
Empirical Investigation of SEA-Based
Dependence Cluster Properties

Árpád Beszédes∗, Lajos Schrettner∗, Béla Csaba†, Tamás Gergely∗, Judit Jász∗ and Tibor Gyimóthy∗

∗Department of Software Engineering, University of Szeged, Hungary
E-mail: {beszedes, schrettner, gertom, jasy, gyimothy}@inf.u-szeged.hu

†Department of Set Theory and Mathematical Logic, University of Szeged, Hungary
E-mail: bcsaba@math.u-szeged.hu

Abstract—Dependence clusters are (maximal) groups of source
code entities that each depend on the other according to
some dependence relation. Such clusters are generally seen as
detrimental to many software engineering activities, but their
formation and overall structure are not well understood yet. In a
set of subject programs from moderate to large sizes, we observed
frequent occurrence of dependence clusters using Static Execute
After (SEA) dependences (SEA is a conservative yet efficiently
computable dependence relation on program procedures). We
identified potential linchpins inside the clusters; these are pro-
cedures that can primarily be made responsible for keeping the
cluster together. Furthermore, we found that as the size of the
system increases, it is more likely that multiple procedures are
jointly responsible as sets of linchpins. We also give a heuristic
method based on structural metrics for locating possible linchpins
as their exact identification is unfeasible in practice, and presently
there are no better ways than the brute-force method. We defined
novel metrics and comparison methods to be able to demonstrate
clusters of different sizes in programs.

Index Terms—Source code dependence analysis, dependence
clusters, linchpins and linchpin sets, Static Execute After.

I. INTRODUCTION

Dependences in computer programs are natural and in-
evitable. We can talk about dependences among any kind of
artifacts such as requirements, design elements, program code
or test cases, but dependences within the source code capture
the physical structure as implemented best. A dependence
between two program elements (e. g. statements or procedures)
basically means that the execution of one element can influ-
ence that of the other, hence the software engineer should be
aware of this connection in virtually any software engineering
task involving the two elements. One of the fundamental tasks
of program analysis is to deal with source code entities and
the dependences between them [1].

Dependences cannot be avoided, but they do not always
reflect the original complexity of the problem. Sometimes
unnecessary complexity is injected into the implementation,
which may cause significant problems. A relatively new re-
search area explores dependence clusters in program code,
which are defined as maximal sets of program elements that
each depend on the other [2]. The current view is that large de-

pendence clusters are detrimental to the software development
process; in particular, they hinder many different activities
including maintenance, testing and comprehension [3], [4],
[5], [6], [7]. The primary problem is that in any dependence-
related examination, encountering any member of a cluster
forces us to consider all other cluster members. If large clusters
covering much of the program code exist in a system, then
it is very likely that one cluster member is encountered and
consequently a large portion of the program code should be
enumerated eventually.

The root causes of this phenomenon are not well understood
yet; it seems to be an inherent property of program code depen-
dence relationships. As apparently dependence clusters cannot
be easily avoided in the majority of cases, research should
be focused on understanding the causes for the formation of
clusters, and the possibilities for their removal or reduction.
Previous work revealed that in many cases a highly focused
part of the software can be deemed responsible for the forma-
tion of dependence clusters [4], [5]. Namely, program elements
called linchpins are seen as central in terms of dependence
relations, and are often holding together the whole program.
If the linchpin is ignored when following dependences, clusters
will vanish, or at least decrease considerably.

Of course, it is useful if one is aware of such linchpins,
let alone be able to remove them by refactoring the program.
However, currently even the first step (identifying linchpins)
is largely an unexplored area. We still do not understand fully
what makes a particular program point a linchpin, how they
can be identified, or whether there is always a single element
to be made responsible in the first place. The possibilities
for linchpin removal by program refactoring are even harder
to assess. Sometimes, dependence clusters are avoidable be-
cause they actually introduce unnecessary complexity to the
implementation; this is what Binkley et al. call “dependence
pollution” [2]. In such cases the program can be refactored
using reasonable effort, but this is not always the case.

In this work, we present the results of our empirical
investigation of dependence clusters in a range of programs
of moderate (up to 200 kLOC) and large sizes. In the latter
category we investigated two industrial size open source978-1-4673-5739-5/13/$31.00 © 2013 IEEE

software systems, the GCC compiler [8] and the WebKit web
browser engine [9], each consisting of over a million LOC.

We are dealing with procedure-level program dependences
computed using the Static Execute After (SEA) approach (on
C/C++ functions and methods). The SEA relation between two
procedures is a conservative type of dependence that takes into
account the possible control-flow paths and call-structures in
the program elements [10]. SEA-based dependences can be
used, among others, in software change impact analysis. The
main advantage of SEA is that it achieves acceptable accuracy,
yet can efficiently be computed even for large systems of
millions of LOC. We computed SEA-based dependences of
all procedures in our subject programs and investigated the
resulting dependence clusters in terms of their frequency of
occurrence and by identifying potential linchpins in them. We
summarize our findings as follows:

∙ We introduce the term clusterization to indicate the extent
programs exhibit dependence clustering, and define novel
metrics that indicate this property quantitatively.

∙ We computed SEA-based dependence clusters for realis-
tic size programs. Among the moderate-size ones there
were many clusters, but only one of the big programs in-
cluded significant clusters, which is an interesting result.

∙ We were able to identify linchpin elements in most
of the clusters using a naı̈ve approach that enumerates
all possibilities. In many cases however, especially with
the big programs, it is not to be expected that only
one program element (procedure) is responsible for the
formation of clusters.

∙ We give a heuristic method based on local procedure
metric for linchpin approximation. We found that the
number of outgoing invocations from a procedure was
quite a good estimator for linchpins.

The rest of the paper is organized as follows. Sections II
and III provide relevant background information about the
motivation, related work and our experimental environment.
Cluster identification is discussed in Section IV, while the
topics related to linchpin determination are given in Section V.
Section VI discusses threats to validity, and finally we con-
clude in Section VII.

II. BACKGROUND, MOTIVATION AND GOALS

The phenomenon of dependence clusters was first described
by Binkley and Harman in 2005 [2] based on program slices
and Program Dependence Graphs [11], [12]. Initially, they
were defined as maximal sets of statements that all have the
same backward slice, which also means that the elements of
a dependence cluster each depend on the other. The notion
of dependence clusters can be generalized to other kinds of
dependence types and different program elements at various
granularity. Furthermore, it seems that dependence clusters are
independent of the programming language and the type of the
system [3], [13], [14].

The current view is that large dependence clusters hin-
der many different software engineering activities, including
impact analysis, maintenance, program comprehension and

software testing [3], [6], [7]. It has been suggested that
large dependence clusters leading to “dependence pollution”
should be refactored [7], [2], but for such opportunities the
identification of the dependence cluster causes is essential.
Specifically, the identification and possible removal of linch-
pins, the directly responsible program elements, is an active
research area. Virtually, the only existing approach to identify
linchpins is based on a brute-force method that tries all
possibilities. Binkley and Harman predict in their work [4] that
it will be possible to pinpoint certain program elements that
cannot be identified as linchpins, hence the search could be
optimized this way. We employ heuristic methods to identify
linchpins, and we are not aware of any previous work that used
a similar approach. Global variables can play special role in the
formation of dependence clusters, which has been investigated
by Binkley et al. [5].

In a previous work [15], we investigated the concept of
dependence clusters on procedure-level program dependences
computed using the Static Execute After (SEA) approach. The
SEA relation between two procedures is a conservative type of
dependence that takes into account the possible control-flow
paths and call-structures in procedures [10]. This approach
is more efficient at the expense of being a bit less accurate,
and is defined as follows. For program elements (procedures,
in our case) 𝑓 and 𝑔, we say that (𝑓, 𝑔) ∈ SEA if and
only if it is possible that any part of 𝑔 is executed after
any part of 𝑓 in any one of the executions of the program.
Similarly to the definition of slice-based dependence clusters,
we regard two procedures to be in the same SEA-based
cluster if their dependence sets coincide. This kind of cluster
definition is usual as the maximal mutual dependence-based
cluster definition is prohibitively expensive to compute. This
definition has the additional good property that it gives a
partitioning of the procedures into clusters.

Note, that there is no obvious relationship between SEA-
based and slice-based dependence clusters. From our prelimi-
nary investigations we found that in many cases similar cluster
structures will be formed, but we plan to investigate this more
systematically in the future, and see if our findings can be
applied to other notions of dependence clusters.

We computed SEA-based dependence clusters in the
WebKit system – one of the subjects in the present work as
well – and found that it exhibits a certain level of cluster-
ization. In the same work [15], we then used the identified
clusters to verify the connection to the performance of change
impact analysis in a practical situation, and to enhance our test
case prioritization method based on code coverage analysis.

Monotone Size Graphs (MSG) and the related “area under
the MSG” metric [2] are often used to characterize dependence
clusters in programs. An MSG of a program (see Figure 1 for
examples) is a graphical representation of all dependence sets
belonging to the procedures of the program by drawing the
sizes of the sets in monotonically increasing order along the x
axis from left to right. Then the area metric mentioned above
is the total sum of all dependence set sizes. In the case of SEA-
based dependences the total number of dependence sets equals

the number of procedures in a program, and this number is
also the maximal dependence set size. In Figure 1, we can see
MSGs of such dependences in which – despite its rectangular
shape – the same number of procedures is represented on both
axes. The most straightforward way of interpreting this graph
is to observe dependence clusters as plateaus, whose width
corresponds to the cluster size and the height is the dependence
set size. Note, that it may happen that the same dependence
set size incidentally corresponds to different sets which will
not be noticeable in this graphical representation.

It has not yet been investigated thoroughly whether the
MSG and its associated area metric are good enough as
descriptors of the level of clusterization. We further elaborate
on this concept with SEA-based clusters and verify the ways of
characterizing dependence clusters using this and other kinds
of metrics. A related investigation was performed by Islam et
al., who defined alternative descriptions of the clusterization
in form of various graphical representations [16]. These ap-
proaches, however, resort to visual investigation only.

As noted above, it is believed that a single linchpin can
be associated to a program with dependence clusters in many
cases. In this work we investigate the effect of joint removal
of linchpin candidates in cases where the removal of a single
element does not produce the desired result.

An additional problem is linchpin identification itself. The
naı̈ve linchpin identification algorithm – a brute-force method
trying all possible solutions one by one – is not scalable.
Hence, previous research that employed fine grained analysis
could deal with programs of up to 20 kLOC only [4]. In a
similar fashion, our SEA-based analysis makes it possible to
investigate programs with sizes of a magnitude larger thanks to
the higher level granularity and a simpler, albeit less precise,
analysis method. However, this method is still not usable for
bigger programs as is the case with our two large systems.

We articulate the following Research Questions:

RQ1 How typical are SEA-based dependence clusters in
a variety of programs of different sizes and how can
we categorize the programs more objectively in terms
of their clusterization?

RQ2 How typical are cluster structures that are held to-
gether by at most a few clearly identifiable proce-
dures (linchpins), i. e. whose removal could reduce
program clusterization significantly?

RQ3 Currently the exact linchpins can be determined by
brute-force only, which is infeasible for bigger pro-
grams; how closely can low-cost heuristic methods
approximate linchpins?

III. EXPERIMENTS SETUP

We collected a set of programs that served as the subjects
following these principles: the set had to be comparable to
other researchers’ and our own previous results, our existing
tools had to be able to handle them with ease, the programs
had to be from different domains, and their sizes had to vary
in a wide range. Based on these requirements, we fixed the
language of the programs to C/C++, and in the first instance

started with the collection of programs Harman et al. used in
their experiments [6]. We could reuse 60% of these programs
but also extended this set to finally arrive at 29 programs
written in C (we will refer to this set as the moderate size
programs). The basic properties of these programs can be seen
in the first three columns of Table I. We provide names, lines of
code (LOC) and the number of procedures (NP). The purpose
of the other columns will be explained later.

TABLE I
MODERATE SIZE SUBJECT PROGRAMS WITH CLUSTERIZATION

INFORMATION, SORTED BY VISUAL CLASS AND NP

Program LOC NP: # of Visual Clusterization metrics
name procedures class AREA ENTR REGU REGX

lambda 1766 104 ▼ low

epwic 9597 153 ▼ low

tile-forth 4510 287 ▼ low

a2ps 64590 1040 ▼ low

gnugo 197067 2990 ▼ low

time 2321 12 ■ med

nascar 1674 23 ■ med

wdiff 3936 29 ■ med

acct 7170 54 ■ med

termutils 4684 59 ■ med

flex 22200 153 ■ med

byacc 8728 178 ■ med

diffutils 17491 220 ■ med

li 7597 359 ■ med

espresso 22050 366 ■ med

findutils 51267 609 ■ med

compress 1937 24 ▲ high

sudoku 1983 38 ▲ high

barcode 5164 70 ▲ high

indent 36839 116 ▲ high

ed 3052 120 ▲ high

bc 14370 215 ▲ high

copia 1168 242 ▲ high

userv 8009 255 ▲ high

ftpd 31551 264 ▲ high

gnuchess 18120 270 ▲ high

go 29246 372 ▲ high

ctags 18663 535 ▲ high

gnubg 148944 1592 ▲ high

The second part of our data set consisted of two large
industrial software systems from the open source domain. The
first one was the WebKit system, which we have already used
in some of our previous investigations [15], [17]. WebKit is
a popular open source web browser engine integrated into
several leading browsers by Apple, KDE, Google, Nokia,
and others [9]. It consists of about 2.2 million lines of
code, written mostly in C++, JavaScript and Python. In this
research we concentrated on C++ components only, which
attributes to about 86% (1.9 million lines) of the code. In our

measurements we used the Qt port of WebKit called QtWebKit
on x86 64 Linux platform. We performed the analysis on
revision 𝑟91555, which contained 91,193 C++ functions and
methods as the basic entities for our analysis.

The other large system we used was the GNU Compiler
Collection (GCC), the well-known open source compiler sys-
tem [8]. It includes front ends for C, C++, Objective-C,
Fortran, Java, Ada, and Go, as well as libraries for these
languages. The GCC system is large and complex, and its dif-
ferent components are written in various languages. It consists
of approximately 200,000 source files, of which 28,768 files
are in C, which was the target of our analysis. In terms of lines
of code, this attributes to about 13% of the code, 3.8 million
lines in total (note that in C, the size of individual functions is
usually larger than that of an average C++ method, hence this
difference in lines of code compared to WebKit). We chose
revision 𝑟188449 (configured for C and C++ languages only)
for our experiments, in which there were 36,023 C functions
as the basic entities for our analysis.

In our experiments we used our custom build tools as
well as some existing components. To extract base program
representations, as parser front ends we used Grammatech
CodeSurfer [18] in the case of moderate size programs and
Columbus [19] for the big programs. For the SEA dependence
computation, our existing implementation of the SEA algo-
rithm using ICCFG graphs [13] was applied. The benefit of
using Columbus with ICCFG graphs for the bigger programs
is that it is more scalable due to higher granularity of analysis.

We modified the SEA computation tool by adding the
capability to ignore one or more procedures, which was
required for linchpin determination. Since we needed to
process and store a large number of dependence sets, we
implemented additional tools (for MSG computation, cluster
metrics computation, etc.) that employ efficient specialized
data structures and algorithms. The calculation of the final
results and the whole measurement procedure was performed
using shell scripts.

We will describe our set of experiments and additional
details regarding the measurements and tools in the corre-
sponding sections.

IV. EXISTENCE OF DEPENDENCE CLUSTERS

A. Identification of clusters

To obtain the dependence clusters first we needed to com-
pute the SEA-based dependence sets for all procedures in our
subject programs. Similarly to the definition of slice-based
dependence clusters, we regard two procedures to be in the
same SEA-based cluster if their dependence sets coincide. This
is a sensible definition because the SEA relation is reflexive,
so if two procedures have the same dependence set, then they
depend on each other as well. Note, that we did not apply
the approximation of comparing dependence set sizes only as
other studies suggested [2], [6].

In the following, we will investigate the clusterization of
programs, which is the extent they exhibit dependence clus-
tering. To express clusterization we followed two approaches:

Visual classification is carried out by (subjective) visual
inspection of the MSGs, and assigns one of three levels
to each program: low, medium and high.

Clusterization metrics are rigorously defined measures
that are designed to express clusterization in easily quan-
tifiable numerical form (values from [0, 1]).

For the moderate size programs, the fourth column (Visual
class) of Table I shows the results of the visual classification
we performed by inspecting the MSGs of the programs. As
an illustration, Figure 1 shows MSGs of programs that are
typical for each category. A cluster reveals itself as a wide
plateau consisting of a number of equal-sized dependence sets.
Typically, in a low class we cannot identify any plateaus, while
for the high class there are one or two big ones, the rest being
medium.1 Visual classification reveals the following:

∙ The first program (epwic) does not show any plateaus,
the landscape ascends in small increases.

∙ The second one (findutils) contains some moderately
wide plateaus. They are not significant individually, but
altogether cover much of the width of the landscape.

∙ For the last program (gnubg) we can see a single plateau
occupying nearly the whole width of the landscape.

epwic findutils gnubg

Fig. 1. Example MSGs for the visual classification (epwic: low,
findutils: medium, gnubg: high)

As can be seen in Table I, overall we found 5 programs to
be low, 11 medium, and 13 highly clusterized.

B. Measuring clusterization

Beyond visual interpretation, we will need an exact numer-
ical expression (metric) of the level of clusterization and its
relative change for two reasons. First, this way an automatic
classification of programs could be made with the help of
appropriate thresholds. Second, the metrics can be applied for
the analysis of linchpins and measuring the effect of their
removal (discussed in subsequent sections).

The obvious choice of metric to be used in these kinds of
experiments is based on Binkley and Harman’s work [2], who
measured the area under MSG and used the change of this
metric to analyze linchpins (we also rely on this metric and
denote it by AREA in the following). The apparent weakness
of AREA is that it increases if all dependence sets are increased
by the same amount, although intuitively clusterization should
not be different in such cases. Programs with no dependence
clusters can have both small and large dependence sets, and
vice versa.

1Note, that the same dependence set size may incidentally correspond to
different sets, however this is very unlikely except for the smallest sets.

We experimented with alternative metrics to express clus-
terization in programs that are independent of the actual
dependence set sizes and could reflect this property, these are
presented below in a more formal way.

We define the measures so that they are comparable to each
other and yield a value in the interval [0, 1]. For all metrics, 0
is set to mean that the level of clusterization is close to none,
while 1 means that clusterization is maximal.

Let 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑛} be the set of procedures in a
program 𝑋 (for simplicity, we assume 𝑛 ≥ 2). The SEA
relation of program 𝑋 is a binary relation defined on its set
of procedures, i. e. 𝑆𝐸𝐴 ⊆ 𝑃 × 𝑃 . With 𝑛 = {0, 1, . . . , 𝑛}
we give the following auxiliary definitions:
𝑆𝐸𝐴(𝑝) is the dependence set of a procedure 𝑝 ∈ 𝑃 defined

as

𝑆𝐸𝐴(𝑝) = {𝑞 ∈ 𝑃 ∣ 𝑆𝐸𝐴(𝑝, 𝑞)}

The weight function 𝑤 gives the sizes of the dependence
sets as

𝑤 : 𝑃 → 𝑛, 𝑤(𝑝) = ∣𝑆𝐸𝐴(𝑝)∣

Formally, the clusterization of a program based on SEA
dependences is in fact a partitioning of the procedure set 𝑃
(not being transitive, the SEA relation itself does not exhibit
partitions). We define two kinds of clusters, first by assigning
two procedures to the same cluster (partition) if they have the
same dependence set, i. e. they have the same 𝑆𝐸𝐴 image:

ℐ =
{ {𝑞 ∈ 𝑃 ∣ 𝑆𝐸𝐴(𝑞) = 𝑆𝐸𝐴(𝑝)} ∣∣ 𝑝 ∈ 𝑃

}

The second kind of cluster is defined by considering only
the sizes (weights) of the dependence sets of the procedures:

𝒮 =
{ {𝑞 ∈ 𝑃 ∣ 𝑤(𝑞) = 𝑤(𝑝)} ∣∣ 𝑝 ∈ 𝑃

}

For any 𝑐 ∈ 𝒮 the weight of its members are equal, so we can
assign the same weight to cluster 𝑐 itself. Clearly 𝑆𝐸𝐴(𝑞) =
𝑆𝐸𝐴(𝑝) implies 𝑤(𝑞) = 𝑤(𝑝), so ℐ is a refinement of 𝒮 . This
also means that the weight function can be extended naturally
to ℐ as well.

Now we can define the different clusterization metrics as
follows (the metrics always have to be interpreted in the
context of a given program).

Consistently with earlier descriptions, AREA has three
equivalent definitions:

AREA =
1

𝑛2

∑

𝑝∈𝑃

𝑤(𝑝) =
1

𝑛2

∑

𝑐∈ℐ
∣𝑐∣⋅𝑤(𝑐) = 1

𝑛2

∑

𝑐∈𝒮
∣𝑐∣⋅𝑤(𝑐)

Our next metric is based on an analogy of entropy and
measures the “(dis)order” in the system of dependence sets in
terms of their sizes. We consider a program more clusterized
in this respect if there is a greater number of equal-sized
dependence sets, i. e. when the entropy is lower (note, that
this inverse relationship is required to obtain comparable

metric intervals with the other metrics). Our entropy-based
clusterization measure is formally defined as:

ENTR = 1−
∑

𝑐∈𝒮 𝑓(𝑐) ⋅ log2 𝑓(𝑐)
log2 1/𝑛

, where 𝑓(𝑐) =
∣𝑐∣
𝑛

Finally, our two metrics referred to as regularity metrics
are based on the number of partitions. The idea is that the
fewer partitions there are, the larger their size must be, so there
have to be more large clusters among them. Inversely, more
partitions have to take more “regular” different sizes hence
they will represent low clusterization. This metric has two
variants, the first is based on 𝒮 , the other (extended, REGX)
is based on ℐ.

REGU =
𝑛− ∣𝒮∣
𝑛− 1

REGX =
𝑛− ∣ℐ∣
𝑛− 1

As noted earlier, all metrics are normalized (i. e. their value
is a real number from the interval [0, 1]), which is useful to be
able to compare the metrics of programs with different size to
each other.

We computed all four metrics for all of our moderate size
subject programs and compared the rankings of the procedures
based on these individual metrics to the visual classification of
the programs. These values are shown in the last four columns
of Table I (to ease interpretation, the gray areas inside the small
rectangles are set to be proportional to the metric values). Note
that the ordering of the programs in this table was done based
on the visual ranking first, then on the number of procedures
inside each rank group.

Visual clusterization created three groups with 5 (low), 11
(medium), and 13 (high) elements, respectively. We would
expect an ideal clusterization metric to yield values in such
a way that the 5 smallest would be assigned to the “low”
level, the middle 11 would be assigned to “medium”, and the
largest 13 to the “high” level group. Based on these criteria, the
clusterization metrics can be characterized by counting how
many programs they fail to assign to the group given by visual
ranking. The counts are as follows: AREA → 10, ENTR → 7,
REGU → 15, REGX → 8. The differences in these counts can
also be observed by visual inspection of the metric values.
It can clearly be seen that AREA and REGU are significantly
worse than the other two metrics, while the difference is not
so great regarding ENTR and REGX. ENTR is more precise on
low and medium clusterization levels, while REGX performs
better on highly clustered programs (see the last four columns
of Table I).

Based on the above observations we will use ENTR and
REGX to measure the degree of clusterization in the rest
of the paper, and will mostly rely on ENTR where low or
medium clusterization is concerned and use the other for high
clusterization.

C. Dependence clusters in the big programs

So far, we have been dealing only with the moderate size
programs, but our dataset contains two big programs as well,
which need more thorough investigation. The MSGs for these
two programs, GCC and WebKit, can be seen in Figure 2.

GCC WebKit

Fig. 2. MSGs for GCC and WebKit

The differences between the two programs are clear. GCC
belongs to the low level clusterization category, while WebKit
exhibits some clusterization (it would belong to the medium
category in the visual ranking). The ENTR values are 0.4347
for GCC and 0.6980 for WebKit, while REGX is 0.3134
and 0.3552, respectively, which supports our initial (visual)
classification for these two systems. While ENTR shows a
notable difference, in the case of REGX it is not so significant,
which may also reflect our finding from above that ENTR was
better for low or medium clusterization.

It would be interesting if we could find any properties
of these systems that justify their classification in terms of
dependence clusters. In other words, what makes GCC not
having significant dependence clusters as opposed to WebKit?
In previous work [15], we analyzed the structure of source
code and the dependences in WebKit in a slightly different
context. After consulting with some key WebKit developers
and showing them the members of the clusters, we came to
the conclusion that clustarization is related to architectural
concepts in the system.

We speculate that the most notable difference between the
two systems in this respect is that while WebKit is essentially
a library consisting of highly coupled elements for the distinct
functional areas, GCC is a complex application but with much
clear behavioural paths that are independent of each other. In
WebKit, most complex functionalities are implemented in a
set of highly interacting procedures (for example, webpage
rendering is performed by several hundred procedures calling
each other recursively). On the other hand, GCC implements
functionalities like compiler optimization passes that are more
isolated from each other. In addition, the two systems are
written in different programming paradigms (C vs. C++) which
may influence their internal structure. More detailed analysis
of the causes for this difference remains for future work.

In the remaining parts of this paper we will be concerned
with the identification of linchpins, however for programs of
this size only the heuristic approaches are feasible. Hence we
will subsequently use WebKit only to verify the effect of our
heuristic methods, while GCC will play no role from now on.

V. LINCHPIN DETERMINATION

First, we identified the linchpins for our moderate size
programs using the brute-force method that enumerates all
procedures. As the biggest challenge in this topic is how

to locate linchpins using more efficient methods, in the next
experiment we investigated approximate heuristic methods for
this task and compared their results to the exact results of
the brute-force method. Since we could not apply the brute-
force method to our large program WebKit, we verified the
successfulness of the heuristic method on it in the final step.

A. Linchpin identification by brute-force

The simplest way to identify a possible linchpin in a
program is to remove procedures one by one and see which
one brings the biggest gain according to some metric. In the
following, gain will mean the amount the respective metric is
reduced in percentage: 𝑚−𝑚′

𝑚 [%], 𝑚 being the original metric
value and 𝑚′ the value after linchpin removal.2

Specifically, we computed all SEA dependence sets for a
program by ignoring the candidate procedure and all of its
dependences. We compared the ENTR and REGX metrics of the
reduced versions of the program to the corresponding metrics
of the original program. This calculation was then repeated
for all procedures in the program with these two metrics. For
simplicity, we will present our results for REGX in the cases
when the results were similar for both metrics, and will note
explicitly in other situations. For the purposes of the remaining
discussion, the procedure that caused the biggest reduction in
the REGX metric was considered to be the linchpin.

TABLE II
REGX THRESHOLDS FOR LINCHPIN PROCEDURES

Minimum Maximum Typical
gain gain gain

Low clusterization 5% 20% —
Medium clusterization 18% 55% 20%
High clusterization 13% 99% 37%

Table II summarizes results of linchpin determination for
different clusterization classes of moderate sized programs. It
shows how much reduction in the REGX clusterization value
could be attained in the worst case (minimum gain) for a given
clusterization class, and similarly how much was the maximum
gain. It also indicates how much reduction could be attained
if the few outlier programs with least gain—4 in the medium
and 3 in the high class—are ignored (typical gain).

One would expect that programs with low clusterization
do not contain linchpins, i. e. there is no procedure whose
removal significantly reduces the already low clusterization.
This was not entirely supported by our findings, as there were
cases when as much as 20% gain could be achieved. This is
not negligible, but as noted earlier, REGX performs better at
high clusterization levels, so results for the low clusterization
level are not entirely relevant. However, the achieveable gain
is definitely larger for the medium and high classes, and gains
for highly clusterized programs vary widely.

In Table III, we listed the results of linchpin calculation for
moderate size programs with high clusterization. To get these

2Note, that we do not actually refactor linchpins and get equivalent
programs but we merely remove the procedures in order to identify them.

results we had to compute over 15 million SEA sets altogether,
but this was possible to complete in hours on an average server
machine.

TABLE III
LINCHPINS FOR MODERATE SIZE PROGRAMS WITH HIGH CLUSTERIZATION

Program REGX gain Procedure name

barcode 57% Barcode_Encode
bc 37% dc_func
compress 37% compress
copia 99% scegli
ctags 13% createTagsForFile
ed 53% exec_command
ftpd 43% parser
gnubg 52% HandleCommand
gnuchess 53% main
go 14% get_reasons_for_moves
indent 47% indent_main_loop
sudoku 41% rsolve
userv 22% parser

The second column shows the REGX gain after linchpin
removal, which was quite significant (at least 37%) in almost
all of the cases, 43.7% on average for this class of programs.
The last column of the table shows the names of the respective
procedures identified (which, except for compress, gnubg
and go, were the same for ENTR as well). It is interesting
to observe that, as names themselves suggest and a manual
analysis of the programs confirms, most of the identified
procedures indeed have central role in the programs. It is an
open question, however, how many of these procedures could
be deemed responsible for avoidable dependence clusters, in
other words, dependence pollution [2]. Expectedly, procedures
acting as the main procedures could not be easily refactored.

B. Heuristic determination of linchpins

We estimated that the brute-force method to determine
the potential linchpin for the WebKit system would take
about 70 years to complete using our strongest servers. So,
obviously, we must find alternative methods to find (or at least
approximate) the linchpins to enable practical application of
dependence cluster related research.

The existence of dependence clusters and any related linch-
pins are determined by the structure of the dependences
under investigation (SEA and the underlying ICCFG program
representation in our case). Therefore, it is to be expected that
by investigating the topology of the underlying dependence
graph one could gain insight into what makes a program point
a potential linchpin.

The problem does not have an obvious solution, so we
wanted to investigate whether local properties of the de-
pendence graph nodes (procedures) could be leveraged to
approximate lichpins. We used the following heuristic metrics
as potential indicators: NOI (Number of Outgoing Invocations
from the procedure), NII (Number of Incoming Invocations
to the procedure), sum of the former two (SOI=NOI+NII),
and their product (POI=NOI⋅NII). We tried the sum and the
product because we expected that in linchpin formation both
incoming and outgoing dependences could be important.

To compare the actual linchpins identified by the brute-force
method to the performance of the heuristic metrics, we related
two values for each procedure in the programs: a clusterization
metric (ENTR or REGX) after removing the procedure and one
of the heuristic metrics (NOI, NII, SOI, POI) associated with
the procedure. Then we used Pearson and Kendall correlation
checks between the corresponding vectors of these values. We
do not provide detailed data for these measurements because
they all pointed out the same best heuristic estimation.

TABLE IV
PEARSON CORRELATION BETWEEN HEURISTIC METRICS AND THE ENTR

AND REGX METRIC. UNDERLINED NUMBERS INDICATE STRONGEST

CORRELATION IN THE CORRESPONDING BLOCK.

ENTR REGX

Program NOI NII SOI POI NOI NII SOI POI
a2ps -0.27 0.03 -0.16 -0.04 -0.57 -0.01 -0.39 -0.40
acct -0.67 0.21 -0.52 -0.53 -0.67 0.13 -0.57 -0.46
barcode -0.59 0.07 -0.55 -0.65 -0.71 0.06 -0.66 -0.74
bc -0.72 0.04 -0.56 -0.57 -0.75 0.05 -0.58 -0.59
byacc -0.11 -0.01 -0.08 -0.20 -0.72 0.05 -0.42 -0.40
compress -0.72 0.04 -0.63 -0.49 -0.89 -0.09 -0.85 -0.63
copia -0.72 -0.66 -0.98 -1.00 -0.70 -0.68 -0.98 -1.00
ctags -0.42 0.03 -0.18 -0.23 -0.53 0.04 -0.23 -0.24
diffutils -0.42 -0.02 -0.36 -0.51 -0.66 -0.02 -0.56 -0.57
ed -0.67 0.03 -0.49 -0.56 -0.82 0.04 -0.59 -0.62
epwic 0.28 0.12 0.32 0.32 -0.50 -0.02 -0.48 -0.32
espresso -0.55 0.03 -0.33 -0.46 -0.70 0.04 -0.42 -0.43
findutils -0.25 0.07 -0.20 -0.04 -0.34 0.07 -0.29 -0.01
flex -0.79 0.07 -0.70 -0.54 -0.88 0.08 -0.78 -0.62
ftpd -0.74 0.03 -0.53 -0.40 -0.78 0.02 -0.57 -0.42
gnubg -0.66 -0.07 -0.55 -0.68 -0.69 -0.07 -0.57 -0.71
gnuchess -0.54 0.07 -0.47 -0.31 -0.55 0.06 -0.48 -0.29
gnugo -0.45 0.04 -0.06 0.01 -0.53 -0.01 -0.13 -0.05
go -0.49 0.03 -0.16 -0.31 -0.58 0.04 -0.18 -0.33
indent -0.64 0.04 -0.45 -0.17 -0.69 0.05 -0.48 -0.16
lambda 0.30 0.53 0.50 0.58 -0.61 -0.49 -0.64 -0.57
li -0.07 -0.17 -0.18 -0.18 -0.09 -0.15 -0.17 -0.18
nascar -0.13 -0.18 -0.23 -0.41 -0.77 0.15 -0.76 -0.33
sudoku -0.69 0.22 -0.26 -0.40 -0.79 0.20 -0.35 -0.52
termutils -0.35 0.18 -0.21 -0.13 -0.46 0.17 -0.33 -0.20
tile 0.48 0.46 0.62 0.63 -0.27 -0.18 -0.29 -0.28
time 0.70 -0.29 0.47 0.70 -0.55 0.08 -0.47 -0.12
userv -0.49 0.02 -0.35 -0.40 -0.57 0.04 -0.39 -0.39
wdiff 0.04 -0.23 -0.02 -0.50 -0.89 0.18 -0.89 -0.66
average -0.36 0.03 -0.25 -0.26 -0.63 -0.01 -0.50 -0.42
strongest 17 0 1 11 23 0 2 4

In Table IV, we show Pearson correlation results for all
programs. We marked the strongest correlation values for each
program underlined; the last row shows the average correlation
values for each metric. It can clearly be seen that the NOI
metric (Number of Outgoing Invocations) is the best estimator
for both ENTR and REGX. The best values are negative in
the NOI columns, which means that for the procedures of
a program there is a high correlation between a high NOI
value and a low clusterization value resulting from the removal
of that procedure. In other words, the higher NOI value a
procedure has, the more likely it is that its removal would
decrease the clusterization considerably, i. e. the more likely it
is that the procedure is a linchpin.

In the case of ENTR and REGX metrics, in 59% and 79% of
the cases NOI showed the strongest correlation; the average
correlation was −0.36 and −0.63 (with standard deviations
0.4 and 0.18), respectively. The second best was POI showing
strongest correlation in 38% and 14% of the programs with
average correlation values −0.26 and −0.42. NII performed

poorly, which was surprising because we expected NOI and
NII will perform similarly. The promising results for NOI are
strengthened by the fact that the highest NOI value predicts a
linchpin correctly in most of the cases: in the highly clustered
group in 12 out of 13 programs, in the medium group in 7
out of 11 programs the procedure with the highest NOI value
turned out to be a linchpin. What causes NOI to be the best
estimator is not yet clear, we are going to investigate this
question in the future.

As a statistical test to support our choice for NOI, we make a
null-hypothesis that the other three metrics are at least equally
good. For instance, consider NOI and NII with ENTR measure.
Out of the 28 programs, in 22 instances NOI has stronger
correlation than NII. Using Chernoff’s bound we get that the
probability of NII being at least as good as NOI is at most
0.01035. Chernoff’s bound shows that NOI is in fact better
with a probability of at least 0.9235 than any of the other
three with respect to any of the considered measures.

Another interesting observation we made about the data is
that for smaller programs the agreement between the NOI
metric and both clusterization metrics was slightly better,
suggesting that this heuristic will perform better for smaller
programs. Figure 3 shows how the correlation values between
NOI and ENTR as well as NOI and REGX change as a function
of program size. Only programs with high clusterization are
shown because in the other cases the relationship was not so
evident. Particularly, from left to right, we can see the average
correlation values for the programs ordered increasingly by
their number of procedures. Although not drastically, but a
tendency of worsening correlation can clearly be observed.
This could also indicate the need for combined identification
of linchpins as outlined at the end of this section. The
exact causes of this phenomenon are not clear yet, they are
probably related to the different topologies of small and bigger
programs.

Fig. 3. Correlation change with program size of highly clusterized programs

Once we got these results about the best linchpin estimator
heuristic metric, we applied it to WebKit to see whether
we can achieve significant ENTR or REGX metric reduction
and hence potentially find linchpins in that system too. In
the first instance we calculated the NOI metrics for WebKit

and applied the filtered dependence set calculation excluding
the first 10 procedures with highest NOI values individually,
thus obtaining a set of 10 clusterization reduction values.
Unfortunately, after this experiment we could not observe any
notable improvement in clusterization: even the largest ENTR

and REGX reductions were negligible and visual inspection
could not reveal anything either. Then we tried the other
heuristic metrics as well in a similar way, but we got even
worse results, so we decided to continue the research with the
combined exclusion of procedures as detailed below.

C. Reducing clusterization by sets of linchpins

Linchpin identification and removal can be rephrased in
graph theoretical terms as well. Given a graph 𝐺 on an 𝑛
element vertex set 𝑉, we say that 𝑆 ⊂ 𝑉 is a separator set, if
𝐺 ∖ 𝑆 contains only small connected components. If 𝐺 does
not contain certain substructures (large excluded minors, to be
precise), then it must contain a small separator set. Still, in
many cases the size of the separator set grows with 𝑛, usually
it is about 𝑂(

√
𝑛) [20].

While clusters in a SEA graph (or other graphs associated
with a program) are more complex than connected components
(for instance, most dependence graphs including SEA are
not transitive), it is easy to see an analogy between the two
kinds of problems. We think that analogously to separation
of graphs, one cannot always expect to find a single linchpin
vertex whose removal can significantly decrease clusterization.
Rather, one should look for a hopefully small subset of vertices
that somehow glue together the graph, and deleting them
results in small clusters.

Graph theory also tells that not every graph has a small
separator, for example, one has to delete a large number of
vertices from a so called expander graph in order to make
it disconnected. We expect that the graphs associated with
programs are not expander graphs, and therefore the deletion
of a relatively small subset can reduce clusterization. Finding
such a linchpin set effectively seems to be challenging.

To verify this theoretical concept, we performed empirical
measurements with sets of linchpins as opposed to only
one on some representative programs from our moderate
size subjects. In this series of measurements, three programs
from the medium level clusterization group (findutils,
termutils, nascar), and three other from the high clus-
terization group (go, ed, sudoku) were selected. Moreover,
care was taken to include programs with different sizes in
both groups. We took the first 10 procedures of a program
with the highest NOI values, performed the calculation of the
dependence sets while ignoring the first 0, 1, 2, . . . , 10 pro-
cedures together and investigated the resulting clusterization
metrics. We were interested to see whether there was indeed
one linchpin that brought significantly more gain than the
followers, or were the differences not so significant between
these first 10 candidates.

Figure 4 shows the ENTR metric for the cumulative removal
of the first 𝑘 procedures (𝑘-element linchpin sets), where
the different 𝑘 values are represented on the horizontal axis.

Fig. 4. Changing of the gains for the first 10 linchpins

One can observe that at most the sets with the first three
procedures are notable and require further investigation. It can
also be observed that for the three programs of medium level
clusterization, the overall decrease in the metric is less than for
the other group, as expected. More interestingly, it seems that
regardless of the level of clusterization, program size plays
an important role in the rate of decrease. Consider programs
sudoku and the ten times larger go, for instance. We can
see that for sudoku a significant decrease of clusterization
occurs right after the first procedure, while for go even the
second procedure contributes to the decrease significantly. As
an example from the other group, the same effect can also
be observed for nascar and findutils. The anomalous
behavoiur of increasing clusterization can be expected in
certain cases, the effect is more pronounced in the case of
nascar due to its small size.

D. Linchpins in WebKit

Findings from above suggest that in many cases, especially
for large programs, not only one program element (procedure)
could be responsible alone for the formation of dependence
clusters but a set of program elements together.

We performed similar experiments with the WebKit system
in the hope to identify linchpin sets that significantly reduce
clusterization. We expected that it would need more than only
2-3 procedures to achieve the same effect but we did not know
how many. We tried removing several first procedures with the
biggest NOI values but could not observe significant change
in the clusterization up to until we removed about the first
200-250 procedures together. Removing 256 methods with the
highest NOI values resulted in ENTR reduced by 7.2%, and
REGX metric value reduced by 19.1% (AREA was reduced by
32.2%). In other words, the dependence sets collapsed this
way, also changing dependence cluster formations, which can
be observed in Figure 5.

Here, we can compare the original dependence clusters and
the ones after removing these procedures (note, that in both
cases the total number of procedures are represented on both
axes, which is in the second case smaller by a comparatively

WebKit full WebKit top 256 NOI

Fig. 5. WebKit MSGs before and after removing top 256 NOI procedures

neglible amount, hence the graphs are still comparable to each
other). Although we cannot state that the clusters completely
disappeared, the change is significant. To check if this result
can indeed be attributed to the special role of the procedures
with the top 256 NOI, we performed validation tests with
three sets of randomly chosen 256 procedures. We found that
randomly filtering procedures does not bring any improvement
to the clusterization, change in ENTR was 0.04%, in REGX it
was 0.25% on average.

It remains for future work to analyze in depth these linchpin
sets and their effect on clusterization. From preliminary in-
vestigation, it seems that the clusters did not really disappear,
they just changed their structure. Some of the procedures with
high NOI could represent some very general connecting pro-
cedures, which do not really bear significant functionality (for
example, we noticed a procedure that consisted of only a big
switch statement and a huge number of method calls). When
removing such procedures, the core dependences responsible
for the main functionalities will remain, although the overall
size will be smaller.

VI. THREATS TO VALIDITY

We believe that the range of subject programs we used is
representative for C/C++ as it ranges over various sizes and
the domains are different. However, it would be important
to see whether these findings can be generalized to other
languages and types of dependences. The imprecision of our
SEA-based dependences could slightly distort the results due
to dependences that could have been avoided using a more
precise method. However, as previous research showed [10],
such false dependences are expectedly tolerable. We did not
investigate if similar results would have been obtained using
different, for instance, slice-based clusters.

We generalized our findings regarding the heuristic method
based on the NOI metric to the WebKit system. We could
not verify how good this heuristic actually performs on this
system as we do not know the exact linchpin data, we could
only state that some improvement has been obtained.

Our findings related to the presence of linchpin sets instead
of individual linchpins showed that this is more probable with
bigger programs. However, this highly depends on the system
itself so this observation should be generalized with caution.

VII. DISCUSSION AND CONCLUSIONS

This paper presented an empirical investigation of SEA-
based dependence clusters. We may now answer the research
questions set forth in this paper, however, our contributions
to the better understanding of dependence clusters raised a
number of additional questions.

Answering RQ1, we found that dependence clusters occur
frequently in programs regardless of their domain and size,
however there are also programs which exhibit very little clus-
terization. We gave precise definitions for four clusterization
metrics and used them throughout to evaluate the results of
our experiments. The results so far enable us to expect that
the clusterization of programs can be measured with greater
precision in the future. Additionally, we plan to experiment
with more complex metrics that are less sensitive to the cluster
and dependence set sizes.

RQ2 dealt with identifying one or more linchpins in pro-
grams. We were able to identify linchpin procedures using the
brute-force method for all moderate size programs, but it is
still to be explored in which cases we must seek for multiple
linchpins and not only one. What we found is that as the pro-
gram size increases it is less probable that only one program
element is responsible for the formation of clusters. Note, that
in this work we did not systematically investigate to decide if a
dependence cluster reflects a dependence pollution [2] or not,
and if the associated linchpins could be actually refactored,
which is one of our future research directions.

Exhaustive exploration of possible linchpin combinations
is computationally even more hopeless than for a single
case. Hence additional, more sophisticated heuristic methods
should be explored. Specifically, analyzing certain properties
of the dependence graphs in terms of the graphs’ topology is
promising. Answering RQ3, we found that a specific metric
based on graph structure, the Number of Outgoing Invocations
for a procedure (NOI) is quite a good heuristic estimator
for the linchpin, and the highest NOI value indeed predicts
linchpins correctly in most of the cases, so in the short term
we plan to investigate what made NOI the best in these
experiments. Investigating other more sophisticated but still
efficient methods is among our future plans as well, including
the use of machine learning classifiers based on graph topology
properties. Involving the hierarchical structure of the programs
(packages, classes and methods) could also be promising.

We are still looking for the causes of the dependence
clusters in WebKit. Although our heuristics gave interesting
insights into the structure of these clusters, further investiga-
tion of the internals of this software is required. For this task
we will consult WebKit developers, who already noticed that
there are some elements in the identified clusters which they
cannot explain. We need to investigate whether these are the
consequence of the imprecision of the SEA algorithm or they
represent some more hidden dependences in the system.

ACKNOWLEDGEMENTS

The authors would like to thank Zoltán Herczeg, László
Langó, Csaba Osztrogonác, John Taylor and Béla Vancsics

for their supporting work in this research. This research was
supported by the Hungarian national grant GOP-1.1.1-11-
2011-0049.

REFERENCES

[1] D. Binkley, “Source code analysis: A road map,” in Proceedings of 2007
Future of Software Engineering (FOSE’07). IEEE Computer Society,
2007, pp. 104–119.

[2] D. Binkley and M. Harman, “Locating dependence clusters and depen-
dence pollution,” in Proceedings of the 21st International Conference
on Software Maintenance (ICSM’05), 2005, pp. 177–186.

[3] M. Acharya and B. Robinson, “Practical change impact analysis based
on static program slicing for industrial software systems,” in Proceedings
of the 33rd ACM SIGSOFT International Conference on Software
Engineering (ICSE), 2011, pp. 746–765.

[4] D. Binkley and M. Harman, “Identifying ‘linchpin vertices’ that cause
large dependence clusters,” in Proceedings of the Ninth IEEE Interna-
tional Working Conference on Source Code Analysis and Manipulation
(SCAM’09), 2009, pp. 89–98.

[5] D. Binkley, M. Harman, Y. Hassoun, S. Islam, and Z. Li, “Assessing
the impact of global variables on program dependence and dependence
clusters,” Journal of Systems and Software, vol. 83, no. 1, pp. 96–107,
2010.

[6] M. Harman, D. Binkley, K. Gallagher, N. Gold, and J. Krinke, “De-
pendence clusters in source code,” ACM Transactions on Programming
Languages and Systems, vol. 32, no. 1, pp. 1–33, Nov. 2009.

[7] S. Black, S. Counsell, T. Hall, and D. Bowes, “Fault analysis in OSS
based on program slicing metrics,” in Proceedings of the EUROMICRO
Conference on Software Engineering and Advanced Applications. IEEE
Computer Society, 2009, pp. 3–10.

[8] “GCC, the GNU Compiler Collection,” http://gcc.gnu.org/, last visited:
2013-05-08.

[9] “The WebKit open source project,” http://www.webkit.org/, last visited:
2013-05-08.

[10] J. Jász, Á. Beszédes, T. Gyimóthy, and V. Rajlich, “Static Execute
After/Before as a replacement of traditional software dependencies,” in
Proceedings of the 2008 IEEE International Conference on Software
Maintenance (ICSM’08), 2008, pp. 137–146.

[11] M. Weiser, “Program slicing,” IEEE Trans. Softw. Eng., vol. SE-10,
no. 4, pp. 352–357, 1984.

[12] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using
dependence graphs,” ACM Transactions on Programming Languages
and Systems, vol. 12, no. 1, pp. 26–61, 1990.

[13] Á. Beszédes, T. Gergely, J. Jász, G. Tóth, T. Gyimóthy, and V. Rajlich,
“Computation of Static Execute After relation with applications to
software maintenance,” in Proceedings of the 2007 IEEE International
Conference on Software Maintenance (ICSM’07), 2007, pp. 295–304.

[14] Á. Hajnal and I. Forgács, “A demand-driven approach to slicing legacy
COBOL systems,” Journal of Software: Evolution and Process, vol. 24,
no. 1, pp. 67–82, Jan. 2012.

[15] L. Schrettner, J. Jász, T. Gergely, Á. Beszédes, and T. Gyimóthy, “Impact
analysis in the presence of dependence clusters using Static Execute
After in WebKit,” in Proceedings of the 12th IEEE International Working
Conference on Source Code Analysis and Manipulation (SCAM’12), Sep.
2012, pp. 24–33.

[16] S. Islam, J. Krinke, and D. Binkley, “Dependence cluster visualization,”
in Proceedings of the 5th international symposium on Software visual-
ization (SOFTVIS’10), 2010, pp. 93–102.

[17] Á. Beszédes, T. Gergely, L. Schrettner, J. Jász, L. Langó, and
T. Gyimóthy, “Code coverage-based regression test selection and pri-
oritization in WebKit,” in Proceedings of the 28th IEEE International
Conference on Software Maintenance (ICSM’12), 2012, pp. 46–55.

[18] “Homepage of GrammaTech’s CodeSurfer,”
http://www.grammatech.com/research/technologies/codesurfer,
GrammaTech, Inc., last visited: 2013-05-08.

[19] R. Ferenc, Á. Beszédes, M. Tarkiainen, and T. Gyimóthy, “Columbus –
reverse engineering tool and schema for C++,” in Proceedings of the
International Conference on Software Maintenance, 2002, pp. 172–181.

[20] K. Kawarabayashi and B. Reed, “A separator theorem in minor-closed
classes,” in Foundations of Computer Science (FOCS), 2010 51st Annual
IEEE Symposium on, Oct., pp. 153–162.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /Cmb10
 /CMB10
 /Cmbsy10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /Cmbx10
 /CMBX10
 /Cmbx12
 /CMBX12
 /Cmbx5
 /CMBX5
 /Cmbx6
 /CMBX6
 /Cmbx7
 /CMBX7
 /Cmbx8
 /CMBX8
 /Cmbx9
 /CMBX9
 /Cmbxsl10
 /CMBXSL10
 /Cmbxti10
 /CMBXTI10
 /Cmcsc10
 /CMCSC10
 /Cmcsc8
 /CMCSC8
 /Cmcsc9
 /CMCSC9
 /Cmdunh10
 /CMDUNH10
 /Cmex10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /Cmff10
 /CMFF10
 /Cmfi10
 /CMFI10
 /Cmfib8
 /CMFIB8
 /Cminch
 /CMINCH
 /Cmitt10
 /CMITT10
 /Cmmi10
 /CMMI10
 /Cmmi12
 /CMMI12
 /Cmmi5
 /CMMI5
 /Cmmi6
 /CMMI6
 /Cmmi7
 /CMMI7
 /Cmmi8
 /CMMI8
 /Cmmi9
 /CMMI9
 /Cmmib10
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /Cmr10
 /CMR10
 /Cmr12
 /CMR12
 /Cmr17
 /CMR17
 /Cmr5
 /CMR5
 /Cmr6
 /CMR6
 /Cmr7
 /CMR7
 /Cmr8
 /CMR8
 /Cmr9
 /CMR9
 /Cmsl10
 /CMSL10
 /Cmsl12
 /CMSL12
 /Cmsl8
 /CMSL8
 /Cmsl9
 /CMSL9
 /Cmsltt10
 /CMSLTT10
 /Cmss10
 /CMSS10
 /Cmss12
 /CMSS12
 /Cmss17
 /CMSS17
 /Cmss8
 /CMSS8
 /Cmss9
 /CMSS9
 /Cmssbx10
 /CMSSBX10
 /Cmssdc10
 /CMSSDC10
 /Cmssi10
 /CMSSI10
 /Cmssi12
 /CMSSI12
 /Cmssi17
 /CMSSI17
 /Cmssi8
 /CMSSI8
 /Cmssi9
 /CMSSI9
 /Cmssq8
 /CMSSQ8
 /Cmssqi8
 /CMSSQI8
 /Cmsy10
 /CMSY10
 /Cmsy5
 /CMSY5
 /Cmsy6
 /CMSY6
 /Cmsy7
 /CMSY7
 /Cmsy8
 /CMSY8
 /Cmsy9
 /CMSY9
 /Cmtcsc10
 /CMTCSC10
 /Cmtex10
 /CMTEX10
 /Cmtex8
 /CMTEX8
 /Cmtex9
 /CMTEX9
 /Cmti10
 /CMTI10
 /Cmti12
 /CMTI12
 /Cmti7
 /CMTI7
 /Cmti8
 /CMTI8
 /Cmti9
 /CMTI9
 /Cmtt10
 /CMTT10
 /Cmtt12
 /CMTT12
 /Cmtt8
 /CMTT8
 /Cmtt9
 /CMTT9
 /Cmu10
 /CMU10
 /Cmvtt10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomDGR-Bold
 /NimbusRomDGR-BoldItal
 /NimbusRomDGR-Regu
 /NimbusRomDGR-ReguItal
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440639063106360020063906440649002006270644063406270634062900200648064506460020062E06440627064400200631063306270626064400200627064406280631064A062F002006270644062506440643062A063106480646064A00200648064506460020062E064406270644002006350641062D0627062A0020062706440648064A0628061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043f043e043a0430043704320430043d04350020043d043000200435043a04400430043d0430002c00200435043b0435043a04420440043e043d043d04300020043f043e044904300020043800200418043d044204350440043d04350442002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020007a006f006200720061007a006f007600e1006e00ed0020006e00610020006f006200720061007a006f007600630065002c00200070006f007300ed006c00e1006e00ed00200065002d006d00610069006c0065006d00200061002000700072006f00200069006e007400650072006e00650074002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d0069007300200073006f006200690076006100640020006b00f500690067006500200070006100720065006d0069006e006900200065006b007200610061006e0069006c0020006b007500760061006d006900730065006b0073002c00200065002d0070006f0073007400690067006100200073006100610074006d006900730065006b00730020006a006100200049006e007400650072006e00650074006900730020006100760061006c00640061006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003b103c103bf03c503c303af03b103c303b7002003c303c403b703bd002003bf03b803cc03bd03b7002c002003b303b903b100200065002d006d00610069006c002c002003ba03b103b9002003b303b903b1002003c403bf0020039403b903b1002d03b403af03ba03c403c503bf002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05EA05E605D505D205EA002005DE05E105DA002C002005D305D505D005E8002005D005DC05E705D805E805D505E005D9002005D505D405D005D905E005D805E805E005D8002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000500044004600200064006f006b0075006d0065006e0061007400610020006e0061006a0070006f0067006f0064006e0069006a006900680020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f0161007400690020006900200049006e007400650072006e0065007400750020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF00410020006b00e9007000650072006e00790151006e0020006d00650067006a0065006c0065006e00ed007400e9007300680065007a002c00200065002d006d00610069006c002000fc007a0065006e006500740065006b00620065006e002000e90073002000200049006e007400650072006e006500740065006e0020006800610073007a006e00e1006c00610074006e0061006b0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b00790074006900200072006f006400790074006900200065006b00720061006e0065002c00200065006c002e002000700061016100740075006900200061007200200069006e007400650072006e0065007400750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f007400690020007201010064012b01610061006e0061006900200065006b00720101006e0101002c00200065002d00700061007300740061006d00200075006e00200069006e007400650072006e006500740061006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f0020044d043a04400430043d043d043e0433043e0020043f0440043e0441043c043e044204400430002c0020043f0435044004350441044b043b043a04380020043f043e0020044d043b0435043a04420440043e043d043d043e04390020043f043e044704420435002004380020044004300437043c043504490435043d0438044f0020043200200418043d044204350440043d043504420435002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020007a006f006200720061007a006f00760061006e006900650020006e00610020006f006200720061007a006f0076006b0065002c00200070006f007300690065006c0061006e0069006500200065002d006d00610069006c006f006d002000610020006e006100200049006e007400650072006e00650074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f01610074006f00200069006e00200069006e007400650072006e00650074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0045006b00720061006e002000fc0073007400fc0020006700f6007200fc006e00fc006d00fc002c00200065002d0070006f00730074006100200076006500200069006e007400650072006e006500740020006900e70069006e00200065006e00200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f0062006100740020007600650020004100630072006f006200610074002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043f0435044004350433043b044f043404430020043700200435043a04400430043d044300200442043000200406043d044204350440043d043504420443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

