Code Coverage Measurement Framework for
Android Devices

Szabolcs Bognar!, Tamés Gergely!, Robert Racz!, Arpad Beszédes!, and
Vladimir Marinkovic?

! University of Szeged, Department of Software Engineering
{bszabi,gertom,rrobi,beszedes}@inf .u-szeged.hu
2 University of Novi Sad, Faculty of Technical Sciences vladam@uns.ac.rs

Abstract. Software testing is a very important activity in the software
development life cycle. Numerous general black- and white-box tech-
niques exist to achieve different goals and there are a lot of practices for
different kinds of software. The testing of embedded systems, however,
raises some very special constraints and requirements in software testing.
Special solutions exist in this field, but there is no general testing method-
ology for embedded systems. One of the goals of the CIRENE project
was to fill this gap and define a general testing methodology for em-
bedded systems that could be specialized to different environments. The
project included a pilot implementation of this methodology in a specific
environment: on an Android-based Digital TV receiver (Set-Top-Box).
In this pilot, we implemented method level code coverage measurement of
Android applications. This was done by instrumenting the applications
and creating a framework for the Android device that collected basic
information from the instrumented applications and communicated it
through the network towards a server where the data was finally pro-
cessed. The resulting code coverage information was used for many pur-
poses according to the methodology: test case selection and prioritiza-
tion, traceability computation, dead code detection, etc.

In this paper, we introduce this pilot implementation and, as a proof-
of-concept, present how the coverage results were used for different pur-
poses.

1 Introduction

Software testing is a very important quality assurance activity of the software
development life cycle. With testing, the risk of a residing bug in the software can
be reduced, and by reacting to the revealed defects, the quality of the software
can be improved. Testing can be performed in various ways. Static testing — for
example — can be performed on any workproducts of the project; it includes
the manual checking of documents and the automatic analysis of the source
code without executing the software. During dynamic testing the software or a
specific part of the software is executed. Many dynamic test design techniques
exist, the two most well known groups among them are black-box and white-box
techniques.

Black-box test design techniques concentrate on testing functionalities and
requirements by systematically checking whether the software works as intended
and produces the expected output for a specific input. The techniques take the
software as a black box, examine “what” the program does without having any
knowledge on the structure of the program, and they are not intrerested in the
question “how?”.

On the other hand, white-box testing examines the question “How does the
program do that?”, and tries to exhaustively examine the code from several
aspects. This exhaustive examination is given by a so-called coverage criterion
which defines the conditions to be fulfilled by the set of instruction sequences
executed during the tests. (E.g. 100% instruction coverage criterion is fulfilled if
all instructions of the program are executed during the tests.) Coverage measures
give a feedback on the quality of the tests themselves.

The reliability of the test can be improved, by combining black-box and
white-box techniques. During the execution of test cases generated from the
specifications using black-box techniques, white-box techniques can be used to
measure how completely the actual implementation is checked. If necessary, re-
liability of the tests can be improved by generating new test cases for the not
verified code fragments.

1.1 Specific problems with embedded system testing

Testing in embedded environments has special attributes and characteristics.
Embedded systems are neither uniform nor general-purpose. Each embedded
system has its own hardware and software configuration typically designed and
optimized for a specific task, which affects the development activities on the
specific system. Development, debugging, and testing are more difficult since
different tools are required for different platforms.

However, high product quality and testing that ensures this high quality
is very important as the correction of residual bugs can be very difficult for
these systems. For example, the software of a digital TV with play-from-USB
capabilities fails to recover after opening a specific media file format and this
bug can only be repaired by replacing the ROM of the TV. Once the TVs are
produced and sold, it might be impossible to correct this bug without spending
a huge amount of money on logistic issues. Although there are some solutions
aiming at the uniformisation of the software layers of embedded systems (e.g. the
Android platform [1]), there has not been a uniform methodology for embedded
systems testing.

1.2 The CIRENE project

One of the goals of the CIRENE project [2] is to fill this gap and define a
general testing methodology for embedded systems that copes with the above
mentioned specialities and whose parts can be implemented on specific systems.
The methodology combines black-box tests responsible for the quality assesment,
of the system under test and white-box tests responsible for the quality assesment

of the tests themselves. Using this methodology the reliability of the test results
and the quality of the embedded system can be improved. As a proof-of-concept,
the CIRENE project included a pilot implementation of the methodology for
a specific, Android-based digital Set-Top-Box system. Although the proposed
solution was developed for a specific embedded environment, it can be used for
any Android-based embedded devices such as smart phones or more general-
purpose tablets.

The methodology specialized to the Set-Top-Box in the pilot implementation
can be seen on Figure 1. The coverage measurement toolchain plays an important
role in the methodology. Many coverage measurement tools (e.g. EMMA [3])
exist that are not specific but can be used on Android applications. However,
these are applicable only during the early development phases as they are able to
measure code coverage on the development platform side. This kind of testing
ommits to test the real environment, misses the hardware-software co-existance
issues which can be essential in embedded systems. We are not aware of any
common toolchain that measures code coverage directly on Android devices.

Our coverage measurement toolchain starts with the instrumentation of the
application we want to test, which allows us to the measure code coverage of the
given application during test execution. As the device of the pilot project runs the
Java-based Android operation system, Java instrumentation techniques can be
used. Then, the test cases are executed and the coverage information is collected.
In the pilot implementation, the collection is split between the Android device
and the used testing tool RT-Executor [4]: the service collects the information
from the individual applications of the device, while the testing tool processes
the information (through its plug-ins).

v

Specification T o Prlorltlzgtlon y TestCases
generation selection
Not covered -
e Traceability

Not coveraged Traceability
code calculator Computation

!

Fig. 1. Coverage collection methodology on the Set-Top-Box

The coverage information gathered with the help of the coverage framework
can be utilized by many applications in the testing methodology. They can be
used for selecting and prioritizing test cases for further test executions, or for
helping to generate additional test cases if the coverage is not sufficient. It is
also useful for dead code detection or traceability links computation.

The rest of the paper is organized as follows. In Section 2, we give an overview
on the related work. In Section 3, the implementation of the coverage measure-
ment, framework is presented. In Section 4, some use cases are presented to
demonstrate the usefulness of coverage information. In Section 5, we summarize
our achievements and elaborate on some possible future works.

2 Related Work

Software testing is a very important activity during the software development
process. It helps reducing the risk of residual bugs and so contributes to the
quality of the released software. Different testing techniques can be categorized
by many criteria. One of these categories contain the dynamic testing meth-
ods where testing includes the execution of the program under test. There are
two well known groups of dynamic testing techniques: black-box and white-box
testing techniques. While black-box techniques help to assess the quality of the
software under test, white-box techniques rather assess the quality of the exe-
cuted test sets. A good test includes a wide range of testing techniques, combines
them to lessen the weaknesses of the individual methods, and utilizes the advan-
tages of the combination. For example, tests prepared using black-box techniques
are usually measured for code coverage (a white-box technique), which helps to
estimate the remaining risks more accurately.

In the CIRENE project, one of our first tasks was to assess the state-of-the-art
in embedded systems testing techniques with special attention to the combined
use of black and white-box techniques. We prepared a technical report on it [5].
In this paper, we report only a few number of combined testing techniques that
have been specialized and implemented in the embedded environment.

Gotlieb and Petit presented a path-based test case generation method [6].
They used symbolic program execution and did not execute the software on
the embedded device prior to the test case definitions. We use code coverage
measurement, of real executions to determine information that can be used in
test case generation.

José et al. defined a new coverage metric for embedded systems to indicate
instructions that had no effect on the output of the program [7]. Their im-
plementation used source code instrumentation and worked for C programs at
instruction level, and had a great influence on the performance of the program.
Biswas et al. also utilized C code instrumentation in embedded environment,
to gather profiling information for model-based test case prioritization [8]. We
use binary code instrumentation at method level, use traditional metric that
indicates whether the method is executed during the test case or not, and our

solution has a minimal overhead on execution time. The resulting coverage in-
formation can also be used for test case selection and prioritization.

Hazelwood and Klauser worked on binary code instrumentation for ARM-
based embedded systems [9]. They reported the design, implementation and
applications of the ARM port of the Pin, a dynamic binary rewriting framework.
However, we are working with Android systems that hides the concrete hardware
architecture but provides a Java-based one.

There are many solutions for Java code coverage measurement. For example,
EMMA [3] provides a complete solution for tracing and reporting code coverage
of Java applications. However, it is, as well as others are general solutions not
concerning the specialities of Android or any embedded systems.

Most of the coverage measurement tools utilize code instrumentation. In
Java-based systems, byte code instrumentation is more popular than source code
instrumentation. There are many frameworks providing instrumenting function-
alities (e.g. DiSL [10], InsECT [11,12], jCello [13], BCEL [14], etc.) for Java.
These are very similar to each other regarding their provided functionalities. We
chose Javassist [15] to be our instrumentation framework in the pilot project.

3 Coverage Measurement Toolchain

The implemented coverage measurement toolchain consists of several parts.
First, the applications selected for measurement have to be prepared. The prepa-
ration process includes program instrumentation that inserts extra code in the
application so that the application can produce the information necessary for
tracing its execution path during the test executions. The modified applications
and the environment that helps collect the results must be installed on the device
under test.

Next, tests are executed using this measurement environment and the pre-
pared applications, and coverage information is produced. In general, test exe-
cution can be either manual or automated. In the current implementation, we
use the RT-Executor [4] for test automation. The RT-Executor is a black-box
test automation tool developed for testing multimedia devices by RT-RK corpo-
ration in Novi Sad [16]. During the execution of the test cases, the instrumented
applications produce their traces which are collected, and coverage information
is sent back to the automation tool.

Third, the coverage information resulted from the previous test executions
is processed and used for different purposes e.g. for test selection and prioriti-
zation, additional test case generation, traceability computation, and dead code
detection.

In the rest of this section, we describe the technical details of the coverage
measurement toolchain.

3.1 Preparation

In order to measure code coverage, we have to prepare the environment and/or
the programs under test to produce the necessary information on the executed

items of the program. In our case, the Android system uses the Dalvik virtual
machine to execute the applications. Although modifying this virtual machine
to produce the necessary information would result in a more extensive solution
that would not require the individual preparation of the measured applications,
we decided not to do so, as we assumed that modifying the VM itself had higher
risks than modifying the individual applications. With individual preparation
it is much easier to decide what to measure and at what level of details. So,
we decided to individually prepare the applications to be measured. As we were
interested in method level granularity, the methods of the applications were
instrumented before test execution, and this instrumented version of the appli-
cation was installed on the device. In addition, a service application serving as
a communication interface between the tested applications and the network was
also necessary to be present on the device.

Instrumentation During the instrumentation process, extra instructions are
inserted in the code of the application. These extra instructions should not mod-
ify the original functionality of the application except that they are logging the
necessary information and slowing down the execution. Instrumentation can be
done on the source code or on the binary code.

In our pilot implementation, we are interested in method level code coverage
measurement. It requires the instrumentation of each method inserting a code
that logs the fact that the method is called. As our targets are Android applica-
tions usually available in binary form, we have chosen binary instrumentation.

Java
method list
instrumented
new dex file (> apktool [>aapt tool APK file

instrumention

extraction:

apktool
APK file| | | dex file /Lfr/mﬂ

Instrumenter

Instrumented
jar file

Fig. 2. Instrumentation toolchain

Android is a Java-based system which in our case means that the appli-
cations are written in Java language and compiled to Java Bytecode before a
further step creates the final Dalvik binary form of the Android application.
The transformation from Java to Dalvik is reversible, so we can use Java tools
to manipulate the program and instrument the necessary instructions. We used
the Javassist [15] library for Java bytecode instrumentation, apktool [17] for
unpacking and repacking the Android applications, the dex2jar [18] tool for con-
verting between the Dalvik and the Java program representations, and aapt [19]

tool for sign the application. The Instrumentation toolchain (see Figure 2) is the
following:

The Android binary form of the program needs to be instrumented. It is an
.apk file (a special Java package, similar to the . jar files, but extended with
other data to become executable).
— Using the apktool the .apk file is unpacked and .dex file is extracted. This
.dex file is the main source package of the application, it contains its code
in a special binary format. [19,20]
For all .dex files the dex2jar is used to convert them to .jar format.
On the . jar files we can use the JInstrumenter. The JInstrumenter is our
Java instrumentation tool based on the Javassist library [15].
JInstrumenter first adds a new collector class with two responsibilities to
the application. On the one hand, it contains a coverage array that holds the
numbers indicating how many times the methods (or any other items that is
to be measured) were executed. On the other hand, this class is responsible
for the communication with the service layer of the measurement framework.
Next, the JInstrumenter assigns a unique number as ID to each of the
methods. This number indicates the method’s place in the coverage array of
the collector class. Then a single instruction is inserted in the beginning of
all methods which updates the corresponding element, of the coverage array
on all executions of the method.
The result of the instrumentation is a new . jar file with instrumented meth-
ods and another file with all the methods’ names and IDs.
— The instrumented . jar files are converted to .dex files using the dex2jar
tool again.
— Finally, the .apk file instrumented application is created by repacking the
.dex files with the apktool and signing it with the aapt tool.

During the instrumentation, we give a name to each application. This name
will uniquely identify the application in the measurement toolchain, so the ser-
vice application can identify and separate the coverage information of different
applications.

After the instrumentation, the application is ready for installation on the
target device.

Service application In our coverage measurement framework implementation
it is necessary to have an application that is continuously running on the An-
droid device in parallel with the program under test. During the test execution,
this application is serving as a communication interface between the tested ap-
plications and the external tool collecting and processing the coverage data. On
the one hand this is necessary because of the rights management of the Android
systems. Using the network requires special rights from the application and it
is much simplier and more controllable to give these rights to only a single ap-
plication than to all of the tested applications. On the other hand, this solution

provides a single interface to query the coverage data even if there are more
applications tested and measured simultaneously.

In Android systems, there are two types of applications: “normal” and “ser-
vice”. Normal applications start, do something while they are visible on the
screen, and are destroyed on closing. Services are running in the background
continuously and are not destroyed on closing. So, we had to implement this
interface application as a service. It serves as a bridge between the Android
applications under test and the “external world” as it can be seen on Figure 3.
The tested applications are measuring their own coverage and the service queries
these data on-demand. As the communication is usually initiated before the start
and after the end of the test cases, this means no regular communication over-
head in the system during the test case executions.

Service Application

New TC
BBT Tool - plug-in action WebService
Coverage (<!
data Operation mI::sSaet 4
(action) 9

ASK
Collector message Android application
Coverage

data

Fig. 3. Service Layer

Messages are accepted from and sent to the external coverage measurement
tools. The communication uses JSON [21] objects (type-value pairs) over the
TCP/IP protocol. Implemented messages are:

NEWTC The testing tool sends this message to the service to sign that there
is a new test case to be executed and asks it to perform the required actions.

ASK The testing tool sends this message to query the actual coverage informa-
tion.

COVERAGE DATA The service sends this message to the testing tool in
response to the ASK message. The message contains coverage information.

Internally, the service also uses JSON objects to communicate with the in-
strumented applications. Implemented messages are:

reset The service sends this message to the application to reset the stored cov-
erage values.

ask The service sends this message to query the actual coverage information.
coverage data The application sends this message to the service in response
to the ask message. The message contains coverage information.

Installation To measure coverage on the Android system, two things need to
be installed: the particular application we want to test and the common service
application that collects coverage information from any instrumented application
and provides a communication interface for querying the data from the device.

The service application needs to be installed on a device only once; this single
entity can handle the communication of all tested applications.

The instrumented version of each application that is going to be measured
must be installed on the Android device. The original version of such an ap-
plication (if there was one) must be removed before the instrumented version
can be installed. It is necessary because Android idetifies the applications by
their special android-name and package, and our instrtumentation process does
not change these attributes of the applications; it only inserts the appropriate
instructions into the code. Our toolchain uses the adb tool (can be found in
Android Development Kit) to remove and install packages.

3.2 Execution

During test execution, the Android device executes the program under test and
the service application simultaneously. The program under test counts its own
coverage information and sends this information when the service layer appli-
cation asks for it. The coverage information can be queried from this service
layer application through network connection. We implemented a simple query
interface in Java for manual testing and a plugin for the RT-Executor [4] (a
black-box test automation tool we used in this project) for automated testing.

In our pilot project, we used two possible modes of test execution: manual and
automatized. Either mode is used, the service layer application must be started
prior to the beginning of the execution of the test cases. It is done automatically
by the instrumented applications if the service is not running already.

In the case of automated testing, the RT-Executor reads the test case scripts
and executes the test cases. The client side of the measurement framework is
contained in a plug-in of the automation tool, and this plug-in must be controlled
from the test case itself. Thus, the test case scripts must be prepared in order
to measure the code coverage of the executed applications.

The plug-in can indicate the beginning and the end of the particular test cases
to the service, so the service can distinguish the test cases and can separate the
collected information. In order to measure the test case coverages individually,
one instruction must be inserted in the beginning of the test script to reset the
coverage values and one instruction must be inserted in the end instructing the
plug-in to collect and store coverage information belonging to the test case.

During test execution the following steps are taken:

— Start the program under test.

— The start of the program triggers the start of the measurement service if
necessary. Then the program under test connects to the service and registers
itself by its unique name given to it in instrumetnation process.

— The test automation system starts a test case. The test case forces the au-
tomation system plug-in to send a NEWTC message to the service. The
service sends the reset message to the program under test. The PUT resets
the coverage array in its collector class. The service returns the actual time
to the plug-in.

— The test automation system performs the test steps. The PUT collects the
coverage data.

— The test case ends. The automation tool plug-in sends the ASK signal to
the service. The service sends the ask signal to the PUT. The PUT sends
back the coverage data to the service. The service sends back the coverage
data and the actual time to the automation tool plug-in.

— The plug-in calculates the necessary information from the coverage data and
stores it in the local files. The stored data are: execution time, trace length,
coverage value, lists of covered and not covered methods. Another plug-in
decides if the test case was passed or failed and stores this information in
other local files.

These steps are repeated during the whole test suite execution. At the end,
the coverage information of all the executed test cases are stored in local files
and are ready to be processed by different stages of the testing methodology.

3.3 Processing the Data

As we mentioned above, the client side of the coverage measurement system is
realized as a plug-in of the RT-Executor tool.

The plug-in is controlled from the test cases. It indicates the beginning and
the end of a test cases to the service layer application. The service replies to
these signals by sending the valuable data back. When the measurement client
indicates the start of a test case (by sending the NEWTC message to the
service), the service replies with the current time which is stored by the client.
At the end of a test case (when the ASK signal is sent by the client), the
service replies with the current time and the collected coverage information of
the methods.

When the coverage data is received, the measurement client computes the
execution time, trace length (the number of method calls), and the list of covered
and not covered methods’ IDs. Then, the client stores these data in a result file
for further use. The client makes other files, the trace files, separately for each
test case. Such a trace file stores the identifiers of the methods covered during
the execution of the test case.

As an alternative client, we implemented a simple standalone java applica-
tion that is able to connect to the measurement service (and this way it replaces
the RT-Executor plug-in). This client is able to visualize the code coverage in-
formation online, and is useful during the manual testing activities (e.g. during
exploratory tests).

Android device

RT-EX| Applications|

test executor ‘ w Instrumented Application
i J Service Application Ff*{ Instrumented Application ‘
Method call : m \ .

i | [Coverage :
> selector plug-in‘ ‘ coverage plug-in < data 2
i T ! Instrumented Application

I a— '
Result | | Trace ava
L-/J L/J method list

Test-project

Base
test-project

Fig. 4. Test execution framework with coverage measurement

3.4 Applications on the Measurement Framework Results

The code coverage and other information collected during the test execution
can be used in various ways. In the pilot project, we implemented some of the
possible applications. These implementations process the data files locally stored
by the client plug-in.

Test Case Selection and Prioritization Test case selection is a process that
defines a subset of a test suite based on some properties of the test cases. Test
case prioritization is a process that sorts the test suite elements according to
their properties [22]. A prioritized list of test cases can be cut at some points
resulting in a kind of selection.

Code coverage data can be used for test case selection and prioritization.
We implemented some selection and prioritization algorithms as a plug-in of
the RT-Executor, which utilizes the code coverage information collected by the
measurement framework:

— A change-based selection algorithm was implemented that used the list of
changed methods and the code coverage information to select the test cases
that covered some of the changed methods. Executing the selected test cases
can only reduce the time required for regression test execution while the
failure detection capability of the suite is not reduced.

— We implemented two well-known coverage-based prioritization algorithms:
one that prefers test cases covering more methods; and another that aims at
higher overall method coverage with less test cases.

— We also implemented a simple prioritization that used the trace length of the
test cases. It can prioritize the tests either in the descending or the ascending
order of the length of their traces.

Not Covered Code Not covered code plays an important role in program
verification. There are two possible reasons for a code part not being covered by
any test case executions. The test suite can simply omit its test case, in which

case we have to define some new test cases executing the missed code. It can also
happen that the not covered code cannot be executed by any test cases, which
means that it is a dead code. In the latter case, the code can be dropped from
the codebase.

In our pilot implementation, automatic test case generation is not imple-
mented. We simply calculate the lists of methods covered and not covered during
the tests. These lists can be used by the testers and the developers to examine
the methods in question and generate new test cases to cover the methods, or
to simply eliminate the methods from the code.

Traceability Calculation Traceability links between different software devel-
opment artifacts play a very important role in the change management, processes.
For example, traceability information can be used to estimate the required re-
sources to perform a specific change or to select the test cases related to the
change of the specification. Relationship exists between different types of de-
velopment artifacts. Some of them can simply be recorded when the artifact is
created, some of them must be determined later.

We implemented a very simple traceability calculator that computes the cor-
relation between the requirements and the methods, based on the pre-defined
relationships between the requirements and the test cases and between the test
cases and the methods (code coverage). If a requirement-method pair is assigned
with high correlation, we can assume that the required functionality is imple-
mented in the method. This information can be used to asses the number of
methods to be changed if the particular requirement changes.

4 Usage and Evaluation

In this section, we present and evaluate some use cases to demonstrate the
usability of the measurement toolchain.

4.1 Additional Test Case Generation

In the pilot project our target embedded hardware was an Android-based Set-
Top-Box. We had this device with different pre-installed applications and test
cases for some of these apps. A media-settings application was selected for testing
our methodology and implementation. After executing the tests of this applica-
tion with coverage measurement, we found that the pre-defined tests covered
only 54% of the methods. We examined the methods and defined new test cases.
Although the source code of this applications was not available, based on the not
covered method names and the GUI, we were able to define new test cases that
raised the number of covered methods to 69%. This is still less than the required
100% method level coverage, but shows that the feedback on code coverage can
be used to improve the quality of the test suite.

4.2 Traceability Calculation

In the pilot project a simple implementation that is able to determine the corre-
lation between the code segments and the requirements was made. We did not
conduct detailed experimentation in this topic, but we did test the tool. Instead
of the requirements, we defined 12 functionalities performed by three media ap-
plications (players) on our target Set-Top-Box device. Then, we assigned these
functionalities to 15 complex black-box test cases of the media applications and
executed the test cases with coverage measurement. The traceability tool com-
puted correlations between the 12 functionalities and 608 methods, and was able
to separate the methods relevant in implementing a functionality from the not
relevant methods.

5 Conclusions and Future Work

In this paper, we presented a methodology for method level code coverage mea-
surement on Android-based embedded systems. Although there were more solu-
tions allowing the measure of the code coverage of Android applications on the
developers’ computers, no common methods were known to us that performed
coverage measurement on the devices. We also reported the implementation of
this methodology on a digital Set-Top-Box running Android. The coverage mea-
surement was integrated in the test automation process of this device allowing
the use of the collected coverage data in different applications like test case selec-
tion and prioritization of the automated tests, or additional test case generation.

There are many improvement possibilities of this work. Regarding the imple-
mentation of code coverage measurement on Android devices, we wish to examine
if the granularity of tracing could be fined to sub-method level (e.g. to basic block
or instruction levels) without significantly affecting the runtime behaviour of the
applications. This would allow us to extract instruction and branch level cover-
ages that would result in more reliable tests. We are also thinking of improving
the instrumentation in order to build dynamic call trees for further use. The cur-
rent implementation (simple coverage measurement) does not need to deal with
timing, threads and exception handling, both of which are necessary for building
the more detailed call trees. It would also be interesting to help the integration
of this coverage measurement in commonly used continuous integration and test
execution tools.

We are also examining the utilization possibilities of the resulting coverage
data. For example, traceability information between code and the visible graph-
ical elements could be established, and this information might help to partially
automate collecting data for usability tests and to establish usability models.
The implemented code coverage measurement and the testing process that uti-
lizes this information are a good base for measuring the effect of using coverage
measurement, data on the efficiency and reliability of testing. We are planning
to conduct researches in these topics.

Acknowledgement

This work was done in the Cross-border ICT Research Network (CIRENE)
project (project number is HUSRB1002/214/044) supported by the Hungary-
Serbia IPA Cross-border Co-operation Programme, co-financed by the
Furopean Union.

References

10.

11.

12.

13.

. Google: Android homepage.

https://www.android.com/ (June 2013)

. Kukolj, S., Marinkovi¢, V., Popovié, M., Bognéar, Sz.: Selection and prioritization of

test cases by combining white-box and black-box testing methods. In: Proceedings
of the 3"* Eastern European Regional Conference on the Engineering of Computer
Based Systems (ECBS-EERC 2013). (2013)

Vlad Roubtsov: EMMA: a free java code coverage tool.
http://emma.sourceforge.net/ (June 2013)

RT-RK Institute: RT-Executor.

http://bbt.rt-rk.com/software/rt-executor/ (May 2013)

Beszédes, A., Gergely, T., Papp, I., Marinkovi¢, V., Zlokolica, V.: Survey on test-
ing embedded systems. Technical report, Department of Software Engineering,
University of Szeged and Faculty of Technical Sciences, University of Novi Sad
(2012)

Gotlieb, A., Petit, M.: Path-oriented random testing. In: Proceedings of the 1st
international workshop on Random testing. RT ’06, New York, NY, USA, ACM
(2006) 28-35

Costa, J.C., Devadas, S., Monteiro, J.C.: Observability analysis of embedded soft-
ware for coverage-directed validation. In: In Proceedings of the International Con-
ference on Computer Aided Design. (2000) 27-32

Biswas, S., Mall, R., Satpathy, M., Sukumaran, S.: A model-based regression test
selection approach for embedded applications. SIGSOFT Softw. Eng. Notes 34(4)
(July 2009) 1-9

Hazelwood, K., Klauser, A.: A dynamic binary instrumentation engine for the arm
architecture. In: Proceedings of the 2006 international conference on Compilers,
architecture and synthesis for embedded systems. CASES ’06, New York, NY, USA,
ACM (2006) 261-270

Marek, L., Zheng, Y., Ansaloni, D., Sarimbekov, A., Binder, W., Tuma, P., Qi,
Z.: Java bytecode instrumentation made easy: The disl framework for dynamic
program analysis. In Jhala, R., Igarashi, A., eds.: Programming Languages and
Systems. Volume 7705 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg (2012) 256263

Chawla, A., Orso, A.: A generic instrumentation framework for collecting dynamic
information. In: Online Proceedings of the ISSTA Workshop on Empirical Research
in Software Testing (WERST 2004), Boston, MA, USA (july 2004)

Seesing, A., Orso, A.: InsECTJ: A Generic Instrumentation Framework for Collect-
ing Dynamic Information within Eclipse. In: Proceedings of the eclipse Technology
eXchange (eTX) Workshop at OOPSLA 2005, San Diego, CA, USA (october 2005)
49-53

Slife, D., Chesney, M.: jCello. http://jcello.sourceforge.net/ (June 2013)

14.

15.

16.

17.

18.

19.

20.
21.

22.

Apache Commons: BCEL homepage.

http://commons.apache. org/proper/commons-bcel/ (June 2013)

Chiba, Shigeru: Javassist homepage.

http://www.csg.ci.i.u-tokyo.ac.jp/ chiba/javassist/ (May 2013)
RT-RK Institute: Homepage.

http://rt-rk.com/corporate-profile/ (May 2013)

Google: apktool homepage.
https://code.google.com/p/android-apktool/ (May 2013)

Google: dex2jar.

https://code.google.com/p/dex2jar/ (May 2013)

Google Android Developers: Building and running an android application.
http://developer.android.com/tools/building/index.html (May 2013)
Bornstein, D.: Presentation of Dalvik VM internals (2008)

Developers: JSON.

http://www.json.org/ (June 2013)

Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization:
a survey. Software Testing, Verification and Reliability 22(2) (2012) 67-120

