
Code Coverage Measurement Framework for

Android Devi
es

Szabol
s Bognár

1
, Tamás Gergely

1
, Róbert Rá
z

1
, Árpád Beszédes

1
, and

Vladimir Marinkovi


2

1
University of Szeged, Department of Software Engineering

{bszabi,gertom,rrobi,beszedes}�inf.u-szeged.hu

2
University of Novi Sad, Fa
ulty of Te
hni
al S
ien
es vladam�uns.a
.rs

Abstra
t. Software testing is a very important a
tivity in the software

development life 
y
le. Numerous general bla
k- and white-box te
h-

niques exist to a
hieve di�erent goals and there are a lot of pra
ti
es for

di�erent kinds of software. The testing of embedded systems, however,

raises some very spe
ial 
onstraints and requirements in software testing.

Spe
ial solutions exist in this �eld, but there is no general testing method-

ology for embedded systems. One of the goals of the CIRENE proje
t

was to �ll this gap and de�ne a general testing methodology for em-

bedded systems that 
ould be spe
ialized to di�erent environments. The

proje
t in
luded a pilot implementation of this methodology in a spe
i�


environment: on an Android-based Digital TV re
eiver (Set-Top-Box).

In this pilot, we implemented method level 
ode 
overage measurement of

Android appli
ations. This was done by instrumenting the appli
ations

and 
reating a framework for the Android devi
e that 
olle
ted basi


information from the instrumented appli
ations and 
ommuni
ated it

through the network towards a server where the data was �nally pro-


essed. The resulting 
ode 
overage information was used for many pur-

poses a

ording to the methodology: test 
ase sele
tion and prioritiza-

tion, tra
eability 
omputation, dead 
ode dete
tion, et
.

In this paper, we introdu
e this pilot implementation and, as a proof-

of-
on
ept, present how the 
overage results were used for di�erent pur-

poses.

1 Introdu
tion

Software testing is a very important quality assuran
e a
tivity of the software

development life 
y
le. With testing, the risk of a residing bug in the software 
an

be redu
ed, and by rea
ting to the revealed defe
ts, the quality of the software


an be improved. Testing 
an be performed in various ways. Stati
 testing � for

example � 
an be performed on any workprodu
ts of the proje
t; it in
ludes

the manual 
he
king of do
uments and the automati
 analysis of the sour
e


ode without exe
uting the software. During dynami
 testing the software or a

spe
i�
 part of the software is exe
uted. Many dynami
 test design te
hniques

exist, the two most well known groups among them are bla
k-box and white-box

te
hniques.



Bla
k-box test design te
hniques 
on
entrate on testing fun
tionalities and

requirements by systemati
ally 
he
king whether the software works as intended

and produ
es the expe
ted output for a spe
i�
 input. The te
hniques take the

software as a bla
k box, examine �what� the program does without having any

knowledge on the stru
ture of the program, and they are not intrerested in the

question �how?�.

On the other hand, white-box testing examines the question �How does the

program do that?�, and tries to exhaustively examine the 
ode from several

aspe
ts. This exhaustive examination is given by a so-
alled 
overage 
riterion

whi
h de�nes the 
onditions to be ful�lled by the set of instru
tion sequen
es

exe
uted during the tests. (E.g. 100% instru
tion 
overage 
riterion is ful�lled if

all instru
tions of the program are exe
uted during the tests.) Coverage measures

give a feedba
k on the quality of the tests themselves.

The reliability of the test 
an be improved, by 
ombining bla
k-box and

white-box te
hniques. During the exe
ution of test 
ases generated from the

spe
i�
ations using bla
k-box te
hniques, white-box te
hniques 
an be used to

measure how 
ompletely the a
tual implementation is 
he
ked. If ne
essary, re-

liability of the tests 
an be improved by generating new test 
ases for the not

veri�ed 
ode fragments.

1.1 Spe
i�
 problems with embedded system testing

Testing in embedded environments has spe
ial attributes and 
hara
teristi
s.

Embedded systems are neither uniform nor general-purpose. Ea
h embedded

system has its own hardware and software 
on�guration typi
ally designed and

optimized for a spe
i�
 task, whi
h a�e
ts the development a
tivities on the

spe
i�
 system. Development, debugging, and testing are more di�
ult sin
e

di�erent tools are required for di�erent platforms.

However, high produ
t quality and testing that ensures this high quality

is very important as the 
orre
tion of residual bugs 
an be very di�
ult for

these systems. For example, the software of a digital TV with play-from-USB


apabilities fails to re
over after opening a spe
i�
 media �le format and this

bug 
an only be repaired by repla
ing the ROM of the TV. On
e the TVs are

produ
ed and sold, it might be impossible to 
orre
t this bug without spending

a huge amount of money on logisti
 issues. Although there are some solutions

aiming at the uniformisation of the software layers of embedded systems (e.g. the

Android platform [1℄), there has not been a uniform methodology for embedded

systems testing.

1.2 The CIRENE proje
t

One of the goals of the CIRENE proje
t [2℄ is to �ll this gap and de�ne a

general testing methodology for embedded systems that 
opes with the above

mentioned spe
ialities and whose parts 
an be implemented on spe
i�
 systems.

The methodology 
ombines bla
k-box tests responsible for the quality assesment

of the system under test and white-box tests responsible for the quality assesment



of the tests themselves. Using this methodology the reliability of the test results

and the quality of the embedded system 
an be improved. As a proof-of-
on
ept,

the CIRENE proje
t in
luded a pilot implementation of the methodology for

a spe
i�
, Android-based digital Set-Top-Box system. Although the proposed

solution was developed for a spe
i�
 embedded environment, it 
an be used for

any Android-based embedded devi
es su
h as smart phones or more general-

purpose tablets.

The methodology spe
ialized to the Set-Top-Box in the pilot implementation


an be seen on Figure 1. The 
overagemeasurement tool
hain plays an important

role in the methodology. Many 
overage measurement tools (e.g. EMMA [3℄)

exist that are not spe
i�
 but 
an be used on Android appli
ations. However,

these are appli
able only during the early development phases as they are able to

measure 
ode 
overage on the development platform side. This kind of testing

ommits to test the real environment, misses the hardware-software 
o-existan
e

issues whi
h 
an be essential in embedded systems. We are not aware of any


ommon tool
hain that measures 
ode 
overage dire
tly on Android devi
es.

Our 
overage measurement tool
hain starts with the instrumentation of the

appli
ation we want to test, whi
h allows us to the measure 
ode 
overage of the

given appli
ation during test exe
ution. As the devi
e of the pilot proje
t runs the

Java-based Android operation system, Java instrumentation te
hniques 
an be

used. Then, the test 
ases are exe
uted and the 
overage information is 
olle
ted.

In the pilot implementation, the 
olle
tion is split between the Android devi
e

and the used testing tool RT-Exe
utor [4℄: the servi
e 
olle
ts the information

from the individual appli
ations of the devi
e, while the testing tool pro
esses

the information (through its plug-ins).

Fig. 1. Coverage 
olle
tion methodology on the Set-Top-Box



The 
overage information gathered with the help of the 
overage framework


an be utilized by many appli
ations in the testing methodology. They 
an be

used for sele
ting and prioritizing test 
ases for further test exe
utions, or for

helping to generate additional test 
ases if the 
overage is not su�
ient. It is

also useful for dead 
ode dete
tion or tra
eability links 
omputation.

The rest of the paper is organized as follows. In Se
tion 2, we give an overview

on the related work. In Se
tion 3, the implementation of the 
overage measure-

ment framework is presented. In Se
tion 4, some use 
ases are presented to

demonstrate the usefulness of 
overage information. In Se
tion 5, we summarize

our a
hievements and elaborate on some possible future works.

2 Related Work

Software testing is a very important a
tivity during the software development

pro
ess. It helps redu
ing the risk of residual bugs and so 
ontributes to the

quality of the released software. Di�erent testing te
hniques 
an be 
ategorized

by many 
riteria. One of these 
ategories 
ontain the dynami
 testing meth-

ods where testing in
ludes the exe
ution of the program under test. There are

two well known groups of dynami
 testing te
hniques: bla
k-box and white-box

testing te
hniques. While bla
k-box te
hniques help to assess the quality of the

software under test, white-box te
hniques rather assess the quality of the exe-


uted test sets. A good test in
ludes a wide range of testing te
hniques, 
ombines

them to lessen the weaknesses of the individual methods, and utilizes the advan-

tages of the 
ombination. For example, tests prepared using bla
k-box te
hniques

are usually measured for 
ode 
overage (a white-box te
hnique), whi
h helps to

estimate the remaining risks more a

urately.

In the CIRENE proje
t, one of our �rst tasks was to assess the state-of-the-art

in embedded systems testing te
hniques with spe
ial attention to the 
ombined

use of bla
k and white-box te
hniques. We prepared a te
hni
al report on it [5℄.

In this paper, we report only a few number of 
ombined testing te
hniques that

have been spe
ialized and implemented in the embedded environment.

Gotlieb and Petit presented a path-based test 
ase generation method [6℄.

They used symboli
 program exe
ution and did not exe
ute the software on

the embedded devi
e prior to the test 
ase de�nitions. We use 
ode 
overage

measurement of real exe
utions to determine information that 
an be used in

test 
ase generation.

José et al. de�ned a new 
overage metri
 for embedded systems to indi
ate

instru
tions that had no e�e
t on the output of the program [7℄. Their im-

plementation used sour
e 
ode instrumentation and worked for C programs at

instru
tion level, and had a great in�uen
e on the performan
e of the program.

Biswas et al. also utilized C 
ode instrumentation in embedded environment

to gather pro�ling information for model-based test 
ase prioritization [8℄. We

use binary 
ode instrumentation at method level, use traditional metri
 that

indi
ates whether the method is exe
uted during the test 
ase or not, and our



solution has a minimal overhead on exe
ution time. The resulting 
overage in-

formation 
an also be used for test 
ase sele
tion and prioritization.

Hazelwood and Klauser worked on binary 
ode instrumentation for ARM-

based embedded systems [9℄. They reported the design, implementation and

appli
ations of the ARM port of the Pin, a dynami
 binary rewriting framework.

However, we are working with Android systems that hides the 
on
rete hardware

ar
hite
ture but provides a Java-based one.

There are many solutions for Java 
ode 
overage measurement. For example,

EMMA [3℄ provides a 
omplete solution for tra
ing and reporting 
ode 
overage

of Java appli
ations. However, it is, as well as others are general solutions not


on
erning the spe
ialities of Android or any embedded systems.

Most of the 
overage measurement tools utilize 
ode instrumentation. In

Java-based systems, byte 
ode instrumentation is more popular than sour
e 
ode

instrumentation. There are many frameworks providing instrumenting fun
tion-

alities (e.g. DiSL [10℄, InsECT [11,12℄, jCello [13℄, BCEL [14℄, et
.) for Java.

These are very similar to ea
h other regarding their provided fun
tionalities. We


hose Javassist [15℄ to be our instrumentation framework in the pilot proje
t.

3 Coverage Measurement Tool
hain

The implemented 
overage measurement tool
hain 
onsists of several parts.

First, the appli
ations sele
ted for measurement have to be prepared. The prepa-

ration pro
ess in
ludes program instrumentation that inserts extra 
ode in the

appli
ation so that the appli
ation 
an produ
e the information ne
essary for

tra
ing its exe
ution path during the test exe
utions. The modi�ed appli
ations

and the environment that helps 
olle
t the results must be installed on the devi
e

under test.

Next, tests are exe
uted using this measurement environment and the pre-

pared appli
ations, and 
overage information is produ
ed. In general, test exe-


ution 
an be either manual or automated. In the 
urrent implementation, we

use the RT-Exe
utor [4℄ for test automation. The RT-Exe
utor is a bla
k-box

test automation tool developed for testing multimedia devi
es by RT-RK 
orpo-

ration in Novi Sad [16℄. During the exe
ution of the test 
ases, the instrumented

appli
ations produ
e their tra
es whi
h are 
olle
ted, and 
overage information

is sent ba
k to the automation tool.

Third, the 
overage information resulted from the previous test exe
utions

is pro
essed and used for di�erent purposes e.g. for test sele
tion and prioriti-

zation, additional test 
ase generation, tra
eability 
omputation, and dead 
ode

dete
tion.

In the rest of this se
tion, we des
ribe the te
hni
al details of the 
overage

measurement tool
hain.

3.1 Preparation

In order to measure 
ode 
overage, we have to prepare the environment and/or

the programs under test to produ
e the ne
essary information on the exe
uted



items of the program. In our 
ase, the Android system uses the Dalvik virtual

ma
hine to exe
ute the appli
ations. Although modifying this virtual ma
hine

to produ
e the ne
essary information would result in a more extensive solution

that would not require the individual preparation of the measured appli
ations,

we de
ided not to do so, as we assumed that modifying the VM itself had higher

risks than modifying the individual appli
ations. With individual preparation

it is mu
h easier to de
ide what to measure and at what level of details. So,

we de
ided to individually prepare the appli
ations to be measured. As we were

interested in method level granularity, the methods of the appli
ations were

instrumented before test exe
ution, and this instrumented version of the appli-


ation was installed on the devi
e. In addition, a servi
e appli
ation serving as

a 
ommuni
ation interfa
e between the tested appli
ations and the network was

also ne
essary to be present on the devi
e.

Instrumentation During the instrumentation pro
ess, extra instru
tions are

inserted in the 
ode of the appli
ation. These extra instru
tions should not mod-

ify the original fun
tionality of the appli
ation ex
ept that they are logging the

ne
essary information and slowing down the exe
ution. Instrumentation 
an be

done on the sour
e 
ode or on the binary 
ode.

In our pilot implementation, we are interested in method level 
ode 
overage

measurement. It requires the instrumentation of ea
h method inserting a 
ode

that logs the fa
t that the method is 
alled. As our targets are Android appli
a-

tions usually available in binary form, we have 
hosen binary instrumentation.

Fig. 2. Instrumentation tool
hain

Android is a Java-based system whi
h in our 
ase means that the appli-


ations are written in Java language and 
ompiled to Java Byte
ode before a

further step 
reates the �nal Dalvik binary form of the Android appli
ation.

The transformation from Java to Dalvik is reversible, so we 
an use Java tools

to manipulate the program and instrument the ne
essary instru
tions. We used

the Javassist [15℄ library for Java byte
ode instrumentation, apktool [17℄ for

unpa
king and repa
king the Android appli
ations, the dex2jar [18℄ tool for 
on-

verting between the Dalvik and the Java program representations, and aapt [19℄



tool for sign the appli
ation. The Instrumentation tool
hain (see Figure 2) is the

following:

� The Android binary form of the program needs to be instrumented. It is an

.apk �le (a spe
ial Java pa
kage, similar to the .jar �les, but extended with

other data to be
ome exe
utable).

� Using the apktool the .apk �le is unpa
ked and .dex �le is extra
ted. This

.dex �le is the main sour
e pa
kage of the appli
ation, it 
ontains its 
ode

in a spe
ial binary format. [19,20℄

� For all .dex �les the dex2jar is used to 
onvert them to .jar format.

� On the .jar �les we 
an use the JInstrumenter. The JInstrumenter is our

Java instrumentation tool based on the Javassist library [15℄.

JInstrumenter �rst adds a new 
olle
tor 
lass with two responsibilities to

the appli
ation. On the one hand, it 
ontains a 
overage array that holds the

numbers indi
ating how many times the methods (or any other items that is

to be measured) were exe
uted. On the other hand, this 
lass is responsible

for the 
ommuni
ation with the servi
e layer of the measurement framework.

Next, the JInstrumenter assigns a unique number as ID to ea
h of the

methods. This number indi
ates the method's pla
e in the 
overage array of

the 
olle
tor 
lass. Then a single instru
tion is inserted in the beginning of

all methods whi
h updates the 
orresponding element of the 
overage array

on all exe
utions of the method.

The result of the instrumentation is a new .jar �le with instrumented meth-

ods and another �le with all the methods' names and IDs.

� The instrumented .jar �les are 
onverted to .dex �les using the dex2jar

tool again.

� Finally, the .apk �le instrumented appli
ation is 
reated by repa
king the

.dex �les with the apktool and signing it with the aapt tool.

During the instrumentation, we give a name to ea
h appli
ation. This name

will uniquely identify the appli
ation in the measurement tool
hain, so the ser-

vi
e appli
ation 
an identify and separate the 
overage information of di�erent

appli
ations.

After the instrumentation, the appli
ation is ready for installation on the

target devi
e.

Servi
e appli
ation In our 
overage measurement framework implementation

it is ne
essary to have an appli
ation that is 
ontinuously running on the An-

droid devi
e in parallel with the program under test. During the test exe
ution,

this appli
ation is serving as a 
ommuni
ation interfa
e between the tested ap-

pli
ations and the external tool 
olle
ting and pro
essing the 
overage data. On

the one hand this is ne
essary be
ause of the rights management of the Android

systems. Using the network requires spe
ial rights from the appli
ation and it

is mu
h simplier and more 
ontrollable to give these rights to only a single ap-

pli
ation than to all of the tested appli
ations. On the other hand, this solution



provides a single interfa
e to query the 
overage data even if there are more

appli
ations tested and measured simultaneously.

In Android systems, there are two types of appli
ations: �normal� and �ser-

vi
e�. Normal appli
ations start, do something while they are visible on the

s
reen, and are destroyed on 
losing. Servi
es are running in the ba
kground


ontinuously and are not destroyed on 
losing. So, we had to implement this

interfa
e appli
ation as a servi
e. It serves as a bridge between the Android

appli
ations under test and the �external world� as it 
an be seen on Figure 3.

The tested appli
ations are measuring their own 
overage and the servi
e queries

these data on-demand. As the 
ommuni
ation is usually initiated before the start

and after the end of the test 
ases, this means no regular 
ommuni
ation over-

head in the system during the test 
ase exe
utions.

Fig. 3. Servi
e Layer

Messages are a

epted from and sent to the external 
overage measurement

tools. The 
ommuni
ation uses JSON [21℄ obje
ts (type-value pairs) over the

TCP/IP proto
ol. Implemented messages are:

NEWTC The testing tool sends this message to the servi
e to sign that there

is a new test 
ase to be exe
uted and asks it to perform the required a
tions.

ASK The testing tool sends this message to query the a
tual 
overage informa-

tion.

COVERAGE DATA The servi
e sends this message to the testing tool in

response to the ASK message. The message 
ontains 
overage information.

Internally, the servi
e also uses JSON obje
ts to 
ommuni
ate with the in-

strumented appli
ations. Implemented messages are:

reset The servi
e sends this message to the appli
ation to reset the stored 
ov-

erage values.



ask The servi
e sends this message to query the a
tual 
overage information.


overage data The appli
ation sends this message to the servi
e in response

to the ask message. The message 
ontains 
overage information.

Installation To measure 
overage on the Android system, two things need to

be installed: the parti
ular appli
ation we want to test and the 
ommon servi
e

appli
ation that 
olle
ts 
overage information from any instrumented appli
ation

and provides a 
ommuni
ation interfa
e for querying the data from the devi
e.

The servi
e appli
ation needs to be installed on a devi
e only on
e; this single

entity 
an handle the 
ommuni
ation of all tested appli
ations.

The instrumented version of ea
h appli
ation that is going to be measured

must be installed on the Android devi
e. The original version of su
h an ap-

pli
ation (if there was one) must be removed before the instrumented version


an be installed. It is ne
essary be
ause Android ideti�es the appli
ations by

their spe
ial android-name and pa
kage, and our instrtumentation pro
ess does

not 
hange these attributes of the appli
ations; it only inserts the appropriate

instru
tions into the 
ode. Our tool
hain uses the adb tool (
an be found in

Android Development Kit) to remove and install pa
kages.

3.2 Exe
ution

During test exe
ution, the Android devi
e exe
utes the program under test and

the servi
e appli
ation simultaneously. The program under test 
ounts its own


overage information and sends this information when the servi
e layer appli-


ation asks for it. The 
overage information 
an be queried from this servi
e

layer appli
ation through network 
onne
tion. We implemented a simple query

interfa
e in Java for manual testing and a plugin for the RT-Exe
utor [4℄ (a

bla
k-box test automation tool we used in this proje
t) for automated testing.

In our pilot proje
t, we used two possible modes of test exe
ution: manual and

automatized. Either mode is used, the servi
e layer appli
ation must be started

prior to the beginning of the exe
ution of the test 
ases. It is done automati
ally

by the instrumented appli
ations if the servi
e is not running already.

In the 
ase of automated testing, the RT-Exe
utor reads the test 
ase s
ripts

and exe
utes the test 
ases. The 
lient side of the measurement framework is


ontained in a plug-in of the automation tool, and this plug-in must be 
ontrolled

from the test 
ase itself. Thus, the test 
ase s
ripts must be prepared in order

to measure the 
ode 
overage of the exe
uted appli
ations.

The plug-in 
an indi
ate the beginning and the end of the parti
ular test 
ases

to the servi
e, so the servi
e 
an distinguish the test 
ases and 
an separate the


olle
ted information. In order to measure the test 
ase 
overages individually,

one instru
tion must be inserted in the beginning of the test s
ript to reset the


overage values and one instru
tion must be inserted in the end instru
ting the

plug-in to 
olle
t and store 
overage information belonging to the test 
ase.

During test exe
ution the following steps are taken:

� Start the program under test.



� The start of the program triggers the start of the measurement servi
e if

ne
essary. Then the program under test 
onne
ts to the servi
e and registers

itself by its unique name given to it in instrumetnation pro
ess.

� The test automation system starts a test 
ase. The test 
ase for
es the au-

tomation system plug-in to send a NEWTC message to the servi
e. The

servi
e sends the reset message to the program under test. The PUT resets

the 
overage array in its 
olle
tor 
lass. The servi
e returns the a
tual time

to the plug-in.

� The test automation system performs the test steps. The PUT 
olle
ts the


overage data.

� The test 
ase ends. The automation tool plug-in sends the ASK signal to

the servi
e. The servi
e sends the ask signal to the PUT. The PUT sends

ba
k the 
overage data to the servi
e. The servi
e sends ba
k the 
overage

data and the a
tual time to the automation tool plug-in.

� The plug-in 
al
ulates the ne
essary information from the 
overage data and

stores it in the lo
al �les. The stored data are: exe
ution time, tra
e length,


overage value, lists of 
overed and not 
overed methods. Another plug-in

de
ides if the test 
ase was passed or failed and stores this information in

other lo
al �les.

These steps are repeated during the whole test suite exe
ution. At the end,

the 
overage information of all the exe
uted test 
ases are stored in lo
al �les

and are ready to be pro
essed by di�erent stages of the testing methodology.

3.3 Pro
essing the Data

As we mentioned above, the 
lient side of the 
overage measurement system is

realized as a plug-in of the RT-Exe
utor tool.

The plug-in is 
ontrolled from the test 
ases. It indi
ates the beginning and

the end of a test 
ases to the servi
e layer appli
ation. The servi
e replies to

these signals by sending the valuable data ba
k. When the measurement 
lient

indi
ates the start of a test 
ase (by sending the NEWTC message to the

servi
e), the servi
e replies with the 
urrent time whi
h is stored by the 
lient.

At the end of a test 
ase (when the ASK signal is sent by the 
lient), the

servi
e replies with the 
urrent time and the 
olle
ted 
overage information of

the methods.

When the 
overage data is re
eived, the measurement 
lient 
omputes the

exe
ution time, tra
e length (the number of method 
alls), and the list of 
overed

and not 
overed methods' IDs. Then, the 
lient stores these data in a result �le

for further use. The 
lient makes other �les, the tra
e �les, separately for ea
h

test 
ase. Su
h a tra
e �le stores the identi�ers of the methods 
overed during

the exe
ution of the test 
ase.

As an alternative 
lient, we implemented a simple standalone java appli
a-

tion that is able to 
onne
t to the measurement servi
e (and this way it repla
es

the RT-Exe
utor plug-in). This 
lient is able to visualize the 
ode 
overage in-

formation online, and is useful during the manual testing a
tivities (e.g. during

exploratory tests).



Fig. 4. Test exe
ution framework with 
overage measurement

3.4 Appli
ations on the Measurement Framework Results

The 
ode 
overage and other information 
olle
ted during the test exe
ution


an be used in various ways. In the pilot proje
t, we implemented some of the

possible appli
ations. These implementations pro
ess the data �les lo
ally stored

by the 
lient plug-in.

Test Case Sele
tion and Prioritization Test 
ase sele
tion is a pro
ess that

de�nes a subset of a test suite based on some properties of the test 
ases. Test


ase prioritization is a pro
ess that sorts the test suite elements a

ording to

their properties [22℄. A prioritized list of test 
ases 
an be 
ut at some points

resulting in a kind of sele
tion.

Code 
overage data 
an be used for test 
ase sele
tion and prioritization.

We implemented some sele
tion and prioritization algorithms as a plug-in of

the RT-Exe
utor, whi
h utilizes the 
ode 
overage information 
olle
ted by the

measurement framework:

� A 
hange-based sele
tion algorithm was implemented that used the list of


hanged methods and the 
ode 
overage information to sele
t the test 
ases

that 
overed some of the 
hanged methods. Exe
uting the sele
ted test 
ases


an only redu
e the time required for regression test exe
ution while the

failure dete
tion 
apability of the suite is not redu
ed.

� We implemented two well-known 
overage-based prioritization algorithms:

one that prefers test 
ases 
overing more methods; and another that aims at

higher overall method 
overage with less test 
ases.

� We also implemented a simple prioritization that used the tra
e length of the

test 
ases. It 
an prioritize the tests either in the des
ending or the as
ending

order of the length of their tra
es.

Not Covered Code Not 
overed 
ode plays an important role in program

veri�
ation. There are two possible reasons for a 
ode part not being 
overed by

any test 
ase exe
utions. The test suite 
an simply omit its test 
ase, in whi
h




ase we have to de�ne some new test 
ases exe
uting the missed 
ode. It 
an also

happen that the not 
overed 
ode 
annot be exe
uted by any test 
ases, whi
h

means that it is a dead 
ode. In the latter 
ase, the 
ode 
an be dropped from

the 
odebase.

In our pilot implementation, automati
 test 
ase generation is not imple-

mented. We simply 
al
ulate the lists of methods 
overed and not 
overed during

the tests. These lists 
an be used by the testers and the developers to examine

the methods in question and generate new test 
ases to 
over the methods, or

to simply eliminate the methods from the 
ode.

Tra
eability Cal
ulation Tra
eability links between di�erent software devel-

opment artifa
ts play a very important role in the 
hange management pro
esses.

For example, tra
eability information 
an be used to estimate the required re-

sour
es to perform a spe
i�
 
hange or to sele
t the test 
ases related to the


hange of the spe
i�
ation. Relationship exists between di�erent types of de-

velopment artifa
ts. Some of them 
an simply be re
orded when the artifa
t is


reated, some of them must be determined later.

We implemented a very simple tra
eability 
al
ulator that 
omputes the 
or-

relation between the requirements and the methods, based on the pre-de�ned

relationships between the requirements and the test 
ases and between the test


ases and the methods (
ode 
overage). If a requirement-method pair is assigned

with high 
orrelation, we 
an assume that the required fun
tionality is imple-

mented in the method. This information 
an be used to asses the number of

methods to be 
hanged if the parti
ular requirement 
hanges.

4 Usage and Evaluation

In this se
tion, we present and evaluate some use 
ases to demonstrate the

usability of the measurement tool
hain.

4.1 Additional Test Case Generation

In the pilot proje
t our target embedded hardware was an Android-based Set-

Top-Box. We had this devi
e with di�erent pre-installed appli
ations and test


ases for some of these apps. A media-settings appli
ation was sele
ted for testing

our methodology and implementation. After exe
uting the tests of this appli
a-

tion with 
overage measurement, we found that the pre-de�ned tests 
overed

only 54% of the methods. We examined the methods and de�ned new test 
ases.

Although the sour
e 
ode of this appli
ations was not available, based on the not


overed method names and the GUI, we were able to de�ne new test 
ases that

raised the number of 
overed methods to 69%. This is still less than the required

100% method level 
overage, but shows that the feedba
k on 
ode 
overage 
an

be used to improve the quality of the test suite.



4.2 Tra
eability Cal
ulation

In the pilot proje
t a simple implementation that is able to determine the 
orre-

lation between the 
ode segments and the requirements was made. We did not


ondu
t detailed experimentation in this topi
, but we did test the tool. Instead

of the requirements, we de�ned 12 fun
tionalities performed by three media ap-

pli
ations (players) on our target Set-Top-Box devi
e. Then, we assigned these

fun
tionalities to 15 
omplex bla
k-box test 
ases of the media appli
ations and

exe
uted the test 
ases with 
overage measurement. The tra
eability tool 
om-

puted 
orrelations between the 12 fun
tionalities and 608 methods, and was able

to separate the methods relevant in implementing a fun
tionality from the not

relevant methods.

5 Con
lusions and Future Work

In this paper, we presented a methodology for method level 
ode 
overage mea-

surement on Android-based embedded systems. Although there were more solu-

tions allowing the measure of the 
ode 
overage of Android appli
ations on the

developers' 
omputers, no 
ommon methods were known to us that performed


overage measurement on the devi
es. We also reported the implementation of

this methodology on a digital Set-Top-Box running Android. The 
overage mea-

surement was integrated in the test automation pro
ess of this devi
e allowing

the use of the 
olle
ted 
overage data in di�erent appli
ations like test 
ase sele
-

tion and prioritization of the automated tests, or additional test 
ase generation.

There are many improvement possibilities of this work. Regarding the imple-

mentation of 
ode 
overagemeasurement on Android devi
es, we wish to examine

if the granularity of tra
ing 
ould be �ned to sub-method level (e.g. to basi
 blo
k

or instru
tion levels) without signi�
antly a�e
ting the runtime behaviour of the

appli
ations. This would allow us to extra
t instru
tion and bran
h level 
over-

ages that would result in more reliable tests. We are also thinking of improving

the instrumentation in order to build dynami
 
all trees for further use. The 
ur-

rent implementation (simple 
overage measurement) does not need to deal with

timing, threads and ex
eption handling, both of whi
h are ne
essary for building

the more detailed 
all trees. It would also be interesting to help the integration

of this 
overage measurement in 
ommonly used 
ontinuous integration and test

exe
ution tools.

We are also examining the utilization possibilities of the resulting 
overage

data. For example, tra
eability information between 
ode and the visible graph-

i
al elements 
ould be established, and this information might help to partially

automate 
olle
ting data for usability tests and to establish usability models.

The implemented 
ode 
overage measurement and the testing pro
ess that uti-

lizes this information are a good base for measuring the e�e
t of using 
overage

measurement data on the e�
ien
y and reliability of testing. We are planning

to 
ondu
t resear
hes in these topi
s.



A
knowledgement

This work was done in the Cross-border ICT Resear
h Network (CIRENE)

proje
t (proje
t number is HUSRB1002/214/044) supported by the Hungary-

Serbia IPA Cross-border Co-operation Programme, 
o-�nan
ed by the

European Union.

Referen
es

1. Google: Android homepage.

https://www.android.
om/ (June 2013)

2. Kukolj, S., Marinkovi¢, V., Popovi¢, M., Bognár, Sz.: Sele
tion and prioritization of

test 
ases by 
ombining white-box and bla
k-box testing methods. In: Pro
eedings

of the 3

rd
Eastern European Regional Conferen
e on the Engineering of Computer

Based Systems (ECBS-EERC 2013). (2013)

3. Vlad Roubtsov: EMMA: a free java 
ode 
overage tool.

http://emma.sour
eforge.net/ (June 2013)

4. RT-RK Institute: RT-Exe
utor.

http://bbt.rt-rk.
om/software/rt-exe
utor/ (May 2013)

5. Beszédes, Á., Gergely, T., Papp, I., Marinkovi¢, V., Zlokoli
a, V.: Survey on test-

ing embedded systems. Te
hni
al report, Department of Software Engineering,

University of Szeged and Fa
ulty of Te
hni
al S
ien
es, University of Novi Sad

(2012)

6. Gotlieb, A., Petit, M.: Path-oriented random testing. In: Pro
eedings of the 1st

international workshop on Random testing. RT '06, New York, NY, USA, ACM

(2006) 28�35

7. Costa, J.C., Devadas, S., Monteiro, J.C.: Observability analysis of embedded soft-

ware for 
overage-dire
ted validation. In: In Pro
eedings of the International Con-

feren
e on Computer Aided Design. (2000) 27�32

8. Biswas, S., Mall, R., Satpathy, M., Sukumaran, S.: A model-based regression test

sele
tion approa
h for embedded appli
ations. SIGSOFT Softw. Eng. Notes 34(4)

(July 2009) 1�9

9. Hazelwood, K., Klauser, A.: A dynami
 binary instrumentation engine for the arm

ar
hite
ture. In: Pro
eedings of the 2006 international 
onferen
e on Compilers,

ar
hite
ture and synthesis for embedded systems. CASES '06, New York, NY, USA,

ACM (2006) 261�270

10. Marek, L., Zheng, Y., Ansaloni, D., Sarimbekov, A., Binder, W., T·ma, P., Qi,

Z.: Java byte
ode instrumentation made easy: The disl framework for dynami


program analysis. In Jhala, R., Igarashi, A., eds.: Programming Languages and

Systems. Volume 7705 of Le
ture Notes in Computer S
ien
e. Springer Berlin

Heidelberg (2012) 256�263

11. Chawla, A., Orso, A.: A generi
 instrumentation framework for 
olle
ting dynami


information. In: Online Pro
eedings of the ISSTAWorkshop on Empiri
al Resear
h

in Software Testing (WERST 2004), Boston, MA, USA (july 2004)

12. Seesing, A., Orso, A.: InsECTJ: A Generi
 Instrumentation Framework for Colle
t-

ing Dynami
 Information within E
lipse. In: Pro
eedings of the e
lipse Te
hnology

eX
hange (eTX) Workshop at OOPSLA 2005, San Diego, CA, USA (o
tober 2005)

49�53

13. Slife, D., Chesney, M.: jCello. http://j
ello.sour
eforge.net/ (June 2013)



14. Apa
he Commons: BCEL homepage.

http://
ommons.apa
he.org/proper/
ommons-b
el/ (June 2013)

15. Chiba, Shigeru: Javassist homepage.

http://www.
sg.
i.i.u-tokyo.a
.jp/�
hiba/javassist/ (May 2013)

16. RT-RK Institute: Homepage.

http://rt-rk.
om/
orporate-profile/ (May 2013)

17. Google: apktool homepage.

https://
ode.google.
om/p/android-apktool/ (May 2013)

18. Google: dex2jar.

https://
ode.google.
om/p/dex2jar/ (May 2013)

19. Google Android Developers: Building and running an android appli
ation.

http://developer.android.
om/tools/building/index.html (May 2013)

20. Bornstein, D.: Presentation of Dalvik VM internals (2008)

21. Developers: JSON.

http://www.json.org/ (June 2013)

22. Yoo, S., Harman, M.: Regression testing minimization, sele
tion and prioritization:

a survey. Software Testing, Veri�
ation and Reliability 22(2) (2012) 67�120


