
Leveraging Contextual Information from Function
Call Chains to Improve Fault Localization

Árpád Beszédes
Software Engineering Department

University of Szeged
Szeged, Hungary

beszedes@inf.u-szeged.hu

Ferenc Horváth
Software Engineering Department

University of Szeged
Szeged, Hungary

hferenc@inf.u-szeged.hu

Massimiliano Di Penta
Department of Engineering

University of Sannio
Benevento, Italy

dipenta@unisannio.it

Tibor Gyimóthy
Software Engineering Department

University of Szeged
Szeged, Hungary

gyimothy@inf.u-szeged.hu

Abstract—In Spectrum Based Fault Localization, program
elements such as statements or functions are ranked according
to a suspiciousness score which can guide the programmer in
finding the fault more efficiently. However, such a ranking does
not include any additional information about the suspicious code
elements. In this work, we propose to complement function-level
spectrum based fault localization with function call chains – i.e.,
snapshots of the call stack occurring during execution – on which
the fault localization is first performed, and then narrowed down
to functions. Our experiments using defects from Defects4J show
that (i) 69% of the defective functions can be found in call chains
with highest scores, (ii) in 4 out of 6 cases the proposed approach
can improve Ochiai ranking of 1 to 9 positions on average, with
a relative improvement of 19-48%, and (iii) the improvement is
substantial (66-98%) when Ochiai produces bad rankings for the
faulty functions.

Index Terms—Spectrum Based Fault Localization, Function
Call Chains, Call Stack Traces, Testing and Debugging.

I. INTRODUCTION

Debugging and related activities are among the most difficult
and time-consuming ones in software development [1]. This
activity involves human participation to a large degree, and
many of its sub-task are difficult to automate.

A relevant debugging sub-task is fault localization (FL), in
which the root causes of an observed failure are sought. Fault
localization is notoriously difficult, and any (semi)automated
method, which can help the developers and testers in this task,
is welcome. There exist a class of approaches to aid FL which
are popular among researchers, but have not yet been widely
adopted by the industry: Spectrum-Based Fault Localization
(SBFL), also known as Statistical Fault Localization (SFL) [2],
[3], [4], [5], [6].

The basic intuition behind SBFL is that code elements (state-
ments, blocks, paths, functions, etc.) exercised by comparably
more failing test cases than passing ones are considered as
“suspicious” (i.e., likely to contain a fault), while non-suspicious
elements are traversed mostly by passing tests. Suspiciousness
can be expressed in different ways, usually assigning one value
to each code element (called the suspiciousness score), which
can then be used to rank the code elements. The idea is that
by inspecting this ranked list a developer would find the fault
near the beginning of the list, hence being more productive in
localizing the fault.

A possible approach to measure the effectiveness of a SBFL
method is to investigate the average rank position of the actual
faulty element relative to the total number of code elements [2],
i.e., the number of elements that have to be investigated before
finding the fault (we refer this as the Expense metric). Further
studies revealed that Expense is crucial to the adoption of the
method in practice. In particular, research showed that if the
faulty element is beyond the 10th element (or even the 5th
according to some other studies), the method will not be used
by practitioners because they need to investigate too many
elements in vain [5], [7], [8], [9].

The state-of-the-art approach to SBFL is to use the so-
called “hit-based” spectra [10] with statements as basic
code elements. Researchers proposed many different scoring
mechanisms, but these are essentially all based on counts
of passing/failing and traversing/non-traversing test cases in
different combinations [2], [5], [11]. Popular suspiciousness
scores are Tarantula [12], Ochiai [13], and DStar [14], among
others.

One reason why an SBFL formula may fail is what is referred
as coincidental correctness [15], [16], [17]. This is the situation
when a test case traverses a faulty element without failing.
This can happen quite often since not all exercised elements
may have an impact on the computation performed by a test
case [18], and if there are relatively more such cases than
traversing and failing ones, the suspiciousness score will be
negatively affected [16].

In this work, we propose to enhance traditional SBFL with
function call chains on which the FL is performed. Function
call chains are snapshots of the call stack occurring during
execution and as such can provide valuable context to the fault
being traced. Call chains (and call stack traces) are artifacts
occurring during program execution which are well-known
to programmers who perform debugging, and can show, for
instance, that a function may fail if called from one place
and perform successfully when called from another. There
is empirical evidence that stack traces help developers fix
bugs [19], and Zou et al. [20] showed that stack traces can
be used to locate crash-faults.

More specifically, we propose a novel SBFL algorithm,
that computes ranking on all occurring call chains during
execution, and then selects the suspicious functions from these

978-1-7281-5143-4/20 c© 2020 IEEE SANER 2020, London, ON, Canada
Research Papers

Accepted for publication by IEEE. c© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

468

ranked chains using a function-level (i.e., method-level for
object-oriented languages like Java) spectrum-based algorithm,
Ochiai in particular [13]. An example of the overall approach
is presented in Section III.

Our approach works at a higher granularity than statement-
level approaches (previous work suggests that function-level
is a suitable granularity for the users [21], [20]). At the same
time, we provide more context in the form of the call chains,
and therefore have the potential to show better performance in
terms of Expense.

We empirically evaluated the proposed approach using 404
real defects from the Defects4J suite [22]. Results indicate that
except for the two outliers (Chart and Closure) the call chain-
based FL approach can improve the localization effectiveness
of 1 to 9 positions (with a relative improvement of 19-48%),
compared to a hit-based function-level approach (Ochiai [13]).
In the case of defects with ranks worse than 10, this ratio
increased even more (66-98%) on all programs. Furthermore,
the defective element could be located in 69% of the cases in
the highest-ranked call chains, which turned out to be relatively
short on average. Last, but not least, we provide qualitative
evidence that, besides improved performances, the proposed
approach can provide useful information to the developer
performing a debugging task.

II. CONTEXT AND RELATED WORK

A. Spectrum-Based Fault Localization

The use of execution profiles – program spectra – for FL
purposes has been proposed for the first time in a study on
the Y2K problem aimed to discover date-dependent compu-
tations [6], although the first mention of the idea appeared
already in 1987 [23]. Since then, SBFL emerged as one of the
main approaches to software FL [24], [4], [3].

SBFL approaches are still finding their way to be employed
in practice [25], [26], [9], [13]. For instance, most studies
are carried out using artificial faults [5], and still the faulty
element is usually placed far from the top of the rankings [7],
[8]. Abreu et al. [27] investigate the accuracy of SBFL
approaches in practice. Le et al. show that there is a gap
between theoretical and practical results [25].

Different types of program spectra have been proposed
by Harrold et al. (hit-based, count-based, counting branches,
paths, data dependencies, etc.) [28], [10], however, the most
commonly adopted approach uses individual statements or
functions as the basic program elements.

While several SBFL suspiciousness formulae have been
proposed, in this work we complement (and compare with)
Ochiai, which proved to be among the best performing [13].
A detailed analysis of suspiciousness formulae is reported in
the survey by Wong et al. [2], in the theoretical analysis of
Xie et al. [11], and in the study of Pearson et al. [5].

B. Improvements to SBFL Approaches

One of the main reasons for the suboptimal performance of
SBFL, in general, is coincidental correctness. This has been the
focus of several works [18], [29], [30]. Wang et al. used context

patterns for common fault types, which can strengthen the
correlations between program failures and the coverage of faulty
program entities [29]. Bandyopadhyay and Ghosh proposed
an approach to assign weights to test cases for representing
their importance in FL based on the proximity to the failing
test cases [30]. They also proposed an approach to iteratively
predict and remove coincidentally correct test cases based on
user feedback in small programs [31].

Xie et al. present an informative overview of suspiciousness
score assignment approaches [11]. Yoo presents an automatic
approach to derive risk evaluation formulae [32] using genetic
programming. Renieris and Reiss use nearest neighbor mea-
sures of program spectra for FL [33]. Several researchers have
used the learning to rank model [34], to combine different FL
algorithms [35], [21], [20].

Gong et al. [36] propose to complement SBFL techniques
with the users’ feedback, showing how this could produce
significant improvements on the FL accuracy.

Finally, to support developers in visualizing the output of
spectrum-based FL, Jones et al. developed Gammatella, a tool
that visualizes statement suspiciousness using color maps [37].

C. Stack Trace-Based and Related Approaches

Schröter et al. provide strong evidence that the stack
traces have a great value to developers during the debugging
process [19], and as other works show, they carry important
information that can help in the localization process [20], [38].
Zou et al. discuss that stack trace analysis may be used for FL
by examining the depth of an element in the stack trace for
assigning the suspiciousness score [19], [20]. In particular, they
suggest to assign a score to the function which is reciprocal
to the depth of its first occurrence in the stack trace. They
found that this approach was the most successful in localizing
the crash faults (which accounts for about 25% of the defects
in Defects4J). Wu et al. extend the call stack with static call
graph information and then calculate the suspiciousness scores
for the functions [38]. These approaches use stack traces in a
limited way, for instance only on crash failures. Our approach
is to leverage the information from all appearing stack trace
instances (the call chains) and apply the basic SBFL techniques
on them.

Similar concepts to function call chains have been explored
by other researchers [39], [40], however not in this detail and
not with FL application in focus.

Involving a different type of context to the FL process
has been recently proposed by de Souza et al. [41]. They
introduce different “roadmaps” to the user based on additional
information from the code and the execution. One of their
approaches uses method call relationships, which is similar to
our idea.

D. Non-SBFL Approaches

We focus on the statistical analysis of dynamic test case
executions, but there have been other approaches proposed
for FL as well. These include slicing-based [42]; statistics-
based [43], [44]; and mutation-based approaches [45], [46].

469

Fig. 1. Call chain based FL overview.

Machine learning and data mining techniques are employed
for FL as well [47], [48]. Researchers have also proposed
model-based FL approaches [49], [50], as well as state-based
approaches [51], [52]. We refer to the surveys of Wong et al.
[2], [24] and Parmar et al. [3].

A recent paper by Zou et al. [20] presents an empirical
comparison of different FL families of algorithms that include
SBFL, mutation-based approaches, program slicing, stack trace
analysis, predicate switching, and history-based approaches.
They also combine these mechanisms using learning to
rank [34].

Other debugging techniques involve record-replay and user
interaction [53], [54], [55], [56]. These are not directly related
to our work, although call chains could support user interaction
during debugging.

E. Contribution

The novelty of our approach with respect to the above is that,
without requiring additional user input, we are utilizing call
chain (stack trace) data at function-level for FL, which includes
much more information compared to individual functions (or
statements). Call chains provide a context about the possible
failures, which can complement the basic ranking lists of
program elements or, in some cases, replace them.

III. FAULT LOCALIZATION ON CALL CHAINS

Fig. 1 provides a high-level overview of our approach. Using
a given set of test cases T , the subject program P is executed
while collecting the necessary execution trace information. This
is used to produce the function call chains, as well as the test
case pass/fail outcomes (more on this in Section III-A). Based
on that, we compute the call chain level program spectrum
information, which is used to calculate the ranking of the chains
according to their suspiciousness levels (discussed in more
detail in Section III-B). In the next step, two algorithms are
applied to compute the ranking of the functions for FL, which
are then merged to produce the final ranking (see Section III-C).

A. Function Call Chains

Let F be the set of functions in a program P , and T a set of
test cases used to test P . Then, a Call Chain c is a sequence
of functions f1 → f2 → ⋅ ⋅ ⋅→ fn (fi ∈ F), which occur during
the execution of some test case t ∈ T , and for which:

● f1 is the entry point called by t,
● each fi directly calls fi+1 (0 < i < n), and
● fn returns without calling further functions in that se-

quence.

In other words, c is one of the possible deepest call stack
states occurring during the execution of t. Call stacks and
the associated stack traces are well-known structures used
in everyday work by programmers during debugging. They
describe a particular state during program execution and help
understand the context that led to that state. At the same time,
they are very concise as well because no previous state is
maintained, and typically the function call nesting levels are
not very deep. Statement-level control or data flow information
is much more complex and more difficult to produce.

Call chains can be efficiently produced from test case
executions because only the function entry and exit events
need to be recorded and stored in a stack structure. One thing
to note here is that the used instrumentor method must be able
to handle any non-structured call events such as exceptions
and multi-threaded execution.

In our method, we collect all distinct call chains occurring
during the execution of T , which will be referred to as the call
chain set C. We also maintain a set of chains C(t) occurring
for each individual test case t (we say that t executes c if
c ∈ C(t)). Finally, the set of functions occurring in a chain c
will be denoted by F (c).

Fig. 2 contains a simple code snippet for illustrating these
concepts with the associated test cases in Fig. 3. In it, we can
identify four test cases t1 . . .t4. t1 and t2 are passing, while
the other two fail due to an error in function g. These test cases
produce altogether five different call chains: a → f, a → g,
b→ a→ f, b→ g and b, which will constitute the set C. Then,
C(t1) = {a → f,a → g,b → g}, C(t2) = {a → g,b → g},
C(t3) = {a→ g,b} and C(t4) = {a→ f,a→ g,b→ a→ f}.

This example is constructed so that the benefits of our method
are visible. In particular, we set the fault to be in function g,
and it will be manifested if invoked directly from b but not
when invoked from a. This way, both elements, the caller and
the callee, are important from the localization point of view,
and this is what the call chains will capture. As we will see,
the fault will be located at the first ranking position with our
approach, while a function-level hit-based suspiciousness score
(e.g., Ochiai) will give priority to some other code element.
The call chain information is also useful because it will allow
the programmer to find other possible fixes for the failure such
as modifying the call site if that is more appropriate.

A more realistic example is provided at the end of Section V,
which is an actual fault from our benchmark.

470

p u b l i c c l a s s ChainFLExample {
p r i v a t e i n t _x = 0 ;
p r i v a t e i n t _s = 0 ;
p u b l i c i n t x () { re turn _x ; }

p u b l i c vo id a (i n t i) {
_s = 0 ;
i f (i ==0) re turn ;
i f (i <0)

f (i) ;
e l s e

g (i) ;
}

p u b l i c vo id b (i n t i) {
_s = 1 ;
i f (i ==0) re turn ;
i f (i <0)

a (i) ;
e l s e

g (i) ;
}

p r i v a t e vo id f (i n t i) {
_x −= i ;

}

p r i v a t e vo id g (i n t i) {
_x += (i +_s) ; / / e r r o r : s h o u l d be _x += i ;

}
}

Fig. 2. Example for illustrating call chains.

B. Chain-Based FL

The first phase of our approach is FL on the call chains.
This takes as inputs the test case execution outcomes (pass/fail)
and uses a program spectrum representation with the chains as
code elements. The output is a ranked list of call chains with
the associated suspiciousness scores.

We apply a traditional program spectrum representation
based on binary matrices. Let Sch denote the chain based
spectrum, whose rows represent test cases (elements of T),
and columns contain the call chains (elements of C):

Sch = ti

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

cj
³¹¹¹·¹¹µ
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0/1 0/1 ⋯ 0/1 0/1
0/1 0/1 ⋯ 0/1 0/1

⋱
0/1 0/1 ⋯ 0/1 0/1
0/1 0/1 ⋯ 0/1 0/1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Rch =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0/1
0/1
⋮

0/1
0/1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Sch(i, j) = 1 means that the call chain cj will occur at least

once in the execution of test case ti.
The vector Rch denotes the test case execution results vector.

It is a record of the outcomes of test case runs, namely pass
(0) or fail (1). Fig. 4 shows the spectrum with the matrix and
the result vector for our example from Fig.s 2 and 3 (c1 . . . c5
denote the chains a → f, a → g, b → a → f, b → g and b,
respectively).

For the call chains, any basic SBFL suspiciousness score
could be used. In this work we used the Ochiai score [13],
used in recent work [5], [20], [21] and proved to outperform

p u b l i c c l a s s ChainFLExampleTest {
@Test p u b l i c vo id t 1 () {

ChainFLExample t e s t e r = new ChainFLExample () ;
t e s t e r . a (−1) ;
t e s t e r . a (1) ;
t e s t e r . b (1) ;
a s s e r t E q u a l s (3 , t e s t e r . x ()) ;

}

@Test p u b l i c vo id t 2 () {
ChainFLExample t e s t e r = new ChainFLExample () ;
t e s t e r . a (1) ;
t e s t e r . b (1) ;
a s s e r t E q u a l s (2 , t e s t e r . x ()) ;

}

@Test p u b l i c vo id t 3 () {
ChainFLExample t e s t e r = new ChainFLExample () ;
t e s t e r . a (1) ;
t e s t e r . b (0) ;
a s s e r t E q u a l s (1 , t e s t e r . x ()) ;

}

@Test p u b l i c vo id t 4 () {
ChainFLExample t e s t e r = new ChainFLExample () ;
t e s t e r . a (−1) ;
t e s t e r . a (1) ;
t e s t e r . b (−1) ;
a s s e r t E q u a l s (3 , t e s t e r . x ()) ;

}
}

Fig. 3. Test cases for the example.

Sch =
⎛
⎜⎜
⎝

c1 c2 c3 c4 c5
t1 1 1 0 1 0
t2 0 1 0 1 0
t3 0 1 0 0 1
t4 1 1 1 0 0

⎞
⎟⎟
⎠

Rch =
⎛
⎜⎜
⎝

1
1
0
0

⎞
⎟⎟
⎠

Fig. 4. Chain-based spectrum for the example.

other popular formulae in many situations. To calculate the
suspiciousness scores, many formulae rely on some or all of
these four basic statistics for each code element c (chain, in
our case): ef (c), nf (c), ep(c) and np(c), which count the
number of test cases that execute call chain c and fail, do not
execute c and fail, execute c and pass, do not execute c and
pass, respectively. The Ochiai score does not use np(c) and is
computed as:

O(c) = ef (c)√
(ef (c) + nf (c)) ⋅ (ef (c) + ep(c))

.

This way, each call chain c will be assigned a suspiciousness
score between [0,1] according to the formula. For our example,
O(a → f) = 1

2
, O(a → g) = 1

√

2
, O(b → a → f) = 0, O(b →

g) = 1 and O(b) = 0. This, in itself, might be a useful output
for the programmer seeking the faulty code element because
the high ranked chains could lead her attention to the faulty
element and the context in which it was invoked (in our case
the call chain b→ g). However, we proceed to compute also
the most suspicious functions, as described in the following.

471

C. Locating Functions

A trivial approach for the user to locate the defective function
(and statement, respectively) is to consider the highest-ranked
call chains and investigate the functions occurring in them
(according to our experimentation, this can be successful quite
often). But we also propose an approach to produce a ranked
list for functions as well based on the call chain scores.

We experimented with various algorithms for this purpose
and eventually found out that different strategies may produce
good results in different cases. Hence, we decided to use the
two best performing strategies and then combine their results,
as explained in the following.

1) Weighted Chain Counts: The basic idea with this strategy
is to count the number of occurrences of each function in
the chains weighted by the respective chain scores from the
previous phase. The intuition behind this is that functions
frequently occurring in highly ranked chains will be more
suspicious. More precisely, for each function f ∈ F we compute
the score W as:

W(f) = ∑
c∈C(f)

O(c) ,where C(f) = {c ∣ f ∈ F (c)} .

Note that this score will not fall in the interval [0,1] which
is typical for many other scoring mechanisms. However, this
does not affect other parts of the approach since only the
relative ranks are subsequently used.

For our example, the scores will be the following: W(a) =
1
2
+ 1
√

2
, W(b) = 1, W(f) = 1

2
and W(g) = 1+ 1

√

2
. This leads

to the defective function with the highest score.
2) Reapplied Spectrum: The second idea for computing

function-level scores is to re-apply the spectrum-based ap-
proach, but this time on the functions using the call chains in
place of the test cases. For this purpose, we treat a call chain
as a “proxy” to a test case in the following manner. If its score
is greater than a threshold z ∈ [0,1) it is treated as “failing”
otherwise as “passing.” Hence, our function-level spectrum has
the call chains in its rows and the functions in the columns:

Sfn = ci

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

fj
³¹¹¹·¹¹µ
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0/1 0/1 ⋯ 0/1 0/1
0/1 0/1 ⋯ 0/1 0/1

⋱
0/1 0/1 ⋯ 0/1 0/1
0/1 0/1 ⋯ 0/1 0/1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Rfn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0/1
0/1
⋮

0/1
0/1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In this case, a 1 at the matrix position (i, j) means that
fj ∈ F (ci), and the entry in the vector Rfn for a chain ci is 1
if O(ci) > z. By adjusting z, one can regulate how “strictly”
a suspicious call chain should be considered as faulty. We
experimented with different thresholds, but in the following,
we will set z = 0 as it provided the best results.

The final scores in this case will be computed by re-applying
the Ochiai formula to this function-level spectrum, which will
be denoted byR(f) for a function f . In the example,R(a) = 2

3
,

R(b) = 1
3

, R(f) = 1
√

6
and R(g) = 2

√

6
, which again ranks g

to the first position.

I n p u t R1 { rank a c c o r d i n g t o W s c o r e s }
I n p u t R2 { rank a c c o r d i n g t o R s c o r e s }
Outpu t { combined rank }
Repeat

f := n e x t e l e m e n t in R1
I f f i s not o u t p u t y e t

Outpu t f
f := n e x t e l e m e n t in R2
I f f i s not o u t p u t y e t

Outpu t f
U n t i l R1=empty and R2=empty

Fig. 5. Rank merging algorithm.

Note, that the simple function-level Ochiai formula scores
function f with 1

2
and the other three with 1

√

2
, which makes

this approach not very useful in this particular case. It is also
interesting to note, that the statement-level Ochiai FL will
locate the call statement to g in function b, which is also
informative. However, our approach provides more context in a
general case because the whole call stack is presented and not
only individual code elements. Also, with our second phase not
only the chain ranks but the function ranks will be available
as well.

3) Merging the Ranks: The reason for the two ranking
methods to behave differently can be traced back to the
mentioned coincidental correctness, which – apparently – can
affect the chain-based approach as well.

Most SBFL formulae poorly perform when the defective
element f has a high ep(f) value compared to ef (f). In the
case of our reapplied spectrum technique, this means that f
is found in many chains that have ≤ z score, while in fewer
chains that have > z score. This, in turn, can happen if some
passing test cases are complex enough to generate a lot of
different chains, contrary to the failing ones. We observed that
this can happen often in the case of the reapplied spectrum, so
in this case, the weighted chain counts technique will perform
better because it is not affected by the many passing chains.

Since we do not know in advance which of the two function-
level scores will lead to better results in a particular case, so
we merged the two ranked lists by alternatively selecting the
next element from each of the two lists. The algorithm in Fig. 5
depicts the approach more precisely.

The algorithm has the following property: if the rank position
of the faulty element is r1 in R1 and r2 in R2, in the worst
case it will be found in 2 ⋅min(r1, r2) steps. This means that
if one of the scoring mechanisms is poor compared to the
other, the result will depend on the better one. Moreover, if the
two ranks are similar, the output will also be similar to them
and the mentioned worst case will not be reached. Note that
this algorithm does not explicitly handle ties, situations when
elements with the same score are ranked subsequently in an
arbitrary order. Also, the rank list with which the processing is
started is arbitrary. Depending on how these are implemented,
the algorithm could produce different final outputs.

Several researchers have used machine learning, such as
learning to rank [34], to combine different FL algorithms [35],
[21], [20]. We selected to use the above simple approach instead

472

because it guarantees the minimum required rank position and
it is practically the same approach the user would follow if
she is given two ranked lists to analyze in parallel.

Consider again, our running example. The weighted chain
counts approach produces the following ranked list of functions:
gabf. At the same time, the function-based spectrum results in
gafb. Finally, the merging step outputs either gabf or gafb,
depending on which rank list is the processing started on. The
faulty element is in the first position in either case.

IV. EMPIRICAL EVALUATION

The goal of the study is to assess the proposed approach
based on the combination of call chain scores and function-level
SBFL. The quality focus is the effectiveness of the approach,
compared with state-of-the-art SBFL. The context consists of
404 bugs from the Defects4J suite [22].

More specifically, the study aims at addressing the following
research questions:

RQ1 What are the properties of the occurring call chains and,
in particular, of chains that contain faulty elements? We
measure how often do the faulty elements appear in the top-
ranked chains. Also, we collect the number and length of
the chains because this highly contributes to the usefulness
of the chain ranking.

RQ2 How much improvement can the call chain-based approach
achieve compared to basic function-level fault localization?
We measure this property using the fault localization
Expense measure (RQ2a). At this point, we also compare
the two function-level scoring mechanisms of the second
phase of our approach and measure how often is each of
them better than the other (RQ2b).

In the following, we describe the details of the experiment
setup and the evaluation methodology.

A. Study Settings

Our study considered different SBFL formulae i.e., Ochiai,
Tarantula and DStar. Since they provided similar performance
in the traditional setting and due to space limitations we report
only Ochiai results. However, the online appendix [57] includes
the results of the other formulae as well.

We performed the experiments on real defects from the
Defects4J suite (v1.4.0) [22]. We selected this benchmark
because it can be seen as the state of the art in FL research for
Java (see e.g., [21], [5], [20], [58], [59], [60] and many others),
and it includes real defects and programs with non-trivial size
and complexity. The dataset provides the fix for each bug as a
patch set (called a version). Using the patch sets we were able
to create change sets that contain data about which functions
(Java methods) were affected by each bug fix.

By default, Defects4J utilizes Cobertura [61] to measure
code coverage. However, since call chains are needed for
our approach we had to use different technology. We used
a bytecode instrumentation tool based on Javassist [62] to
collect execution traces. This tool uses a compact data structure
which was carefully engineered to handle recursive calls and

TABLE I
MAIN PROPERTIES OF THE DEFECTS USED IN THE EXPERIMENTS.

Program KLOC Tests Bugs Functions Chains

Chart 96 2 187 25 5 235 41k
Closure 91 7 867 173 8 379 889k
Lang 22 2 270 60 2 353 6k
Math 84 4 371 92 6 351 228k
Mockito 11 1 331 28 1 433 11k
Time 28 4 019 26 3 627 150k

Total 332 22 045 404 27 378 1 325k

the exceptional amount of data that is generated during the
execution of real life programs.

Unfortunately, some tests cases fail if the code is instru-
mented. These tests assert things that the instrumentation
changes e.g., structure of an object, runtime, contents of the
classpath, etc. Since the unexpectedly failing tests would affect
the suspiciousness of the covered code elements, we excluded
those bugs that include this kind of tests. Finally, we considered
only those faults for which there is at least one failing and
traversing test case. The final set of programs and defects from
the Defects4J dataset we used in our experiments is reported
in Table I. Numbers regarding size (lines, tests, functions)
vary from version to version, here data from the last versions
are provided. The last column contains the number of chains
generated (also for the last version), which will be explained
later.

To store the spectrum information matrices and compute the
various scores and ranks, we used the SoDA framework [63].
Apart from that only various scripts and spreadsheet editors
were used for the calculations.

B. Measuring the Chain Properties

Compared to a basic function-level SBFL, the proposed
approach requires:

1) To compute the call chains besides simple code coverage
information.

2) A larger spectrum matrix, as its columns include the
different chains rather than functions.

3) An additional step to locate the functions, which is
composed of two ranking algorithms and a merging phase.
The function-level spectrum requires a matrix whose rows
are composed of the different chains which are typically
more numerous than the test cases.

To account for these differences, we recorded their basic
properties such as the number and size (number of function
occurrences) of the chains.

C. Evaluation of Fault Localization Effectiveness

Several strategies have been proposed in the literature for
measuring the effectiveness of SBFL approaches, but they are
practically all based on looking at the rank position of the actual
faulty element within the list of all possible program elements.
One strategy is to express this as the number of elements that
need to be investigated by the programmer before finding the
fault [2], and another is the opposite: elements that do not need
to be investigated [33]. This is usually expressed in relative

473

terms compared to the length of the rank list (program size).
However, Parnin and Orso argued that absolute rankings are
more helpful in practical situations [8].

Another issue with these mechanisms is the handling of
ties [64], because in many cases different program elements
may get assigned the same suspiciousness scores. Some
approaches select the first (best case), last (worst case) or
middle (expected case) element for expressing this value, while
others simply treat the elements with the same values as all
belonging to one position.

For computing the effectiveness of an SBFL approach, we
follow the strategy to look at “elements that need to be
investigated” using the “expected case” in the case of ties
and express this in a set of measures called Expense. We use
two variants of the measure: an absolute one expressed in the
number of code elements (E) and a relative version compared
to the length of the rank list (E′). The following formulae
express precisely how to calculate this value (following [27]):

E = ∣{i∣si > sf}∣ + ∣{i∣si ≥ sf}∣ + 1
2

, E′ = E

N
⋅ 100 [%] ,

where N is the number of code elements, for i ∈ {1, . . . ,N}
si is the suspiciousness score of the ith code element and f is
the index of the faulty code element.

To compare our approach to traditional SBFL techniques,
we will compute the Expense metric for both approaches and
compare them in terms of change relative to traditional SBFL,
using both absolute values and relative improvements.

Apart from the general average change, we define the
notion of enabling improvement, an improvement in which the
traditional SBFL algorithm ranks the faulty element beyond the
10th position but the proposed approach reaches it in at most
10 steps. This way, from a practically “hopeless” localization
scenario, our approach enables the user to localize the fault
by inspecting only the top elements in the list.

Finally, we compare the rankings achieved by Ochiai with
those achieved by the proposed, combined approach. To this
aim, a Wilcoxon sign-rank test [65] should normally be used.
However, in the context of FL, especially for the easy matches,
the test could encounter ties, e.g., when both approaches report
a first rank for a function. To overcome this limitation, we
use, instead, the Wilcoxon-Pratt test [65] which copes with
the ties. Since multiple tests are performed (one per program),
the p-values have been adjusted using the Holm’s correction
[66]. We complement the Wilcoxon-Pratt test with the Cliff’s
d effect size measure [67].

V. RESULTS

In this section, we present the results of our experimental
evaluation following our research questions from above.

A. Properties of Call Chains

As described in Section IV-B, we recorded the different
properties of data structures during the execution of the
experiments and used these to compare our approach to the
basic function-level FL. Table I includes some basic statistics,

Cha
rt

Clos
ure La

ng
Math

Moc
kit

o
Tim

e

100

101

102

103

C
ha

in
 le

ng
th

Highest
All

Fig. 6. Properties of highest-ranked and all chains.

TABLE II
FAULTY ELEMENTS IN HIGH RANKED CHAINS AND AVG. CHAIN LENGTHS.

Program Faulty in High Length Length
All High

Chart 19 (73%) 8.3 5.7
Closure 98 (56%) 26.0 849.3
Lang 56 (88%) 4.4 5.1
Math 70 (75%) 14.8 13.9
Mockito 20 (69%) 7.8 58.6
Time 21 (78%) 10.1 11.7

Total / Average 284 (69%) 24.8 749.2

i.e., number of functions, tests and call chains, of the considered
programs (their last versions).

The distribution of chain lengths is depicted in the blue
boxplots (i.e., the second for each program) of Fig. 6 (note
that outliers are excluded). Although the call chains can be
very long (about 3,500 functions), Closure tend to have shorter
chains, i.e., about 4 to 26 functions. The average call chain
length is 24.8 for the whole dataset and 12.4 if we exclude
Closure. (More details can be seen in Column 3 of Table II.)

We now investigate what is the relationship between the
faulty elements and the content of the highly-ranked chains
produced in the first phase of our approach. The second column
of Table II shows the number of times (and their ratio) the
faulty element can be located in the call chains from the very
beginning of the ranked list. In particular, we considered the
chains with the highest suspiciousness scores. It is interesting to
note that the highest score was in many cases 1. We can observe
from the data that, for all programs, 69% of the defective
elements are found in the highest-ranked chains, which is a
very high ratio.

It is also interesting to investigate whether these fault-
containing chains are any different in terms of their sizes
from the general statistics. The red boxes in Fig. 6 (left-side
for each program) depict the length distribution of such chains.
As we can observe, the maximum length of these call chains
varies from program to program. In general, not considering
the outlier Closure, the average length of chains with the

474

TABLE III
FAULT LOCALIZATION EFFECTIVENESS COMPARISON (AVERAGES SHOWN).

Program Bugs Ochiai Combined Difference Relative Ochiai Enabling Relative
E(E′) E(E′) E(E′) change > 10 improvements improvement

Chart 25 8.3 (0.19%) 10.8 (0.25%) 2.4 (0.06%) 29% 5 2 (8%) -19.0 (-76%)
Closure 173 99.5 (1.33%) 131.4 (1.77%) 31.9 (0.44%) 32% 106 16 (9%) -58.8 (-93%)
Lang 60 4.7 (0.23%) 3.5 (0.17%) -1.1 (-0.05%) -24% 7 4 (7%) -15.4 (-66%)
Math 92 11.0 (0.29%) 7.3 (0.19%) -3.7 (-0.10%) -34% 27 17 (18%) -28.1 (-87%)
Mockito 28 25.6 (2.47%) 20.6 (1.98%) -5.0 (-0.49%) -19% 9 3 (11%) -92.0 (-98%)
Time 26 18.3 (0.53%) 9.5 (0.27%) -8.8 (-0.26%) -48% 7 2 (8%) -49.2 (-94%)

Total / Average 404 49.3 (0.89%) 61.1 (1.00%) 11.9 (0.11%) 24% 161 44 (11%) -43.0 (-91%)

TABLE IV
RESULTS OF THE WILCOXON-PRATT TEST AND CLIFF’S d EFFECT SIZE

WHEN COMPARING OCHIAI VS. COMBINED APPROACH (CLIFF’S d IS
POSITIVE WHEN IN FAVOR OF THE COMBINED APPROACH).

Program Whole evaluation set Bugs ranked > 10 by Ochiai
p-value d Magn. p-value d Magn.

Chart <0.001 -0.05 negligible 0.01 0.12 negligible
Closure <0.001 -0.27 small <0.001 -0.01 negligible
Lang <0.001 0.04 negligible <0.001 0.59 large
Math <0.001 0.15 small <0.001 0.66 large
Mockito <0.001 -0.25 small <0.001 0.47 medium
Time <0.001 -0.04 negligible <0.001 0.61 large

Overall <0.001 -0.08 negligible <0.001 0.14 negligible

highest score is 13.8. Column 4 in Table II shows the related
average values. This finding indicates that the investigation of
only the resulting call chains may often lead to finding the
fault. However, this process may be supported by the ranked
functions in the second phase.

Answer to RQ1: 69% of the faulty elements appear in
the chains with the highest score values, and these chains
contain about 14 functions on average. These two factors
contribute to the usefulness of the chain ranks for FL.

B. Localization Effectiveness

Table III reports the results for FL effectiveness. Columns
“Ochiai" and “Combined" show the absolute and relative
Expense values for function-level Ochiai and for the proposed
approach, respectively. Column “Difference" reports the dif-
ference between the average rankings, while column “Relative
change" expresses the same as percentage increase/decrease
with respect to Ochiai. Column “Ochiai > 10" reports the
number of defects in the programs for which the ranking
position is more than 10. “Enabling improvement" indicates
how many defects were successfully moved to the 10th or
below position by our approach (the percentage is relative to
bug number), and the last column shows the average absolute
and relative difference of rankings for such cases.

For Lang, Math, Mockito and Time, the improvement is
measurable in terms of the Expense metric: this ranges from 1
to about 9 ranking positions on average with relative change
of 19-48%. For Chart and Closure, the proposed algorithm
yields ranking positions that are worse by 29-32% on average
compared to Ochiai. Note that, the average ranking that Ochiai
scores on the bugs of Closure is 99.5, which is already

impractical as developers would unlikely investigate such a
large number of functions. The reason for this result could
be that Closure is different from the other programs in the
dataset. It is a JavaScript compiler, which means that it has a
very specific code structure and test suite as well. Also note
that, despite the poor average performance on Closure, our
approach can still deliver enabling improvements in 16 (9%)
cases and the improvement is very high -58.8 (-93%) in these
cases.

The left-side of Table IV addresses the comparison between
the Combined approach and Ochiai from a statistical point of
view. Results show that, on the whole evaluation dataset, while
the results of the statistical tests show significant differences,
the effect size is negligible to small, and in favor of Ochiai.

However, if we look at the results obtained when Ochiai
scores a bad ranking position of the correct recommendation,
i.e., > 10th (right-side of Table III and IV), we can observe that
44 of 161 (27%) of defects with ranks higher than 10 could
be reduced to below 10 and the average reduction in terms of
ranking positions is 43 which is 91% relative improvement.
From a statistical point of view, except for Closure, results are
in favor of the proposed approach. Also, the effect size is large
in three cases (Lang, Math, Time), and medium for Mockito.

Answer to RQ2a: In 4 out of 6 cases the call chain-based
FL approach could improve the localization effectiveness
of Ochiai of 1 to 9 positions on average, with a relative
improvement of 19-48%. Also, about 27% of the defects
with ranks higher than 10 could be reduced to below 10 with
an average reduction of 91%, with statistically significant
differences and medium to large effect size.

Our final set of experiments regarding the localization
effectiveness deals with the two function localization algorithms
that work on the ranked chains, which we introduced in
Section III-C. As described, the two techniques performed
well in different situations, and it was difficult to predict which
approach would be better for a particular case. Hence, we
follow the described merging approach, which produces an
overall better result than the two individually (in each particular
case, twice the minimum is guaranteed). Table V includes
the comparison of these two techniques summarized for each
program, with the overall average shown in the last row.

In columns 2 and 3 of the table, we report the average
absolute Expense metrics for the respective techniques, while

475

TABLE V
COMPARISON OF WEIGHTED CHAINS VS REAPPLIED SPECTRUM

(AVERAGES SHOWN).

Program E Weigh. Reapp.
Weigh. Reapp. Comb. better better

Chart 13.5 10.6 10.8 12 9
Closure 143.6 149.9 131.4 59 112
Lang 3.7 4.0 3.5 23 19
Math 9.3 7.0 7.3 17 52
Mockito 21.0 36.3 20.6 13 15
Time 16.5 8.0 9.5 9 13

Total / Average 67.5 70.1 61.1 133 220

column 4 includes the same data for the merged outcome.
The last two columns include the counts when the respective
technique performed better than the other. We can conclude
from the data that the combined algorithm indeed is useful
because there is a similar number of cases when one of the two
rankings is better. We also checked the correlation between
the scores produced by the two function-level techniques, and
we found that it is close to zero. As expected, the combined
approach produced an overall better result than any of the other
two, however, both approaches are quite close to the combined.

Answer to RQ2b: When comparing function-level rankings,
we found that the reapplied spectrum outperforms the
weighted chain counts in more cases (220 vs. 133). It also
yields better average scores than the combined approach in
some cases, though its overall average is not as low as the
scores of the combined rank.

C. Discussion

Besides the ranking improvement, we argue that the addi-
tional information provided by the call chains (stack traces)
could help the developer even in the situations when the
function itself will be further in the rank. As shown in RQ1,
the faulty element is typically found among the highest-ranked
chains. The chains are relatively short (12-13 functions) on
average, so investigating the chains themselves in more detail
is a good approach during the localization process.

TABLE VI
FUNCTION-LEVEL OCHIAI (BASE).

Method ef ep nf np Ochiai

forTimeZone 1 6 0 3822 0.3780
getConvertedId 1 6 0 3822 0.3780
getZone 1 131 0 3697 0.0870
getID 1 528 0 3300 0.0435
setDefault 1 3157 0 671 0.0186
getDefault 1 2884 0 944 0.0178

For better illustrating the support provided by call
chains during FL, let us consider a real case from
our benchmark. Bug number 23 from the Joda-Time
Defects4J subject1 can be located in the method
DateTimeZone.getConvertedId. This causes one test
case, TestDateTimeZone.testForID_String_old, to fail.

1https://github.com/JodaOrg/joda-time/commit/14dedcb

Fig. 7. Call graph of TestDateTimeZone.testForID_String_old.

TABLE VII
CHAIN-LEVEL OCHIAI.

Chain ef ep nf np Ochiai

forTimeZone→getZone 1 2 0 3826 0.5774
forTimeZone→getConvertedId 1 2 0 3826 0.5774
getID 1 9 0 3819 0.3162
setDefault 1 2882 0 946 0.0186
getDefault 1 2887 0 941 0.0186

The base function-level Ochiai-based FL approach provides
the localization scores as shown in Table VI. Apart from the
mentioned faulty element, all other functions are listed that
have a score > 0. It can be seen that all functions are executed
by the single failing test case and several passing ones as well.
However, two of them are executed by fewer passing tests,
i.e., the faulty one and DateTimeZone.forTimeZone, which
makes them the most suspicious but indistinguishable from
each other.

Fig. 7 shows the relationship of the mentioned func-
tions, which is an excerpt of a call-graph belong-
ing to this program. DateTimeZone.forTimeZone is the
main function called by the test case, which apart
from the faulty DateTimeZone.getConvertedId calls
ZoneInfoProvider.getZone as well. The other directly
called functions are setup and tear-down helper functions for
the test case. The reason the base algorithm cannot distinguish
between forTimeZone and getConvertedId is that the latter
is always called (both in failing and passing test cases) by
the former, and no additional information is available to the
algorithm.

By introducing the concept of the call chains,
forTimeZone → getConvertedId can be investigated
separately along with all other call chains. In particular,
forTimeZone → getZone is interesting as it also relates to
the suspicious forTimeZone but represents a different context.
Table VII presents the localization scores calculated by the first
phase of the proposed approach, namely the suspiciousness
scores for the chains. Similarly, we only show those chains
that have > 0 scores. We can observe that apart from the
two mentioned chains, the other (one-element) chains are
represented as well because they are also part of the failing
test run (and also of some passing runs as well).

Again, the two highest-ranked chains cannot be distinguished
from each other because both are executed in the same
situations by the failing and passing test cases. However, the
next phase of our approach can pinpoint the faulty elements,
because it combines the information about suspicious chains
with the functions they contain. Namely, in the reapplied

476

TABLE VIII
FUNCTION-LEVEL OCHIAI (REAPPLIED).

Chain ef ep nf np Ochiai

getConvertedId 1 4 4 87692 0.2000
forTimeZone 2 50 3 87646 0.1240
setDefault 1 78 4 87618 0.0503
getZone 1 77 4 87619 0.0506
getID 1 376 4 87320 0.0230

spectrum technique, we treat all suspicious call chains as
“failing” and by counting their frequency for each function
and the frequency of non-suspicious chains for the same, we
can select the most suspicious function. Table VIII shows the
statistics for this phase. As can be seen, the highest score is
given to getConvertedId, followed by forTimeZone. The
explanation for this can also be seen in the corresponding
numbers used by the Ochiai formula. Although forTimeZone

can be found in more suspicious chains than getConvertedId

(2 vs. 1) it is found in much more non-suspicious chains as
well (50 as opposed to 4). forTimeZone is a common method
called by many test cases, passing and failing, and present in
many different chains, but its specific branching to the faulty
getConvertedId is less frequent and is typical to the failing
test case.

This example is realistic and shows one possible benefit of
the approach. However, we had to limit its complexity to be
able to clearly explain it. The ranking positions 1 and 2, used
in the example, are equally good in practical situations, but in
more complex cases, the context provided by the call chains
could be much more useful.

In summary, the two outputs produced by our approach (i.e.,
the ranked list of most suspicious call chains in the first phase
and the merged ranked list of functions in the second) can be
used in different scenarios — to be empirically evaluated in
future work through user studies — to complement hit-based
approaches like Ochiai. In a first scenario, the user can start
localizing the fault by observing the ranked chains. If the fault
is located this way, the context of the investigated chains also
informs about the possible ways to fix the defect. If there are
many high ranked chains with equally high scores, the user
can rely on the final result of the ranked functions from the
second phase, and focus on those functions only. In a second
scenario, the user starts from the ranked list of functions from
the second phase, and if the defect is not easily found, looks
at the highest-ranked call chains (and the functions with high
ranks in them) for clues about the possible contexts leading to
the failed test cases.

D. Threats to Validity

Concerning construct validity, we relied on a widely used
measurement for SBFL, i.e., the Expense metric. The likelihood
of errors in the dataset is limited, as the Defect4J suite is widely
used in research, and we carefully reviewed the code for call
chain extraction.

The main threat to internal validity of this study is that, as
explained in Section IV-A, we used 404 defects out of total

438 that were available in Defect4J suite version we used,
because we could not compute call chains for all of them.
However, the selection was not based on the performances
of the proposed algorithm and of Ochiai, and the comparison
was in any case performed on the same dataset. Since this
limitation was mainly technological due to the nature of the
programs in the dataset we used, it will not affect use cases
when one could apply the approach in a real usage scenario.

Conclusion validity of this study is supported by the use
of appropriate statistical procedures, namely a non-parametric
test suitable to deal with ties (Wilcoxon-Pratt test), the use of
Holm’s correction to avoid fishing the error rate, and Cliff’s d
effect size.

Concerning external validity, while the evaluation of the
study has been performed on 404 real defects from Java
programs, it is still desirable to replicate the work on a larger
and possibly more diverse dataset.

VI. CONCLUSIONS

This paper investigates the use of function call chains for
Spectrum Based Fault Localization (SBFL). Call chains are
instances of call stack traces, and these are useful artifacts
occurring at runtime which can often help developers in
debugging.

Results indicate that except for the two outliers the proposed
approach can achieve a significant improvement in terms of
the FL expense, about 19-48%, which is even higher in the
case of worse ranking positions (over 10).

The highest-ranked call chains provide useful information
for a better understanding of the context of the defect (in 69%
of the cases, the defective element is in the highest-ranked
chains), and could even provide hints for the fixation of the bug.
For instance, the call chain indicates which function invokes
the defective function when the fault manifests in a failure.

In future work, we plan to conduct user studies to evaluate
the practical usefulness of call chains, following scenarios
as the ones described in Section V-C. In addition, it could
be interesting to evaluate our approach on more benchmarks
e.g., Bugs.jar [68], BugsJS [69], etc. The rank combination
approach we used could be replaced by a more sophisticated
approach taking into account other properties of the spectrum,
or by the learning-to-rank model.

The interested reader can find more information and access
the benchmark on our website: https://chainfl.github.io

ACKNOWLEDGEMENTS

This work was partially supported by grants 2018-1.2.1-NKP-
2018-00004 “Security Enhancing Technologies for the IoT”
funded by the Hungarian National Research, Development and
Innovation Office, by the EU-funded Hungarian national grant
GINOP-2.3.2-15-2016-00037 titled “Internet of Living Things,”
and by grant TUDFO/47138-1/2019-ITM of the Ministry for
Innovation and Technology, Hungary.

477

REFERENCES

[1] A. Zeller, Why Programs Fail, Second Edition: A Guide to Systematic
Debugging, 2nd ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2009.

[2] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineering,
vol. 42, no. 8, pp. 707–740, 2016.

[3] P. Parmar and M. Patel, “Software fault localization: A survey,” Inter-
national Journal of Computer Applications, vol. 154, no. 9, pp. 6–13,
2016.

[4] H. A. de Souza, M. L. Chaim, and F. Kon, “Spectrum-based software
fault localization: A survey of techniques, advances, and challenges,”
CoRR, vol. abs/1607.04347, 2016.

[5] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst, D. Pang,
and B. Keller, “Evaluating and improving fault localization,” Proceedings
of the 39th International Conference on Software Engineering, pp. 609–
620, 2017.

[6] T. Reps, T. Ball, M. Das, and J. Larus, “The use of program profiling
for software maintenance with applications to the year 2000 problem,”
ACM SIGSOFT Software Engineering Notes, vol. 22, no. 6, pp. 432–449,
Nov. 1997.

[7] X. Xia, L. Bao, D. Lo, and S. Li, ““Automated Debugging Considered
Harmful” Considered Harmful: A User Study Revisiting the Usefulness
of Spectra-Based Fault Localization Techniques with Professionals Using
Real Bugs from Large Systems,” in 2016 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, oct 2016, pp.
267–278.

[8] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in Proceedings of the 2011 International Sym-
posium on Software Testing and Analysis, ser. ISSTA ’11. New York,
NY, USA: ACM, 2011, pp. 199–209.

[9] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on
automated fault localization,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis - ISSTA 2016. New York,
New York, USA: ACM Press, 2016, pp. 165–176.

[10] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi, “An
empirical investigation of the relationship between spectra differences and
regression faults,” Software Testing, Verification and Reliability, vol. 10,
no. 3, pp. 171–194, 2000.

[11] X. Xie, T. Y. Chen, F.-C. Kuo, and B. Xu, “A theoretical analysis of
the risk evaluation formulas for spectrum-based fault localization,” ACM
Trans. Softw. Eng. Methodol., vol. 22, no. 4, pp. 31:1–31:40, Oct. 2013.

[12] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula auto-
matic fault-localization technique,” in Proc. of International Conference
on Automated Software Engineering. ACM, 2005, pp. 273–282.

[13] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. C. van Gemund, “A
practical evaluation of spectrum-based fault localization,” J. Syst. Softw.,
vol. 82, no. 11, pp. 1780–1792, Nov. 2009.

[14] W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The dstar method for
effective software fault localization,” IEEE Trans. Reliability, vol. 63,
pp. 290–308, 2014.

[15] J. M. Voas, “Pie: A dynamic failure-based technique,” IEEE Trans. Softw.
Eng., vol. 18, no. 8, pp. 717–727, Aug. 1992.

[16] W. Masri, R. Abou-Assi, M. El-Ghali, and N. Al-Fatairi, “An empirical
study of the factors that reduce the effectiveness of coverage-based
fault localization,” in Proceedings of the 2nd International Workshop on
Defects in Large Software Systems, ser. DEFECTS ’09. New York, NY,
USA: ACM, 2009, pp. 1–5.

[17] B. Baudry, F. Fleurey, and Y. Le Traon, “Improving test suites for
efficient fault localization,” in 28th international conference on Software
engineering, ser. ICSE ’06. ACM, 2006, pp. 82–91.

[18] W. Masri and R. A. Assi, “Prevalence of coincidental correctness and
mitigation of its impact on fault localization,” ACM Trans. Softw. Eng.
Methodol., vol. 23, no. 1, pp. 8:1–8:28, Feb. 2014.

[19] A. Schröter, N. Bettenburg, and R. Premraj, “Do stack traces help
developers fix bugs?” in 2010 7th IEEE Working Conference on Mining
Software Repositories (MSR 2010), May 2010, pp. 118–121.

[20] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, “An em-
pirical study of fault localization families and their combinations,”
arXiv:1803.09939 [cs.SE], Feb. 2018.

[21] T.-D. B Le, D. Lo, C. Le Goues, and L. Grunske, “A learning-to-rank
based fault localization approach using likely invariants,” in Proceedings

of the 25th International Symposium on Software Testing and Analysis.
ACM, 2016, pp. 177–188.

[22] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in
Proceedings of the 2014 International Symposium on Software Testing
and Analysis. ACM, 2014, pp. 437–440.

[23] J. S. Collofello and L. Cousins, “Towards automatic software fault
location through decision-to-decision path analysis,” in Managing
Requirements Knowledge, International Workshop on(AFIPS), vol. 00,
12 1899, p. 539.

[24] W. E. Wong and V. Debroy, “A survey of software fault localization,”
Department of Computer Science, University of Texas at Dallas, Tech.
Rep. UTDCS-45, vol. 9, 2009.

[25] T.-D. B. Le, F. Thung, and D. Lo, “Theory and Practice, Do They
Match? A Case with Spectrum-Based Fault Localization,” in 2013 IEEE
International Conference on Software Maintenance. IEEE, sep 2013,
pp. 380–383.

[26] F. Steimann, M. Frenkel, and R. Abreu, “Threats to the validity and value
of empirical assessments of the accuracy of coverage-based fault locators,”
in Proceedings of the 2013 International Symposium on Software Testing
and Analysis, ser. ISSTA 2013. New York, NY, USA: ACM, 2013, pp.
314–324.

[27] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the accuracy
of spectrum-based fault localization,” in Proceedings of the Testing:
Academic and Industrial Conference Practice and Research Techniques -
MUTATION, 2007, pp. 89–98.

[28] M. J. Harrold, G. Rothermel, R. Wu, and L. Yi, “An empirical
investigation of program spectra,” in Proc. of the 1998 ACM SIGPLAN-
SIGSOFT workshop PASTE ’98. ACM, 1998, pp. 83–90.

[29] X. Wang, S. C. Cheung, W. K. Chan, and Z. Zhang, “Taming coincidental
correctness: Coverage refinement with context patterns to improve fault
localization,” in Proceedings of the 31st International Conference on
Software Engineering, ser. ICSE ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 45–55.

[30] A. Bandyopadhyay and S. Ghosh, “Proximity based weighting of test
cases to improve spectrum based fault localization,” in 2011 26th
IEEE/ACM International Conference on Automated Software Engineering
(ASE 2011), Nov 2011, pp. 420–423.

[31] ——, “Tester feedback driven fault localization,” in 2012 IEEE Fifth
International Conference on Software Testing, Verification and Validation,
April 2012, pp. 41–50.

[32] S. Yoo, “Evolving human competitive spectra-based fault localisation
techniques,” in Proceedings of the 4th international conference on
Search Based Software Engineering, ser. SSBSE’12. Berlin, Heidelberg:
Springer-Verlag, 2012, pp. 244–258.

[33] M. Renieris and S. P. Reiss, “Fault localization with nearest neighbor
queries,” in Proceedings of 18th IEEE International Conference on
Automated Software Engineering (ASE 2003). IEEE Computer Society,
2003, pp. 30–39.

[34] H. LI, “A short introduction to learning to rank,” IEICE Transactions on
Information and Systems, vol. E94.D, no. 10, pp. 1854–1862, 2011.

[35] J. Xuan and M. Monperrus, “Learning to combine multiple ranking
metrics for fault localization,” in 2014 IEEE International Conference
on Software Maintenance and Evolution, Sept 2014, pp. 191–200.

[36] L. Gong, D. Lo, L. Jiang, and H. Zhang, “Interactive fault localization
leveraging simple user feedback,” in 2012 28th IEEE International
Conference on Software Maintenance (ICSM), Sept 2012, pp. 67–76.

[37] A. Orso, J. A. Jones, M. J. Harrold, and J. T. Stasko, “Gammatella:
Visualization of program-execution data for deployed software,” in 26th
International Conference on Software Engineering (ICSE 2004), 23-28
May 2004, Edinburgh, United Kingdom, 2004, pp. 699–700.

[38] R. Wu, H. Zhang, S.-C. Cheung, and S. Kim, “Crashlocator: Locating
crashing faults based on crash stacks,” in Proceedings of the 2014
International Symposium on Software Testing and Analysis, ser. ISSTA
2014. New York, NY, USA: ACM, 2014, pp. 204–214.

[39] A. Rountev, S. Kagan, and M. Gibas, “Static and dynamic
analysis of call chains in java,” in Proceedings of the 2004 ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ACM. New York, NY, USA: ACM, 2004. [Online]. Available:
http://doi.acm.org/10.1145/1007512.1007514

[40] G. Ammons, T. Ball, and J. R. Larus, “Exploiting hardware
performance counters with flow and context sensitive profiling,”
SIGPLAN Not., vol. 32, p. 85–96, 1997. [Online]. Available:
http://doi.acm.org/10.1145/258916.258924

478

[41] H. A. de Souza, D. Mutti, M. L. Chaim, and F. Kon, “Contextualizing
spectrum-based fault localization,” Inf. Softw. Technol., vol. 94, no. C,
pp. 245–261, Feb. 2018.

[42] X. Zhang, H. He, N. Gupta, and R. Gupta, “Experimental evaluation
of using dynamic slices for fault location,” in Proceedings of the sixth
international symposium on Automated analysis-driven debugging. ACM,
2005, pp. 33–42.

[43] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable
statistical bug isolation,” Acm Sigplan Notices, vol. 40, no. 6, pp. 15–26,
2005.

[44] C. Liu, L. Fei, X. Yan, J. Han, and S. P. Midkiff, “Statistical debugging:
A hypothesis testing-based approach,” IEEE Transactions on software
engineering, vol. 32, no. 10, pp. 831–848, 2006.

[45] M. Papadakis and Y. Le Traon, “Metallaxis-FL: mutation-based fault
localization,” Software Testing, Verification and Reliability, vol. 25, no.
5-7, pp. 605–628, aug 2015.

[46] ——, “Effective fault localization via mutation analysis,” in Proceedings
of the 29th Annual ACM Symposium on Applied Computing - SAC ’14.
New York, New York, USA: ACM Press, 2014, pp. 1293–1300.

[47] W. E. Wong and Y. Qi, “Bp neural network-based effective fault local-
ization,” International Journal of Software Engineering and Knowledge
Engineering, vol. 19, no. 04, pp. 573–597, 2009.

[48] P. Cellier, M. Ducassé, S. Ferré, and O. Ridoux, “Formal concept analysis
enhances fault localization in software,” Lecture Notes in Computer
Science, vol. 4933, pp. 273–288, 2008.

[49] W. Mayer and M. Stumptner, “Evaluating models for model-based
debugging,” in Proceedings of the 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering. IEEE Computer
Society, 2008, pp. 128–137.

[50] F. Wotawa, M. Stumptner, and W. Mayer, “Model-based debugging or
how to diagnose programs automatically,” in IEA/AIE. Springer, 2002,
pp. 746–757.

[51] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing
input,” IEEE Trans. Softw. Eng., vol. 28, no. 2, pp. 183–200, Feb. 2002.

[52] X. Zhang, N. Gupta, and R. Gupta, “Locating faults through automated
predicate switching,” in Proceedings of the 28th international conference
on Software engineering. ACM, 2006, pp. 272–281.

[53] H. Agrawal, R. A. D. Millo, and E. H. Spafford, “An execution-
backtracking approach to debugging,” IEEE Software, vol. 8, no. 3,
pp. 21–26, May 1991.

[54] A. J. Ko and B. A. Myers, “Designing the whyline: a debugging interface
for asking questions about program behavior,” in Proceedings of the
2004 Conference on Human Factors in Computing Systems, CHI 2004,
Vienna, Austria, April 24 - 29, 2004, 2004, pp. 151–158.

[55] Y. Lin, J. Sun, Y. Xue, Y. Liu, and J. Dong, “Feedback-based debugging,”
in Proceedings of the 39th International Conference on Software

Engineering, ser. ICSE ’17. Piscataway, NJ, USA: IEEE Press, 2017,
pp. 393–403.

[56] J. Ressia, A. Bergel, and O. Nierstrasz, “Object-centric debugging,”
in Proceedings of the 34th International Conference on Software
Engineering, ser. ICSE ’12. Piscataway, NJ, USA: IEEE Press, 2012,
pp. 485–495.

[57] Á. Beszédes, F. Horváth, M. Di Penta, and T. Gyimóthy, “Leveraging
contextual information from function call chains to improve fault
localization - online appendix,” https://chainfl.github.io.

[58] M. Zhang, X. Li, L. Zhang, and S. Khurshid, “Boosting spectrum-based
fault localization using pagerank,” in Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ser. ISSTA 2017. New York, NY, USA: ACM, 2017, pp. 261–272.

[59] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,
“Are mutants a valid substitute for real faults in software testing?” in
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 2014, pp. 654–665.

[60] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Arcuri,
“Do automatically generated unit tests find real faults? an empirical study
of effectiveness and challenges (t),” in Automated Software Engineering
(ASE), 2015 30th IEEE/ACM International Conference on. IEEE, 2015,
pp. 201–211.

[61] “Cobertura,” http://cobertura.github.io/cobertura/, last visited: 2019-10-
25.

[62] “Javassist,” http://jboss-javassist.github.io/javassist/, last visited: 2019-10-
25.

[63] “SoDA library,” https://github.com/sed-szeged/soda, last visited: 2019-
10-25.

[64] X. Xu, V. Debroy, W. E. Wong, and D. Guo, “Ties within fault localization
rankings: Exposing and addressing the problem,” International Journal of
Software Engineering and Knowledge Engineering, vol. 21, pp. 803–827,
2011.

[65] W. J. Conover, Practical Nonparametric Statistics, 3rd ed. Wiley, 1998.
[66] S. Holm, “A simple sequentially rejective Bonferroni test procedure,”

Scandinavian Journal on Statistics, vol. 6, pp. 65–70, 1979.
[67] R. J. Grissom and J. J. Kim, Effect sizes for research: A broad practical

approach, 2nd ed. Lawrence Earlbaum Associates, 2005.
[68] R. K. Saha, Y. Lyu, W. Lam, H. Yoshida, and M. R. Prasad, “Bugs.jar:

A large-scale, diverse dataset of real-world Java bugs,” in Proceedings
of the 15th International Conference on Mining Software Repositories,
ser. MSR ’18. New York, NY, USA: ACM, 2018, pp. 10–13.

[69] P. Gyimesi, B. Vancsics, A. Stocco, D. Mazinanian, Árpád Beszédes,
R. Ferenc, and A. Mesbah, “BugJS: A benchmark of javascript bugs,” in
Proceedings of 12th IEEE International Conference on Software Testing,
Verification and Validation (ICST), 2019.

479

