation Traeability links between di�erent software devel-

opment artifats play a very important role in the hange management proesses.

For example, traeability information an be used to estimate the required re-

soures to perform a spei� hange or to selet the test ases related to the

hange of the spei�ation. Relationship exists between di�erent types of de-

velopment artifats. Some of them an simply be reorded when the artifat is

reated, some of them must be determined later.

We implemented a very simple traeability alulator that omputes the or-

relation between the requirements and the methods, based on the pre-de�ned

relationships between the requirements and the test ases and between the test

ases and the methods (ode overage). If a requirement-method pair is assigned

with high orrelation, we an assume that the required funtionality is imple-

mented in the method. This information an be used to asses the number of

methods to be hanged if the partiular requirement hanges.

4 Usage and Evaluation

In this setion, we present and evaluate some use ases to demonstrate the

usability of the measurement toolhain.

4.1 Additional Test Case Generation

In the pilot projet our target embedded hardware was an Android-based Set-

Top-Box. We had this devie with di�erent pre-installed appliations and test

ases for some of these apps. A media-settings appliation was seleted for testing

our methodology and implementation. After exeuting the tests of this applia-

tion with overage measurement, we found that the pre-de�ned tests overed

only 54% of the methods. We examined the methods and de�ned new test ases.

Although the soure ode of this appliations was not available, based on the not

overed method names and the GUI, we were able to de�ne new test ases that

raised the number of overed methods to 69%. This is still less than the required

100% method level overage, but shows that the feedbak on ode overage an

be used to improve the quality of the test suite.



4.2 Traeability Calulation

In the pilot projet a simple implementation that is able to determine the orre-

lation between the ode segments and the requirements was made. We did not

ondut detailed experimentation in this topi, but we did test the tool. Instead

of the requirements, we de�ned 12 funtionalities performed by three media ap-

pliations (players) on our target Set-Top-Box devie. Then, we assigned these

funtionalities to 15 omplex blak-box test ases of the media appliations and

exeuted the test ases with overage measurement. The traeability tool om-

puted orrelations between the 12 funtionalities and 608 methods, and was able

to separate the methods relevant in implementing a funtionality from the not

relevant methods.

5 Conlusions and Future Work

In this paper, we presented a methodology for method level ode overage mea-

surement on Android-based embedded systems. Although there were more solu-

tions allowing the measure of the ode overage of Android appliations on the

developers' omputers, no ommon methods were known to us that performed

overage measurement on the devies. We also reported the implementation of

this methodology on a digital Set-Top-Box running Android. The overage mea-

surement was integrated in the test automation proess of this devie allowing

the use of the olleted overage data in di�erent appliations like test ase sele-

tion and prioritization of the automated tests, or additional test ase generation.

There are many improvement possibilities of this work. Regarding the imple-

mentation of ode overagemeasurement on Android devies, we wish to examine

if the granularity of traing ould be �ned to sub-method level (e.g. to basi blok

or instrution levels) without signi�antly a�eting the runtime behaviour of the

appliations. This would allow us to extrat instrution and branh level over-

ages that would result in more reliable tests. We are also thinking of improving

the instrumentation in order to build dynami all trees for further use. The ur-

rent implementation (simple overage measurement) does not need to deal with

timing, threads and exeption handling, both of whih are neessary for building

the more detailed all trees. It would also be interesting to help the integration

of this overage measurement in ommonly used ontinuous integration and test

exeution tools.

We are also examining the utilization possibilities of the resulting overage

data. For example, traeability information between ode and the visible graph-

ial elements ould be established, and this information might help to partially

automate olleting data for usability tests and to establish usability models.

The implemented ode overage measurement and the testing proess that uti-

lizes this information are a good base for measuring the e�et of using overage

measurement data on the e�ieny and reliability of testing. We are planning

to ondut researhes in these topis.



Aknowledgement

This work was done in the Cross-border ICT Researh Network (CIRENE)

projet (projet number is HUSRB1002/214/044) supported by the Hungary-

Serbia IPA Cross-border Co-operation Programme, o-�naned by the

European Union.

Referenes

1. Google: Android homepage.

https://www.android.om/ (June 2013)

2. Kukolj, S., Marinkovi¢, V., Popovi¢, M., Bognár, Sz.: Seletion and prioritization of

test ases by ombining white-box and blak-box testing methods. In: Proeedings

of the 3

rd
Eastern European Regional Conferene on the Engineering of Computer

Based Systems (ECBS-EERC 2013). (2013)

3. Vlad Roubtsov: EMMA: a free java ode overage tool.

http://emma.soureforge.net/ (June 2013)

4. RT-RK Institute: RT-Exeutor.

http://bbt.rt-rk.om/software/rt-exeutor/ (May 2013)

5. Beszédes, Á., Gergely, T., Papp, I., Marinkovi¢, V., Zlokolia, V.: Survey on test-

ing embedded systems. Tehnial report, Department of Software Engineering,

University of Szeged and Faulty of Tehnial Sienes, University of Novi Sad

(2012)

6. Gotlieb, A., Petit, M.: Path-oriented random testing. In: Proeedings of the 1st

international workshop on Random testing. RT '06, New York, NY, USA, ACM

(2006) 28�35

7. Costa, J.C., Devadas, S., Monteiro, J.C.: Observability analysis of embedded soft-

ware for overage-direted validation. In: In Proeedings of the International Con-

ferene on Computer Aided Design. (2000) 27�32

8. Biswas, S., Mall, R., Satpathy, M., Sukumaran, S.: A model-based regression test

seletion approah for embedded appliations. SIGSOFT Softw. Eng. Notes 34(4)

(July 2009) 1�9

9. Hazelwood, K., Klauser, A.: A dynami binary instrumentation engine for the arm

arhiteture. In: Proeedings of the 2006 international onferene on Compilers,

arhiteture and synthesis for embedded systems. CASES '06, New York, NY, USA,

ACM (2006) 261�270

10. Marek, L., Zheng, Y., Ansaloni, D., Sarimbekov, A., Binder, W., T·ma, P., Qi,

Z.: Java byteode instrumentation made easy: The disl framework for dynami

program analysis. In Jhala, R., Igarashi, A., eds.: Programming Languages and

Systems. Volume 7705 of Leture Notes in Computer Siene. Springer Berlin

Heidelberg (2012) 256�263

11. Chawla, A., Orso, A.: A generi instrumentation framework for olleting dynami

information. In: Online Proeedings of the ISSTAWorkshop on Empirial Researh

in Software Testing (WERST 2004), Boston, MA, USA (july 2004)

12. Seesing, A., Orso, A.: InsECTJ: A Generi Instrumentation Framework for Collet-

ing Dynami Information within Elipse. In: Proeedings of the elipse Tehnology

eXhange (eTX) Workshop at OOPSLA 2005, San Diego, CA, USA (otober 2005)

49�53

13. Slife, D., Chesney, M.: jCello. http://jello.soureforge.net/ (June 2013)



14. Apahe Commons: BCEL homepage.

http://ommons.apahe.org/proper/ommons-bel/ (June 2013)

15. Chiba, Shigeru: Javassist homepage.

http://www.sg.i.i.u-tokyo.a.jp/�hiba/javassist/ (May 2013)

16. RT-RK Institute: Homepage.

http://rt-rk.om/orporate-profile/ (May 2013)

17. Google: apktool homepage.

https://ode.google.om/p/android-apktool/ (May 2013)

18. Google: dex2jar.

https://ode.google.om/p/dex2jar/ (May 2013)

19. Google Android Developers: Building and running an android appliation.

http://developer.android.om/tools/building/index.html (May 2013)

20. Bornstein, D.: Presentation of Dalvik VM internals (2008)

21. Developers: JSON.

http://www.json.org/ (June 2013)

22. Yoo, S., Harman, M.: Regression testing minimization, seletion and prioritization:

a survey. Software Testing, Veri�ation and Reliability 22(2) (2012) 67�120


