CodeMetropolis:
Eclipse over the City of Source Code

Gerg6 Balogh, Attila Szabolics, and Arpad Beszédes
Department of Software Engineering
University of Szeged, Hungary
geryxyz@inf.u-szeged.hu, szabolics @inf.u-szeged.hu, beszedes @inf.u-szeged.hu

Abstract—The graphical representations of software (code
visualization in particular) may provide both professional pro-
grammers and students learning only the basics with support
in program comprehension. Among the numerous proposed
approaches, our research applies the city metaphor for the
visualisation of such code elements as classes, functions, or
attributes by the tool CodeMetropolis. It uses the game engine
of Minecraft for the graphics, and is able to visualize various
properties of the code based on structural metrics. In this work,
we present our approach to integrate our visualization tool into
the Eclipse IDE environment. Previously, only standalone usage
was possible, but with this new version the users can invoke
the visualization directly from the IDE, and all the analysis
is performed in the background. The new version of the tool
now includes an Eclipse plug-in and a Minecraft modification in
addition to the analysis and visualization modules which have
also been extended with some new features. Possible use cases
and a detailed scenario are presented.

Index Terms—Integrated Development Environment, software
visualization, city-metaphor, integration.

I. INTRODUCTION AND MOTIVATION

The evolution of tools and methods has always been parallel
with the history of professions. Software development is not
an exception either. All participants have a tool set which
follows their daily workflow. For developers, this tool set is
the so called Integrated Development Environment, or IDE for
short. Its predecessor was a simple text editor equipped with
basic features, like syntax highlighting and smart text com-
pletion. As programming languages evolved and the schedule
of the development process became more stressed, these tools
were equipped with more features to support new ways of
integration with various components and external programs.
Developers are used to these convenient environments. They
rarely close these programs, so probably any program has to
offer some degree of integration with IDEs to fit into the daily
routine of developers.

The graphical representation of the source code could pro-
vide new viewpoints which are crucial for creative work and
problem solving, but the world of source code is still highly
dominated by textual representation. Software visualization
techniques range from simple diagrams and charts to detailed
metaphors [1]. The integration of these techniques into IDES
has barely begun.

Our goal was to build a bridge between coding and visu-
alization. We chose Eclipse among the IDEs because it was
a common tool for Java developers. Software visualization is

978-1-4673-7529-0/15 © 2015 IEEE

271

embodied by CodeMetropolis which utilizes the well known
city metaphor where source code components are represented
as part of a generated city. We implemented a set of plug-
ins which was able to connect these two softwares, hence
it became capable of integrating an elaborated visualization
technique without disturbing the daily routine of developers.

These tools enable developers to launch visualization and
initialize the buildings of the virtual city. To help to find
the most relevant parts of the visualization, a manual and an
automatic navigation were included.

The main contribution of the paper is the introduction
of the integration of CodeMetropolis to the Eclipse IDE,
and possible use cases. The paper is organized as follows.
Sections II introduces the necessary context: related work,
background concepts, and technologies. Section III is the core
of our contribution, it presents our new tools which integrate
CodeMetropolis into Eclipse. In Section IV and V we provide
use cases and demo scenarios, respectively. Section VI is
about our future plans. We refer the reader to the supplement
materials in Section VIIL.

II. BACKGROUND

A. Visualizing Software as Virtual City

The numerical properties of source code — called metrics —
are widely used to measure software code quality and detect
problems early in the development phase [2]. Several solutions
exist to analyze the source code and measure various metrics
on it (e.g. [3]), but finally this data has to be presented to
people. One way to achieve this is to generate images or videos
which will display the gathered information.

Data visualization has four phases: filtering, mapping, ren-
dering, and displaying [4]. These are illustrated on Figure 1.
In the filtering phase, raw data is processed and the data of
interest is prepared. This step determines what we want to
visualize: different entities and their properties are selected
based on the goal of visualization.

In the mapping phase, the entities of the measurements
and their properties are assigned to the objects of the vi-
sualization space and to their attributes. This phase decides
how the entities and properties will be presented. Mapping is
usually based on some metaphors that determine the domain
and the set of objects that can be used in the visualization
space. For example, the forest metaphor allows trees and tree

SCAM 2015, Bremen, Germany

Accepted for publication by IEEE. © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



summarise

simulate

filter

playback

data

image

render

geometric primitives

Fig. 1. Phases of data visualization

groups (forests) as objects, or the architectural metaphors use
buildings and other architectural objects.

Rendering determines the shapes and other visual attributes
of the objects and places them in the visualization space.
According to the mapping, the actual attributes of the objects
are determined based on the property values of the entities.

Finally, the displaying phase is responsible for presenting
the filled visualization space, i. e. creating an image (or a series
of images). It can be static, displaying a single image, but it
is usually dynamic in the sense that the user can interactively
change the view parameters by zooming, turning around, or
moving the center of view.

In software visualization there are mappings between the
code elements and the visualization space objects. As men-
tioned above, these mappings are usually based on metaphors,
e. g. a forest or landscape metaphor. The metaphor determines
which objects can be used in the visualization space and
which attributes of these objects can potentially be used to
capture the property values of the represented entities. The
city metaphor [5] is one of the best known metaphors in
software visualization. As it was described by Wettel and
Lanza, the source code elements (usually classes or functions)
are assigned to buildings and the whole software is presented
as a city.

At a high level, the city metaphor assigns classes to build-
ings and attributes to the width, length, height, or color of
the buildings. Sometimes additional elements like roof size,
shape, or color are used to express some metrics. At lower
levels, when the internal structure of the classes should also
be presented, the buildings represent methods, and a class is
represented as one version of realty. Buildings or realties are
then grouped into districts according to their relationship in
the code; districts are usually formed from namespaces or
packages. The hierarchical structure of packages are usually
represented by flat platforms that are elevated from their
context.

CodeMetropolis [6], [7] utilizing the expressive power of
today computer games is one implementation of this technique
and metaphor. It generates a virtual city for Minecraft [8],
which is a first person role playing game. After entering into
the generated world, developers can explore the districts of

Fig. 2. Visualization of a sample project.

namespaces, walk around the gardens of classes!, then climb
up on virtual staircases in the middle of methods to look upon
the city of source code.

B. Writing Code with the Aid of Integrated Development
Environment

A set of tools is commonly used by developers during
their daily routine. These tools include compilers, linkers, and
text editors. The functions of these tools add up the features
of the first integrated development environments, or IDE for
short. Today, these features only provide the most basic core
functionality of these all-in-one, customizable Swiss knifes of
developers.

All IDEs provide a certain degree of extensibility. It is
usually supported via a plug-in with application programming
interface, API for short. These plug-ins can enhance existing
features or implement new ones. Some of them provide further
integration with other tools making the IDEs more robust.
The complexity and quality of these extensions have a very
wide range. There is a support for testing, for example the
execution of the unit test written by using the well known
JUnit framework. Developers can design the basic structure of
the software using the UML modeling language, and generating
the corresponding source code with plug-ins.

Our experience suggests that the integration of tools capable
to display a visual representation of the code is fallen behind
other supported features. Several attempts are made to inte-
grate software visualization into the daily work of developers.
Rob Lintern et al. [9] provide a new plug-in to integrate
graphical representation. The city metaphor has also been used
previously [10], [11].

III. INTEGRATION OF ECLIPSE AND CODEMETROPOLIS

A. Overview

Our goal was to integrate a highly customizable and detailed
visualization tool to a development environment. As a result,
developers can get customized visual information about their
system fast and without leaving their well-known environment.

'Gardens are grassy platforms surrounded with fences representing the
classes. Each level of the buildings inside represents a member of the class.

272



Besides that, we would like to provide an easy way of
navigation in the city to avoid wasting time on searching for
the place representing the inspected part of the source code.

We have chosen CodeMetropolis as our visualization tool
because it provides rich graphical possibilities and real time
navigation in a fully interactive virtual world. The implementa-
tion has three interlinked components, shown in Figure 3. The
first is Eclipse, the IDE itself, the second is Minecraft, which
displays the generated city, and SourceMeter [12], a static
code analyzer, which provides the metrics and the structures
of the source code. These are connected via CodeMetropolis
that converts the data to a visual representation using the
given mapping and city metaphor. These are represented as
components on Figure 3.

Since the 2013 release of CodeMetropolis toolkit, it has
undergone significant changes. A new placing algorithm has
been implemented to provide a more optimal city layout. A
brand new build system has also been added which resulted
100 times faster block creation. The mapping format has been
completely redesigned to provide a cleaner syntax and a lot
more options. The background logic of the toolkit had to be
changed at multiple points to fit our intentions. Most of these
changes were done as part of the preparation for integration.

There are two small extensions, an Eclipse plug-in and a
Minecraft modification (or mod for short). These are integrated
into the Eclipse and Minecraft respectively, and provide com-
munication with the parts of the CodeMetropolis toolchain.
The developers interact directly with the game and the IDE.

% Static code analyzer

CodeMetropolis

CM Eclipse plug-in CM Minecraft mod

T 1
e

% Minecraft

developer

Fig. 3. Overview of integration

B. Modification of Minecraft

Minecraft is a role playing game where the player is able
to move and interact freely with the world. The world itself
is built up of cubes of 1 cubic meter compared to the player
itself, who is 2 meters tall. These so called blocks have various
properties and features based on their material. For example,
you can use stone blocks to build a furnace, then coal to fuel
it and extract gold ignite from gold ore. There are more than
200 different types of blocks which can be placed into a realm
that is bigger than the surface of the Earth.

The current version of Minecraft End User Licence Agree-
ment [13] allows users to change the game once they have
bought the license with the condition that they will not sell
those changes as original features. This made possible the
formation of global and local communities, whose members
are continuously seeking new ways to extend the features of
the game with modifications, or mods for short.

These mods can have a wide range of goals, from intro-
ducing new types of blocks or capabilities to integrating with
other third party tools, like ours, the CodeMetropolis mod. It
is a collection of recompiled Java classes which provides the
following features and functions.

1) Synchronizing: To prevent any concurrent modification
with the game, it disables the user interface while building
the generated city. After the conversion the target world is
reloaded. We also provide informative messages to notify the
user about the state of the process. These feedbacks are shown
on Figure 4.

Building.

Fl.

Cancel

Fig. 4. Feedback during the rebuilding of the city

2) Positioning the Player: It allows the external processes
to set the position and orientation of the player. It is used to
redirect the attention of the developer to different components
by automatically moving him to a new part of the city.

C. CodeMetropolis Plug-In for Eclipse

As stated earlier, Eclipse is an Integrated Development
Environment. It is one of the most commonly used tools
by Java developers. Its main functions are grouped around
source code editing, compiling, and running the binary code
either in debug or release mode and project management.
Since it is beyond the scope of this paper, we do not present
an elaborated list of its features, we simply highlight the
most important ones for our purposes. Starting with project
management, to provide basic file, library and source code
management, Eclipse utilizes the common tree view to display
the structure of the program. The developer can open the file
for editing by double clicking on it. Afterwards, the content of
the file becomes visible in the main area. This pane supports
multiple opened files by displaying them in a tab control.
Functionalities are also available via toolbars and standard
menubars.

All these components can be extended with third party
tools called plug-ins. The plug-in infrastructure plays a key

273



role in Eclipse, in fact some of its basic features are also
implemented as plug-ins. The API lets the external code collect
information about the development process and change the
layout of the graphical user interface. Our CodeMetropolis
plug-in utilize these possibilities by detecting the name of the
edited source file and adding new buttons and menu items to
the GUT (Figure 5). It provides the following features, which
are available via menu- and toolbar as well.

Mavigate Search Project | CodeMetropolis | Run Window  Help

‘8 | Jump Follow Build Jump 5 -l L;a = |1
Follow

& ¥ =

3| = Build

tangles-mast . Fizontal.start <= parai

angles-mastet Settings ((vertical.start <= pajy
About

Start Minecraft
— Rortanole Just snouech

Fig. 5. Graphical User Interface of the CodeMetropolis Eclipse plug-in

1) Building: This functionality initiates a complete rebuild
of the source code. During this process, the code is ana-
lyzed with SourceMeter, and the result is forwarded to the
CodeMetropolis toolchain which generates the city and renders
it with the help of Minecraft. The user is continuously noticed
about the state of the conversion. In the current version, the
developer has to initiate the building manually, because the
time it takes highly depends on the size of the codebase.

2) Jumping: The size of the generated city could be too
large to manually search points of interest. To overcome this,
our plug-in lets the user quickly navigate to the building
representing the currently open and active file by using the
jump feature. With this, the developer can spend more time
with the true exploration of the source code without clueless
wandering.

3) Following: We also provide an automation over the
jumping function, called following. When users turn this
feature on the system will be continuously checking the
open and active file, and update the position of the player
accordingly. It means that the player will always be near the
building representing the currently edited file.

4) Changing the Settings: The integrated tools required
some basic configuration. These contained the location of the
SourceMeter and Minecraft, and also the path to the mapping
file of CodeMetropolis which specifies the meaning of the
visual attributes in the city.

IV. USE CASES

We have identified two major use cases for our tool. Explo-
ration tasks consist of the actions that needs to be performed
to comprehend source code which was written by someone
else. Our assumption is that developers need to execute these
tasks during their daily routine. The other potential use of the
tool is in education. Visual analogies can make learning a lot
easier for most of the students.

HGpen Eclipsa—)Gtart MinecrafD

rebuild
city of source code
activate open a source file inspect properties

follow feature for edit in Eclipse in Minecraft

Fig. 6. Overview of exploration use case

A. Exploration Task

Developers, either juniors or experts often have to join
ongoing projects. In these, the code base already contains the
implementation of some features. The size, the importance,
and the quality of these show a wide range of variation. The
developers have to find the location of the important parts
of the code and need to gather general knowledge about the
properties of various code entities, like classes and methods.
In other words, navigating confidently trough the code base
can speed up the implementation of further features.

The integration can help to explore the code by combining
an intriguing and rich visual representation with the familiar
environment of the Eclipse IDE. The use case begins with
opening of Eclipse and then launching the Minecraft right from
the CodeMetropolis menu. The next step is to generate the
virtual city which is going to represent the source code. To do
this, developers use the Build feature of the CodeMetropolis
Eclipse plug-in. Afterwards, the users are able to open the
generated world in Minecraft and begin the exploration task
itself. This usually contains a series of repeated steps, during
which various code entities are inspected. Activating the
Follow feature in Eclipse ensures that the player is always
in the garden which represents the actually edited class. This
synchronous navigation lets the developers compare the values
of source code metrics which are difficult to see from the code,
but displayed as various visual properties of the buildings in
Minecraft. This might be less tiring than manually comparing a
bunch of raw metric values, especially in case of large systems.
Usual steps of exploration are shown on Figure 6.

B. Education

For students, it usually takes much time to fully understand
the concept and advantages of object-oriented design. They
need to learn a new perspective on programming tasks to
be able to properly design the structure of their systems. By
visualizing the structural parts of code, they can see programs
in a new way. They can comprehend the structure of the
source code just by walking around in a virtual metropolis.
The relationship of packages, classes, methods, and attributes
can easily be presented through the buildings of the city.
They can understand underlying properties (metrics) and their
connections. This kind of visualization is also a great way to
present programming to younger children. Real life analogies
can make them feel more comfortable while talking about
abstract things like classes or metrics.

274



During a learning session, students should perform the
following actions. First, they need to start both tools: the IDE
and the game. After opening the selected project, they are
able to build the virtual city and enter into the visualization.
Then, they should investigate and understand the connections
between the objects of the city and the code entities. Jump
function can be very useful during this phase. Implementing
new features or modifying existing ones affect the structure
and quality of the code. It is recommended to rebuild the
visualization after the changes so students can examine the
effects of their actions. Our assumption is that by repeating
these steps multiple times during the life cycle of the project
they can monitor their coding quality and recognize structural
weaknesses in the system.

V. DEMO SCENARIO

In this section, we present two demo scenarios. Both
of these use the open-source project tutorial-refactoring-
rectangles [14] which is a small Java program. It serves as a
classroom exercise for students to practice various refactoring
techniques. To help the reader understand the scenarios, we
only specify the relevant metrics and properties, however the
full mapping can be found in the supplement materials as
sample mapping file. The elements of the source code are
assigned to the same building in all cases, so classes are
represented as gardens, their methods are displayed as the
floors of buildings, and the stone plates stand for namespaces
or packages. However, the properties of those which are linked
to various metrics are different and will be explained later.
More demo scenarios can be found in the supplement material.

A. Inspecting Various Visual Properties of a Single Building

In the first scenario, the logical lines of code are mapped
to the height of the floors, and the number of statements is
visualized as the material the walls are made of. This means
that if a method has more lines which are neither empty nor
comment, the related floor will be higher. On the other hand, if
a method contains less statements, the floor will be built from
lighter materials like sandstone or glass instead of the darker
ones like stone or obsidian. The minimal height of a floor is
9 blocks and the materials range from glass to obsidian.

Figure 7 shows the constructor of the Rectangle class and
its visualization. The assigned elements are highlighted and
connected. In this case, the code from line 41 to line 46 is
represented with the floor in the middle. This is made from
sandstone and it is neither extremely tall nor short. Its visual
appearance suggests that it cannot contain too many logical
lines of the code or statements. Furthermore, the lightness of
the material and the moderate height indicate that the value
of these two metrics are relatively close to each other. The
implementation of the constructor contains 4 logical lines and
4 statements. It means that the average ratio is 1 statement per
line.

These values of metrics can be calculated or compared
manually but the time it takes depends on the size and
the complexity of the code. The use of CodeMetropolis as

= public Rectangle (View view) {
this.horizontal = nmll;

this.vertical = null;
this.view = view;
wview.rectangle = this;

Fig. 7. Inspection of the constructor of the Rectangle class and its visualiza-
tion

visualization and its plug-in for Eclipse could speed up this
process by providing a rich and interactive visual representa-
tion. Inspections like this are the core step when the developer
needs to explore new source code.

B. Compare Two Different Buildings

In this case, two buildings are compared, namely two
methods of the Rectangle class: the contains and the equals
methods. We use the same ranges for building material as in
the previous case. The number of statements is represented
with the material, but the height is assigned to the cyclomatic
complexity used to indicate the complexity of a program. It is
a quantitative measure of the number of linearly independent
execution paths through the source code of a program.

Figure 8 shows the relevant parts of the source code
and its graphical representation. The assigned elements are
highlighted and connected. In this case, the code from line 55
to line 69 and from line 91 to line 99 are represented with the
two stone floors. Both of these are made of the same material,
so they contain similar amount of statements. The one above
is higher, so it is more complex than the other.

To decrease the overall complexity of the class and improve
readability, developers may refactor the most complex parts of
the class, in this case the contains method. After finding the
relevant method, the modification can be applied in Eclipse. In
this case, the last two lines (line 67 and 68) can be extracted
into two new methods, which will compare the vertical and the
horizontal size of the rectangles. Then, the developers rebuild
the virtual city to see the affect of their changes. These steps
can be repeated to accomplish the required refactoring tasks.

VI. FUTURE WORK

We plan to add new features to make the use of the tool
more easier. One of these features is to make navigation two-

275



public boolean contains (Rectangle parameter) {
if (parameter.horizontal == null)
return false;
if (horizontal == nmll)
return false;

in the other rectangle

return ((horizontal.start <= parameter.horizontal.start
&& ((vertical.start <= parameter.vertical.start

* Enlarge the Rectangle contains the

just enough so that it
public void accommodate (Rectangle other) {[]

public boolean eguals(Cbject obj) {

if (! (ockj instanceof Rectangle))
return false;
4 Rectangle other = (Rectangle) obi;
; if (horizontal == null) —
=1 return (other.horizontal == null);

9 return (horizontal.equals (other.horizontal))
g8 £& (wertical.eguals(other.wvertical)):

Fig. 8. Comparison of two methods and their corresponding floors in the virtual city

way, so the focused element in Eclipse would change whenever
the player enters a new area in the city. Furthermore, we
want to add new analogies to make a clean representation
of the connections between the classes. A mapping file editor
is also on the way to make it possible to create mappings
without manually changing configuration files. We also plan
to make further steps to improve the building speed and add
an auto-build function that detects the changes an rebuilds the
metropolis if needed.

With these improvements we think CodeMetropolis might
be useful outside the classrooms. For example, it could help
developers during refactoring sessions when neither new fea-
tures are implemented nor bugs are fixed, only the underlying
structure of the code is changed to improve the quality of the
software. With the proper mapping of metrics it might help to
detect the possible weak spots of the system.

These features will be evaluated during an elaborated user
study.

VII. SUPPLEMENT MATERIALS

Both the CodeMetropolis Eclipse plug-in and the
CodeMetropolis Minecraft mod are freely available at
our GitHub site:

https://github.com/sed-szeged/codemetropolis
/releases/tag/CMEclipse_1.0.1_beta

This package contains the binary distribution (compiled for
Windows), a detailed documentation, and a sample mapping
file for our tools. The guide to the setup and installation is in
docs\install.html and docs\eclipse.html files.

For further demo scenarios and tools in action we refer the
reader to our YouTube channel:

https://youtu.be/AOnZKu9Zsjg

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]
[11]
[12]
[13]

[14]

276

REFERENCES

S. Diehl, Software visualization: visualizing the structure, behaviour,
and evolution of software. Springer Science & Business Media, 2007.
T. Gyiméthy, R. Ferenc, and 1. Siket, “Empirical Validation of Object-
Oriented Metrics on Open Source Software for Fault Prediction,” in
IEEE Transactions on Software Engineering, vol. 31, no. 10. IEEE
Computer Society, Oct. 2005, pp. 897-910.

R. Ferenc, A. Beszédes, M. Tarkiainen, and T. Gyiméthy, “Columbus
— reverse engineering tool and schema for C++,” in Proceedings of the
IEEE International Conference on Software Maintenance (ICSM 2002).
IEEE Computer Society, Oct. 2002, pp. 172-181.

C. Upson, T. A. Faulhaber Jr, D. Kamins, D. Laidlaw, D. Schlegel,
J. Vroom, R. Gurwitz, and A. Van Dam, “The application visualiza-
tion system: A computational environment for scientific visualization,”
Computer Graphics and Applications, IEEE, vol. 9, no. 4, pp. 30-42,
1989.

R. Wettel and M. Lanza, “Visualizing software systems as cities,” in
Visualizing Software for Understanding and Analysis, 2007. VISSOFT
2007. 4th IEEE International Workshop on. 1EEE, 2007, pp. 92-99.
G. Balogh and A. Beszédes, “CodeMetropolis - code visualisation in
Minecraft,” in Proceedings of the 13th IEEE International Working
Conference on Source Code Analysis and Manipulation (SCAM’13), Tool
Track, Sep. 2013, pp. 127-132.

——, “CodeMetropolis - a Minecraft based collaboration tool for
developers,” in Proceedings of the Ist IEEE Working Conference on
Software Visualization (VISSOFT’13), New Ideas or Emerging Results
track, Sep. 2013, pp. 1-4.

“Minecraft Official Website.” [Online]. Available: http://minecraft.net/
R. Lintern, J. Michaud, M.-A. Storey, and X. Wu, “Plugging-in
visualization: Experiences integrating a visualization tool with eclipse,”
in Proceedings of the 2003 ACM Symposium on Software Visualization,
ser. SoftVis ’03. New York, NY, USA: ACM, 2003, pp. 47-f.
[Online]. Available: http://doi.acm.org/10.1145/774833.774840

A. Bacchelli, F. Rigotti, L. Hattori, and M. Lanza, “Manhattan-3d city
visualizations in eclipse,” ECLIPSE IT, vol. 2011, p. 307, 2011.

A. Biaggi, “Citylyzer-a 3d visualization plug-in for eclipse,” Ph.D.
dissertation, Bachelor’s thesis, University of Lugano, 2008.

“SourceMeter Official ‘Website.” [Online]. Available:
https://www.sourcemeter.com/

“Minecraft End User Licence Agreement.” [Online]. Available:
https://account.mojang.com/documents/minecraft_eula

“Small Refactoring Classroom Exercise Web-
site.” [Online]. Available: https://sewiki.iai.uni-

bonn.de/private/daniel/public/tutorials/small_refactoring



