
Do Bug-Fix Types Affect Spectrum-Based Fault
Localization Algorithms’ Efficiency?

Attila Szatmári
University of Szeged, Hungary

Software Engineering Department
szatma@inf.u-szeged.hu

Béla Vancsics
University of Szeged, Hungary

Software Engineering Department
vancsics@inf.u-szeged.hu

Árpád Beszédes
University of Szeged, Hungary

Software Engineering Department
beszedes@inf.u-szeged.hu

Abstract—Finding a bug in the software is an expensive task,
however, debugging is a crucial part of the software development
life cycle. Spectrum-Based Fault Localization (SBFL) algorithms
can reduce the time spent with debugging. Despite the fact that
SBFL is a very well researched topic, there are not many tools
that implement it. Many studies have dealt with the effectiveness
of SBFL algorithms, although these have been evaluated on Java
and C++ programming languages. We performed an empirical
study on JavaScript programs (using BugsJS benchmark) to eval-
uate the relationship between algorithms efficiency and the bug-
fix types. First we implemented three popular SBFL approaches,
i.e. Tarantula, Ochiai and DStar, then examined whether there
was a correlation/connection between the positions of the faulty
methods in the suspiciousness ranks and bug-fix types. Results
show that certain bug-fix types can be significantly differentiated
from the others (in both positive and negative direction) based on
the fault localization effectiveness of the investigated algorithms.

Index Terms—Spectrum-Based Fault Localization, JavaScript,
bug classification, testing and debugging.

I. INTRODUCTION

Fault localization is an important part of the debugging
process. The goal of the algorithms is to sort the production
code elements in a suspiciousness order, thus help developers
to find the location of the bug. There have been several
fault localization approaches and techniques introduced in
numerous studies [1]–[5].

Spectrum-Based Fault Localization (SBFL) is a well-
understood and well-researched topic. However, using SBFL
in practice is still not widespread and one of the reasons could
be that it has some technical requirements that are not easy to
fulfill (e.g. collecting and analyzing the necessary data) and
there may be cases where they perform poorly (and mislead
developers with recommendations) [6], [7].

In this work, we present an empirical study to investigate
the relationship between bug-fix types and fault localization
efficiency. We used a JavaScript bug benchmark, BugsJS [8]
to compare how well SBFL algorithms perform.

Even though JavaScript is a popular and widespread script-
ing language, automated fault localization is a less researched
topic in this language as opposed to other programming
languages, such as Java [9] and C/C++ [10]. Hence in this
paper, we propose an evaluation in this regard.

In our recent study, we investigated how well the SBFL
algorithms perform when bug-fix types are introduced [11].
We concluded that bugs with if-related and sequence-related

modifications are significantly different from others in terms of
SBFL algorithms efficiency. We found that these modifications
(or bug-fix types) are still not specific enough. Thus, we further
analyzed the bug-fix types proposed by Pan et al. [12].

Our main contributions in this paper are the following:
1) We refined our earlier bug-fix categorization using one

sub-category level of bugs produced in BugsJS
2) We investigated how the low-level bug-fix types relate

to the fault localization effectiveness in terms of SBFL
ranking.

3) We further analyzed the if-related and sequence-related
bug-fix types.

Results indicate that there is a significant difference within
the subtypes of if-related types. Likewise, there are subtypes
that SBFL algorithms can find easier compared to each other,
and there are groups that one algorithm can find more effi-
ciently than the other.

In the next section, we detail the data evaluation process and
the results presented in our recent study [11]. In Section III
we give an overview of our study design and labeling. Then
we introduce the data preparation in Section IV. The answers
to the research questions are in Section V. Lastly, related work
(Section VI) and conclusions are proposed (Section VII).

II. PREVIOUS RESULTS

In our recent study, we did an empirical analyzis of the
relationship between bug-fix types and SBFL algorithms in
JavaScript programs [11].

We used BugsJS [8], which is a JavaScript bug benchmark
consisting of 453 real-life bugs from 10 Open-Source projects.
For the quantitative evaluation of algorithms, we created
special groups from SBFL ranks to analyze the efficiencies.
These groups are based on the position of the faulty methods
in suspiciousness order [13] (commonly referred to as top-N).
If the position (or rank):

1) equals to 1 then we call the segment top-1
2) is less than or equals to three ⇒ top-3
3) is less than or equals to five ⇒ top-5
4) is less than or equals to ten ⇒ top-10
5) is greater than ten it is in the “other” segment.
We were interested in those labels which were assigned to

the lowest-ranked functions for each bug and how these are
distributed among the top-N categories.

978-1-7281-6271-3/20 c© 2020 IEEE VST 2020, London, ON, Canada

Accepted for publication by IEEE. c© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

16



First, we assigned labels to each buggy function, then we
counted the number of labels in the non-overlapping ranks.
We showed that in the more common types there are nearly
as many labels in the [1] interval as labels with a rank of
2 or 3. Besides, the changes are most often associated with
the IF (if-related) and AS (assignment-related) labels and it
was presented that the IF and SQ (sequence-modification)
bug-fix labels can be significantly separated from the others.
Furthermore, we demonstrated that IF changes can be found
more effectively and the occurrence of SQ labels in the lower
ranges is low compared to other labels.

We used Fisher’s exact tests to decide whether a bug-fix type
is significantly different than other types in terms of ranking.

Results show that two bug-fix types are significantly dif-
ferent from the others in terms of how successful the SBFL
algorithms can locate them. Furthermore, bugs that require
modifications of sequences are less likely to be successfully
localized at very high rank positions. However, faults belong-
ing to the IF category are ranked higher than other types in
the top-5 and top-10 ranges.

III. GOALS AND RESEARCH QUESTIONS

In spite of the intriguing results introduced in Section II,
the bug-fix categories are not specific enough. That gave us
the motivation to further examine how the efficiency of SBFL
algorithms change when labels are more specific.

First, we investigated the lower-level bug-fix labels that have
the IF or SQ prefix. The first research question is in that regard:

RQ 1: Are there any bug-fix types within the IF or SQ
classes on which any of the three most popular SBFL
algorithms perform significantly better or worse?

Additionally, we were interested in whether any of the low-
level bug-fix types are more efficient in terms of ranking than
others. Thus we compared all low-level bug-fix types to each
other. Which led us to the second research question:

RQ 2: Are there any low-level bug-fix types on
which any of the three most popular SBFL algorithms
perform significantly better or worse than on others?

We expect that the answers to these questions could help
researchers and developers to select and improve existing
fault localization algorithms, and could also be beneficial in
other related fields such as bug prediction, test generation,
automated program repair, among others.

IV. DATA PREPARATION

In this section, we present the overall process of data
preparation. First, we give an overview of the process in
Section IV-A, then in Section IV-B, we introduce the most
important bug-fix types we worked with.

A. Overview

Figure 1 shows the overall process to collect data for our
research. We used the BugsJS [8] benchmark, which consists
of 453 real JavaScript bugs from 10 Open-Source projects
from GitHub that adopts the Mocha testing framework. For
each bug, BugsJS includes several related code revisions and
sets of test cases and enables individual execution of these
versions. Execution information from related test cases can be
obtained including per-test code coverage and test results.

Fig. 1. Experiment overview

Three revisions for each bug were used from the benchmark:
• buggy: the parent commit of the revision in which the

bug was fixed,
• fixed: contains only the production code changes intro-

duced to fix the bug, applied to the buggy revision, and
• test-fix only: contains only the tests introduced in the bug

fixing commit, applied to the buggy revision.
Using the previously calculated data we needed three steps

to achieve the final results to answer our research questions:
1) Bug labeling - in which we calculated the method change

sets between the buggy and the fixed revision, we labeled
each buggy method with the bug-fix label

2) Coverage measurement and fault localization score cal-
culation - in which we collected coverage data and test
results, and calculated the fault localization rank values
for each source code element (function)

3) Data evaluation - we use the rankings to compare the
results and evaluate them

B. Labeling

There have been numerous approaches published in catego-
rizing software bugs [12], [14], [15]. In our paper, we followed
the approach to examine how the specific bugs have been
fixed. We used the classification proposed by Pan et al. [12]
originally designed for Java programs. The authors defined
the patterns by manually analyzing open-source projects on
which they investigated the bugs and bug-fixes, and created a
two-level categorization that we used in our study.

In this section, we will only detail those categories that were
significant in the previous study. All other bug-fix types can
be found in Pan et al’s paper [12].

The following categories are analyzed in detail: a) IF-CC:
changing the condition expression of an if condition
b) IF-RBR: removing an else branch c) IF-ABR: adding an

17



else branch d) IF-RMV: removing an if predicate e) MC–
DAP: changing the expression given as a parameter to a
method call f) SQ-AFO: adding one or more operation in
a sequence of setting the object fields of the same object
g) SQ-AROB: adding or removing method calls from a
construct body

V. EVALUATION

In this section, we will present the results of which low-
level bug-fix types are found easier by the fault localization
algorithms.

As we already mentioned in Section II in our recent
study [11] we showed that bugs that have their fixes labeled
as “IF” are rather easy to find for the three investigated fault
localization algorithms. Additionally, we concluded that bugs
with “SQ” bug-fixes are not easy for the algorithms to find.

Therefore, we first analyze and compare those bug-fixes that
have IF or SQ prefixes, then each bug-fix opposed to one
another.

Note that, we only show results for Ochiai in Figures 2, 3
and 4 because the three SBFL algorithms (Tarantula, Ochiai,
and DStar) give similar results.

We split the rank-scale into five partitions. When a bug/code
element rank equals 1, then it is in the top-1, if its rank is less
than or equals to three it is in the top-3 category. Likewise,
if its rank is less than or equals to five then it is in the top-5
and when it is less than or equals to ten it is in the top-10
category. When it is over ten then it is in the other category.
In conclusion, these categories are called top-N.

To decide if there is a significant difference in this set of
data we used Fisher’s exact test. It is a statistical significance
test, which is one of the non-parametric methods and it is
used in the analyzis of contingency tables [16]. We counted
the number of labels per metric provided by the three SBFL
algorithms in Table V, and to perform the test, we created the
contingency tables for each (bug-fix types, non-overlapping
interval, algorithm) configuration. A contingency template is
shown in Table I, where α is an algorithm, β is a bug-fix type
and ν is a top-N category. The values in the table cells indicate
different counts of buggy functions:

a: buggy functions which have label β and their rank is in
the range,

b: buggy functions whose label set does not contain ν and
their rank is in the range,

c: buggy functions which have label β and their rank is not
in the range, and

d: buggy functions which have a set of labels not containing
β and their rank is not in the range.

A. Ranks of Bug-Fix Types in IF-Related Changes

In Section II we detailed that the IF bug-fix types are sig-
nificantly better than other high-level types. We are interested
in any of the subcategories in IF affect the fault localization
algorithms’ efficiency. When we further analyze the IF bug-
fix label and divide it to its lower level labels, we can see
that some bug-fix types are low in number in the change set,

TABLE I
FISHER EXACT TEST (TEMPLATE)

α β ¬β
ν a b
¬ν c d

therefore, we can not use statistical tests on them, conversely,
most types are high in number, so we can use them.

We used Fisher’s exact test to decide whether any of the IF
categories are significantly better or worse than the others. Let
H0 be that the fault localization algorithms perform similar to
any labels from the IF category. In addition to this let H1

be that there is a significant difference. Significance level was
chosen to be α = 0.05 and if the p value given by the Fisher’s
exact test is less than or equals to α then we reject the null
hypothesis (H0)

In a similar approach we used non-accumulating variant
of these, that is, we counted the bugs where the rank fell
into a non-overlapping interval of [1], (1, 3], (3, 5], (5, 10] or
(10, . . . ]. Thus, not only the top-N can be used to objectively
judge and compare performance. Taking a look at Figure 2
we can predict that Tarantula performs worse on IF-RBR and
IF-ABR in the (1,3] interval and even on IF-RBR in the (3,5]
interval.

Table II shows that IF-ABR in top-3 and IF-RBR in top-5
are significantly different, hence in these two cases we reject
the null hypothesis. Therefore, IF-RBR and IF-ABR are worse
in terms of SBFL algorithm efficiency.

TABLE II
SIGNIFICANCE IN TOP-N WITHIN THE IF CATEGORY BASED

ON FISHER EXACT TEST

Name top-1 top-3 top-5 top-10 other
IF-ABR 0.7583 0.0182 0.7083 0.6033 0.6033
IF-APC 0.8366 1.0000 0.3099 0.6984 0.6984
IF-APCJ 0.4501 0.2716 1.0000 0.1445 0.1445
IF-APTC 1.0000 0.1327 0.3299 1.0000 1.0000
IF-CC 0.6542 0.6666 0.5909 0.4156 0.4156
IF-RBR 1.0000 0.1399 0.0194 0.2427 0.2427
IF-RMV 0.4629 0.2369 0.1342 1.0000 1.0000

Although the rest is not significantly different we can
speculate the following. If we take a look at Figure 2 we can
see that bug-fixes labeled as IF-RMV are more likely to be put
in the top-3 category, i.e. have a rank of 1,2 or 3. Furthermore,
bugs that have their fixes labeled with IF-CC are found easier
by Tarantula and they are more likely to be put in top-5 or
top-10.

18



Fig. 2. Ochiai Ranks in IF labels

RQ 1: Within the IF bug-fix type, two types are
significantly different from the other IF types. We can
conclude that these are less likely to be successfully
localized in top-3 and top-5 categories. On the other
hand, there is no significant difference in the SQ
category. In conclusion, bugs with sequence-related
bug-fixes are difficult to find for SBFL algorithms
regardless of their subtypes.

B. Ranks of Bug-Fix Types in SQ-Related Changes

Similarly to Section V-A, we will present a further analyzis
on those labels that have SQ prefixes. We used Fisher’s exact
test to decide if there is any significant difference between
these bug-fixes types. Let the null hypothesis H0 be that fault
localization algorithms are produced similar results using these
bug-fix labels. Let the H1 hypothesis that one of them is
significantly different.

TABLE III
SIGNIFICANCE IN TOP-N WITHIN THE SQ CATEGORY BASED

ON FISHER EXACT TEST

Name top-1 top-3 top-5 top-10 other
SQ-AFO 0.1250 0.7241 0.4713 0.3774 0.3774
SQ-AMO 0.2311 1.0000 1.0000 1.0000 1.0000
SQ-AROB 0.2713 0.4670 1.0000 1.0000 1.0000
SQ-RFO 1.0000 1.0000 0.6431 1.0000 1.0000
SQ-RMO 1.0000 0.4882 0.5417 1.0000 1.0000

Table III shows the p values from running Fisher’s exact
test. As we can see, none of them is under the significance
level (α = 0.005)

Although if we take a look at Figure 3 we can observe that
only SQ-AMO and SQ-AFO were found in the [1] interval,
which means they are easier to find for Ochiai. Therefore,
bugs that were fixed with setting object fields (SQ) are still
significantly worse than other types in terms of ranking, though
SQ-AMO and SQ-AFO seem to be better than other SQ types.

Fig. 3. Ochiai Ranks in SQ labels

C. Ranks of Different Bug-Fix Types

Given the results in Section II, V-A, V-B, we performed
further analyzis on the relationship between bug-fix types and
fault localization algorithms.

In our recent work, we had a similar approach, we presented
the overall bug-fix type statistics based on Tarantula. Likewise,
we present the low-level bug-fix type statistics based on
Tarantula in Table IV.

TABLE IV
OVERALL BUG-FIX TYPE STATISTICS BASED ON TARANTULA

B
ug

-fi
x

ty
pe

B
ow

er

Sh
ie

ld
s

H
ex

o

H
es

si
an

E
xp

re
ss

Pe
nc

ilb
lu

e

E
sl

in
t

To
ta

l

AS-CE 2 3 9 2 9 2 75∗ 102∗

CF-ADD 0 1 0 0 0 0 1 2
IF-ABR 1 0 0 0 0 0 12 13
IF-APC 1 0 0 1 4 1 25 32
IF-APCJ 1 0 3 0 3 0 32∗ 39∗

IF-APTC 0 0 0 1 1 0 0 2
IF-CC 0 0 2 1 7 2 88∗ 100∗

IF-RBR 0 0 0 0 0 0 4 4
IF-RMV 0 0 1 1 0 0 19 21
LP-CC 0 0 0 0 1 0 5 6
LP-CE 0 0 0 0 1 0 1 2

MC-DAP 0 0 0 0 1 0 32 33
MC-DM 0 0 1 0 0 1 14 16
MC-DNP 0 0 0 0 2 0 18 20
MD-ADD 0 0 0 0 1 0 4∗ 5∗

MD-CHG 0 0 0 0 0 0 15 15
MD-RMV 0 0 0 0 0 0 5 5
SQ-AFO 0 0 1 0 3 0 8 12
SQ-AMO 0 0 0 0 0 0 2 2
SQ-AROB 0 0 0 2 3 0 7 12
SQ-RFO 0 0 1 0 0 0 4 5
SQ-RMO 0 0 0 1 0 0 1 2
SW-ARSB 0 0 0 0 1 0 4 5
TY-ARTC 0 0 0 0 0 0 1 1

Sum 5 4 18 9 37 6 377∗

We marked the cases (with a *) where the three algorithms
gave different results. If we take a look at the AS-CE bug-fix
type in Table IV we can see that Tarantula found the same
amount of bugs labeled with “AS-CE” as with “AS”. That is
not surprising since there is only one subcategory of the AS

19



bug-fix type which is AS-CE. However, the label IF-APCJ was
found 32 times by Tarantula in the ESlint project, but other
SBFL algorithms (DStar and Ochiai) found only 31.

Additionally, those bugs whose bug-fixes are labeled as MD-
ADD were found 4 times by Tarantula in the ESlint project,
though there were only 3 times when Ochiai and DStar found
bugs with MD-ADD bug-fixes. In the case of IF-CC Tarantula
found fewer bugs (88) than the other SBFL algorithms (89).

This occurs because these SBFL algorithms have different
approaches. If there is more than one buggy method, they
might rank them differently, as a result, these algorithms do
not always find the same methods. Furthermore, these buggy
methods might not have the same low-level bug-fix types.

For example, DStar and Tarantula found the same amount
of bugs that have the IF label [11], however, when we divide
these types into several groups Tarantula may find less with
the IF-CC label than the other algorithms.

Some types were easier to find for Tarantula, i.e. AS-CE
and IF-CC. This is not surprising since their high-level bug-fix
types (AS and IF) were easier to find than others. Nevertheless,
there are bug-fix types that are low in number, and there are
some that were never found by the algorithms. This happens
because we divided the high-level bug-fix types.

We counted the bugs in the top-N categories and assigned
them the low-level labels presented by Pan et. al. [12] We
were interested in which bug-fix types have the lowest ranks
in the top-N categories and if there is a difference between the
higher and lower bug-fix types in terms of ranking. If more
than one method was buggy then we picked the one with the
lowest rank.

Table V shows the distribution of labels in the top-N
categories based on the three algorithms. An element in the
table tells us how many bugs were detected within the given
top-N range and have the given bug-fix type, e.g. there are
29 bugs where Tarantula ranked them first and they have the
IF-CC bug-fix label.

Table VI shows the percentage of items with the specified
label which are in the top-N category, e.g. 29.0% of least-
ranked modified functions with the IF-CC tag have the rank
1. We can see that the sub-labels are similar to the main label
in percentage in most cases [11], there are 61% of bugs labeled
IF-CC put in the top-3 category by Tarantula, and there are
65% of bugs with the IF bug-fix type that is put in the top-3
category by the same algorithm, but there are some labels that
are present in lower percentage in the top-3 category, e.g. IF-
ABR (30.77%), IF-RBR (25%). We can assume that bugs that
have these fixes are less likely to be found by the algorithm
Tarantula.

Figure 4 shows that there are bug-fix types that are found
easier by Ochiai. For example, the type IF-ABR is rather put
in the (3,5] interval and MC-DAP is a bit more likely to be put
in the [1] interval than other types. However, this chart could
be misleading, since there are types that are low in number,
hence, these may seem better than other bug-fixes. Such types
are SQ, LP, and TY.

Fig. 4. Ochiai interval statistics

Table VII shows the p values given by Fisher’s exact test.
Let H0 be that the bug is has a suspiciousness rank in the top-
N range regardless of its bug-fix type. This test shows whether
there is a difference in probability, but it does not determine
its direction.

By looking at Tables V and VI we can figure out in
which direction these bug-fixes are significantly different. For
easier readability, we highlighted with a red color that is
significantly worse, conversely highlighted with green those
that are significantly better in Table VII.

SQ-AROB in top-1, IF-ABR in top-3, IF-RBR in top-5, SQ-
AFO in top-5 and top-10 categories are significantly worse

It is surprising that MC-DAP is significantly better than
other types in the top-1 category, likewise, IF-RMV in top-5
and IF-CC in top-10 than the others. It is interesting to note,
that except MC-DAP the significant difference is either occurs
with all the three SBFL algorithms or only with Tarantula.

RQ 2: There are three significantly better and four
significantly worse bug-fix types according to SBFL
algorithms’ ranking. SQ-related changes are less likely
to be successfully found by SBFL algorithms than
others. However, IF-related changes vary, faults that
require modifications of (else) branches are less likely
to be successfully localized at low-rank positions,
while faults belonging in IF-CC and IF-RMV are
ranked higher than other types in top-5 and top-10.

D. Threats to Validity

We point out the possible threats to the validity of our
empirical study, and the ways we try to eliminate them. The
classification we used was designed for Java programs [12],
however, we adapted them to JavaScript. Some bug-fix types
occurred in relatively low numbers (or never), hence we could
not conclude in those cases.

20



TABLE V
NUMBER OF LABELS (PER METRICS)

TOP-1 (#) TOP-3 (#) TOP-5 (#) TOP-10 (#) OTHER (#)

Bug-fix types

Ta
ra

nt
ul

a

O
ch

ia
i

D
St

ar

Ta
ra

nt
ul

a

O
ch

ia
i

D
St

ar

Ta
ra

nt
ul

a

O
ch

ia
i

D
St

ar

Ta
ra

nt
ul

a

O
ch

ia
i

D
St

ar

Ta
ra

nt
ul

a

O
ch

ia
i

D
St

ar

AS-CE 29 31 30 58 62 61 73 75 73 86 91 88 16 12 15
CF-ADD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
IF-ABR 3 3 3 4 5 6 10 11 11 12 13 13 1 0 0
IF-APC 10 11 11 20 21 21 28 28 28 30 30 30 2 2 2
IF-APCJ 14 13 12 28 27 27 32 33 33 34 35 34 5 3 4
IF-APTC 0 0 0 0 0 0 1 1 1 2 2 2 0 0 0
IF-CC 29 32 30 61 64 63 80 82 80 95 96 94 5 5 7
IF-RBR 1 1 1 1 1 1 1 2 2 3 3 3 1 1 1
IF-RMV 8 8 8 16 17 17 20 20 20 20 20 20 1 1 1
LP-CC 0 0 0 3 3 3 5 5 5 5 5 5 1 1 1
LP-CE 0 0 0 1 1 1 2 2 2 2 2 2 0 0 0
MC-DAP 14 15 15 19 20 20 23 23 23 28 27 27 5 6 6
MC-DM 4 4 4 10 10 10 10 10 10 14 13 13 2 3 3
MC-DNP 8 8 8 13 13 13 15 16 16 18 18 18 2 2 2
MD-ADD 2 2 2 4 3 3 4 3 3 4 3 3 1 1 1
MD-CHG 4 4 4 10 10 11 12 12 12 13 14 14 2 1 1
MD-RMV 2 2 2 4 4 4 4 4 4 4 4 4 1 1 1
SQ-AFO 3 3 3 6 6 6 7 7 7 8 8 8 4 4 4
SQ-AMO 1 1 1 1 1 1 1 2 2 2 2 2 0 0 0
SQ-AROB 0 0 0 5 5 6 8 8 9 10 11 11 2 1 1
SQ-RFO 0 0 0 3 3 4 4 4 4 4 4 4 1 1 1
SQ-RMO 0 0 0 2 2 2 2 2 2 2 2 2 0 0 0
SW-ARSB 1 1 1 3 3 3 3 3 3 3 3 3 2 2 2
TY-ARTC 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0

Sum 134 140 136 274 283 285 347 355 352 401 408 402 55 48 54

TABLE VI
PERCENTS OF LABELS (PER METRICS)

TOP-1 (%) TOP-3 (%) TOP-5 (%) TOP-10 (%) OTHER (%)

Bug-fix types

Ta
ra

nt
ul

a

O
ch

ia
i

D
St

ar

Ta
ra

nt
ul

a

O
ch

ia
i

D
St

ar

Ta
ra

nt
ul

a

O
ch

ia
i

D
St

ar

Ta
ra

nt
ul

a

O
ch

ia
i

D
St

ar

Ta
ra

nt
ul

a

O
ch

ia
i

D
St

ar

AS-CE 20.71 22.14 21.43 42.86 45.71 45.00 58.57 59.29 57.86 73.57 75.71 73.57 26.43 24.29 26.43
CF-ADD 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50
IF-ABR 21.43 21.43 21.43 28.57 35.71 42.86 71.43 78.57 78.57 85.71 92.86 92.86 14.29 7.14 7.14
IF-APC 29.41 32.35 32.35 61.76 64.71 64.71 85.29 85.29 85.29 94.12 94.12 94.12 5.88 5.88 5.88
IF-APCJ 29.41 27.45 25.49 62.75 62.75 58.82 74.51 78.43 78.43 82.35 88.24 86.27 17.65 11.76 13.73
IF-APTC 0.00 0.00 0.00 0.00 0.00 0.00 33.33 33.33 33.33 100.00 66.67 66.67 0.00 33.33 33.33
IF-CC 23.02 25.40 23.81 50.00 51.59 50.79 70.63 70.63 69.05 87.30 84.13 82.54 12.70 15.87 17.46
IF-RBR 11.11 11.11 11.11 22.22 22.22 22.22 33.33 44.44 44.44 55.56 55.56 55.56 44.44 44.44 44.44
IF-RMV 32.00 32.00 32.00 64.00 68.00 68.00 84.00 84.00 84.00 84.00 84.00 88.00 16.00 16.00 12.00
LP-CC 0.00 0.00 0.00 57.14 57.14 57.14 85.71 85.71 85.71 85.71 85.71 85.71 14.29 14.29 14.29
LP-CE 0.00 0.00 0.00 50.00 50.00 50.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00 0.00 0.00
MC-DAP 31.82 34.09 34.09 47.73 50.00 47.73 59.09 56.82 56.82 81.82 77.27 77.27 18.18 22.73 22.73
MC-DM 19.05 19.05 19.05 47.62 47.62 47.62 47.62 47.62 47.62 71.43 66.67 66.67 28.57 33.33 33.33
MC-DNP 27.59 27.59 27.59 48.28 44.83 44.83 68.97 68.97 68.97 79.31 79.31 79.31 20.69 20.69 20.69
MD-ADD 28.57 28.57 28.57 85.71 85.71 85.71 85.71 85.71 85.71 85.71 85.71 85.71 14.29 14.29 14.29
MD-CHG 17.39 17.39 17.39 47.83 47.83 52.17 65.22 65.22 65.22 73.91 78.26 78.26 26.09 21.74 21.74
MD-RMV 22.22 22.22 22.22 55.56 55.56 55.56 55.56 55.56 55.56 55.56 55.56 55.56 44.44 44.44 44.44
SQ-AFO 18.75 18.75 18.75 37.50 37.50 37.50 50.00 50.00 50.00 68.75 68.75 68.75 31.25 31.25 31.25
SQ-AMO 25.00 25.00 25.00 50.00 50.00 50.00 50.00 75.00 75.00 75.00 75.00 75.00 25.00 25.00 25.00
SQ-AROB 0.00 0.00 0.00 41.18 41.18 47.06 64.71 64.71 70.59 82.35 82.35 82.35 17.65 17.65 17.65
SQ-RFO 0.00 0.00 0.00 33.33 33.33 44.44 44.44 44.44 44.44 66.67 66.67 66.67 33.33 33.33 33.33
SQ-RMO 0.00 0.00 0.00 66.67 66.67 66.67 66.67 66.67 66.67 66.67 66.67 66.67 33.33 33.33 33.33
SW-ARSB 16.67 16.67 16.67 50.00 50.00 50.00 50.00 50.00 50.00 66.67 66.67 66.67 33.33 33.33 33.33
TY-ARTC 0.00 0.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00 0.00 0.00

21



TABLE VII
SIGNIFICANCE IN TOP-N BASED ON FISHER EXACT TEST

top-1 top-3 top-5 top-10 other

Name

Ta
ra

nt
ul

a

O
ch

ia
i

D
St

ar

Ta
ra

nt
ul

a

O
ch

ia
i

D
St

ar

Ta
ra

nt
ul

a

O
ch

ia
i

D
St

ar

Ta
ra

nt
ul

a

O
ch

ia
i

D
St

ar

Ta
ra

nt
ul

a

O
ch

ia
i

D
St

ar

AS-CE 0.807 1.000 0.903 0.297 0.729 0.487 0.234 0.172 0.103 0.207 0.571 0.282 0.207 0.571 0.282
CF-ADD 0.505 0.517 0.510 1.000 1.000 1.000 0.418 0.380 0.390 0.207 0.180 0.203 0.207 0.180 0.203
IF-ABR 0.763 0.763 0.763 0.038 0.082 0.245 1.000 1.000 0.743 1.000 0.622 0.378 1.000 0.622 0.378

IF-ACPJ 0.296 0.305 0.300 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
IF-APC 0.839 0.547 0.543 0.849 0.701 0.701 0.077 0.116 0.114 0.232 0.342 0.232 0.232 0.342 0.232
IF-APCJ 0.364 0.586 0.854 0.229 0.298 0.380 0.437 0.299 0.220 0.601 1.000 1.000 0.601 1.000 1.000
IF-APTC 1.000 1.000 1.000 0.142 0.138 0.135 0.418 0.380 0.390 1.000 1.000 1.000 1.000 1.000 1.000
IF-CC 1.000 0.807 1.000 0.816 1.000 0.907 0.354 0.582 0.892 0.030 0.086 0.203 0.030 0.086 0.203
IF-RBR 1.000 1.000 1.000 0.154 0.147 0.143 0.043 0.199 0.210 0.373 0.327 0.366 0.373 0.327 0.366
IF-RMV 0.463 0.469 0.465 0.249 0.105 0.106 0.036 0.060 0.058 0.717 0.709 0.714 0.717 0.709 0.714

LP-CC 0.186 0.184 0.185 0.677 0.675 0.674 1.000 1.000 1.000 0.504 0.449 0.496 0.504 0.449 0.496
LP-CE 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
MC-DAP 0.113 0.075 0.050 0.581 0.852 0.852 0.395 0.189 0.272 0.773 0.222 0.381 0.773 0.222 0.381

MC-DM 0.787 0.786 0.786 1.000 1.000 1.000 0.228 0.120 0.130 0.691 0.183 0.398 0.691 0.183 0.398
MC-DNP 0.320 0.332 0.325 1.000 1.000 1.000 0.795 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
MD-ADD 0.635 0.643 0.639 0.654 0.655 0.656 1.000 1.000 1.000 0.442 0.391 0.434 0.442 0.391 0.434
MD-CHG 1.000 1.000 1.000 0.792 0.588 0.275 1.000 0.748 0.540 1.000 0.381 0.388 1.000 0.381 0.388
MD-RMV 0.635 0.643 0.639 0.654 0.655 0.656 1.000 1.000 1.000 0.442 0.391 0.434 0.442 0.391 0.434
SQ-AFO 1.000 1.000 1.000 0.382 0.376 0.371 0.166 0.142 0.147 0.033 0.019 0.030 0.033 0.019 0.030

SQ-AMO 0.505 0.517 0.510 1.000 1.000 1.000 0.418 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SQ-AROB 0.022 0.022 0.022 0.226 0.139 0.371 0.490 0.292 0.730 0.630 1.000 1.000 0.630 1.000 1.000

SQ-RFO 0.328 0.329 0.328 1.000 1.000 0.656 1.000 1.000 1.000 0.442 0.391 0.434 0.442 0.391 0.434
SQ-RMO 1.000 1.000 1.000 0.529 0.532 0.534 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SW-ARSB 1.000 1.000 1.000 1.000 1.000 1.000 0.339 1.000 1.000 0.442 0.391 0.434 0.442 0.391 0.434
TY-ARTC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

VI. RELATED WORK

A. Fault Localization

Spectrum-Based Fault Localization has a large litera-
ture [1]–[5].

Renieris and Reiss [17] presented a method which is based
on the differences between pass and failed test. The method
selects the correct execution by the distance criterion which
is the most similar to the incorrect run, compares the spectra
of the two runs and sets the order based on the suspicious
program elements. Jones and Harrold introduced the Tarantula
fault localization metric [18] and showed that this approach
outperforms the method by Renieris and Reiss on C programs.

Abreu et al. used the Ochiai method in their studies [19],
[20]. They showed that Ochiai produces better results than
Tarantula using the Siemens and the SIR

Wong et al. [21] presented the DStar technique, which was
analyzed on 24 programs and the results were compared with
other (38) techniques.

Pearson et al. [4] evaluated fault localization techniques and
examined them to find out whichever technique is the best for
real bugs. They used Defects4J [9] to evaluate the algorithms.

There are many studies [4], [20]–[22] that compare the
results of different fault localization algorithms. Common
conclusions of these studies are that (1) there is a difference
in the efficiency between injected and real bugs, (2) DStar
was better than Ochiai (3), and Ochiai performed better than
Tarantula.

Lucia et al [23] compared Ochiai and Tarantula on how
well they perform on programs written in C as compared to
programs written in Java.

B. Labeling

Bug fixes have been examined in numerous studies. Yin et
al. [24] showed that concurrency bugs are the most difficult
to fix, and they also defined three patterns: memory bug,
concurrency bug and semantic bug.

Osman et al. [25] analyzed open-source Java projects. They
investigated the change histories by linking revisions to bug
fixes. They compared the two versions of the methods, which
are the version before the fix and the version after the fix. Due
to the large number of diversity of the analyzed projects, they
decided to include only a few patterns in their study: a) Wrong
Name b) Missing null checks c) Missing Invocation d) Undue
Invocation.

Lucia et al. [23] investigated bug-fix types similarly to our
study. They, however, used C and Java projects. They divided
bugs into several groups based on the bug-fix categories
proposed by Pan et al. [12], and also added new bug categories
such as CH-RET, OTH. They measured the effectiveness
of SBFL algorithms with each bug category. As a result,
they showed that Ochiai better localizes bugs in CH-NCS
(Addition/removal of non-conditional statements) than others.

Hanam et al. [14] and Ocariza et al. [26] classified
JavaScript bugs and investigated their root causes. Hanam et
al. did an empirical study on labeling JavaScript serverside
bugs. They proposed a data mining technique for finding new
bug patterns, called BugAID.

Martinez et al. [27] made another tool for mining bug
pattern instances, and identifed 10 bug patterns in the bug
benchmark Defects4J.

22



VII. CONCLUSION

In this paper, we analyzed the relationship between the three
most popular SBFL algorithms (Tarantula, Ochiai and DStar)
and the bug-fix types. The goal of our research was to find out
which certain bug-fix types seem to be harder to localize. We
found that within the IF category (changes to if related code
elements) two subcategories are harder to localize. Among all
instances, certain bug-fix types seem to be harder to localize
by the current algorithms (for instance, the addition of field
setting operation to the sequence), while some others are easier
than the rest (for instance, change in if conditional).

Investigating the underlying causes of bugs and comparing
the results with the ones proposed in this study is among our
future work. Other possible implications of our research results
include useful insights to researchers working in related fields
such as automated program repair, test generation, and bug
prediction.

ACKNOWLEDGMENTS

Szatmári was supported by project EFOP-3.6.3-VEKOP-16-
2017-0002, co-funded by the European Social Fund. This
work was partially supported by the EU-funded Hungarian
national grant GINOP-2.3.2-15-2016-00037 titled “Internet of
Living Things,” and by grant TUDFO/47138-1/2019-ITM of
the Ministry for Innovation and Technology, Hungary.

REFERENCES

[1] W. Eric Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineering,
vol. 42, pp. 1–1, 08 2016.

[2] H. A. de Souza, M. L. Chaim, and F. Kon, “Spectrum-based software
fault localization: A survey of techniques, advances, and challenges,”
ArXiv, vol. abs/1607.04347, 2016.

[3] P. Parmar and M. Patel, “Software fault localization: A survey,” Inter-
national Journal of Computer Applications, vol. 154, no. 9, 2016.

[4] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst,
D. Pang, and B. Keller, “Evaluating and improving fault localization,”
in Proceedings of the 39th International Conference on Software Engi-
neering. IEEE Press, 2017, pp. 609–620.

[5] P. Agarwal and A. P. Agrawal, “Fault-localization techniques
for software systems: A literature review,” SIGSOFT Softw.
Eng. Notes, vol. 39, no. 5, pp. 1–8. [Online]. Available:
http://doi.acm.org/10.1145/2659118.2659125

[6] F. Keller, L. Grunske, S. Heiden, A. Filieri, A. van Hoorn, and D. Lo,
“A critical evaluation of spectrum-based fault localization techniques on
a large-scale software system,” in 2017 IEEE International Conference
on Software Quality, Reliability and Security (QRS). IEEE, 2017, pp.
114–125.

[7] X. Xie, T. Y. Chen, F.-C. Kuo, and B. Xu, “A theoretical analysis of
the risk evaluation formulas for spectrum-based fault localization,” ACM
Trans. Softw. Eng. Methodol., vol. 22, no. 4, pp. 31:1–31:40, Oct. 2013.

[8] P. Gyimesi, B. Vancsics, A. Stocco, D. Mazinanian, Á. Beszédes,
R. Ferenc, and A. Mesbah, “BugsJS: a benchmark of JavaScript bugs,”
in Proceedings of the 12th IEEE Conference on Software Testing,
Verification and Validation (ICST’19), Apr. 2019, pp. 90–101.

[9] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in Pro-
ceedings of the 2014 International Symposium on Software Testing and
Analysis, ser. ISSTA 2014. ACM, 2014, pp. 437–440.

[10] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu,
S. Forrest, and W. Weimer, “The manybugs and introclass benchmarks
for automated repair of c programs,” IEEE Transactions on Software
Engineering, vol. 41, no. 12, pp. 1236–1256, Dec 2015.

[11] B. Vancsics, A. Szatmári, and Á. Beszédes, “Relationship between the
effectiveness of spectrum-based fault localization and bug-fix types in
javascript programs,” in 2020 IEEE 27th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 2020.

[12] K. Pan, S. Kim, and E. J. Whitehead, Jr., “Toward an understanding of
bug fix patterns,” Empirical Softw. Engg., vol. 14, no. 3, pp. 286–315,
Jun. 2009.

[13] X. Xia, L. Bao, D. Lo, and S. Li, ““Automated Debugging Considered
Harmful” Considered Harmful: A User Study Revisiting the Useful-
ness of Spectra-Based Fault Localization Techniques with Professionals
Using Real Bugs from Large Systems,” in 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE,
oct 2016, pp. 267–278.

[14] Q. Hanam, F. S. d. M. Brito, and A. Mesbah, “Discovering bug
patterns in JavaScript,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
FSE 2016. New York, NY, USA: ACM, 2016, pp. 144–156. [Online].
Available: http://doi.acm.org/10.1145/2950290.2950308

[15] A. Vahabzadeh, A. M. Fard, and A. Mesbah, “An empirical study of bugs
in test code,” in Proceedings of the 2015 IEEE International Conference
on Software Maintenance and Evolution (ICSME), ser. ICSME ’15.
Washington, DC, USA: IEEE Computer Society, 2015, pp. 101–110.
[Online]. Available: http://dx.doi.org/10.1109/ICSM.2015.7332456

[16] A. Agresti et al., “A survey of exact inference for contingency tables,”
Statistical science, vol. 7, no. 1, pp. 131–153, 1992.

[17] M. Renieres and S. P. Reiss, “Fault localization with nearest neighbor
queries,” in 18th IEEE International Conference on Automated Software
Engineering, 2003. Proceedings., Oct 2003, pp. 30–39.

[18] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ser. ASE ’05. New York, NY, USA: ACM, 2005, pp. 273–282.

[19] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. van Gemund, “A practical
evaluation of spectrum-based fault localization,” Journal of Systems and
Software, vol. 82, no. 11, pp. 1780 – 1792, 2009, sI: TAIC PART 2007
and MUTATION 2007.

[20] R. Abreu, P. Zoeteweij, and A. J. C. v. Gemund, “Spectrum-based
multiple fault localization,” in Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
’09. IEEE Computer Society, 2009, pp. 88–99.

[21] W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The DStar method for
effective software fault localization,” IEEE Transactions on Reliability,
vol. 63, no. 1, pp. 290–308, 2014.

[22] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-based
software diagnosis,” ACM Trans. Softw. Eng. Methodol., vol. 20, no. 3,
Aug. 2011.

[23] L. Lucia, D. Lo, L. Jiang, F. Thung, and A. Budi, “Extended
comprehensive study of association measures for fault localization,” J.
Softw. Evol. Process, vol. 26, no. 2, pp. 172–219, Feb. 2014. [Online].
Available: http://dx.doi.org/10.1002/smr.1616

[24] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. Bairavasundaram,
“How do fixes become bugs?” in Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering, ser. ESEC/FSE ’11. New
York, NY, USA: ACM, 2011, pp. 26–36. [Online]. Available:
http://doi.acm.org/10.1145/2025113.2025121

[25] H. Osman, M. Lungu, and O. Nierstrasz, “Mining frequent bug-fix code
changes,” 2014 Software Evolution Week - IEEE Conference on Software
Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE),
pp. 343–347, 2014.

[26] F. S. Ocariza Jr., K. Pattabiraman, and B. Zorn, “Javascript errors in the
wild: An empirical study,” in 2011 IEEE 22nd International Symposium
on Software Reliability Engineering, Nov 2011, pp. 100–109.

[27] M. Martinez and M. Monperrus, “Coming: A tool for mining change
pattern instances from git commits,” in 2019 IEEE/ACM 41st Interna-
tional Conference on Software Engineering: Companion Proceedings
(ICSE-Companion), May 2019, pp. 79–82.

23


