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Abstract

Dependence clusters are (maximal) groups of source code entities that each
depend on the other according to some dependence relation. Such clusters
are generally seen as detrimental to many software engineering activities, but
their formation and overall structure are not well understood yet. In a set of
subject programs from moderate to large sizes, we observed frequent occurrence
of dependence clusters using Static Execute After (SEA) dependences (SEA
is a conservative yet efficiently computable dependence relation on program
procedures). We identified potential linchpins; these are procedures that can
primarily be made responsible for keeping the cluster together. Furthermore,
we found that as the size of the system increases, it is more likely that multiple
procedures are jointly responsible as sets of linchpins. We also give a heuristic
method based on structural metrics for locating possible linchpins as their exact
identification is unfeasible in practice, and presently there are no better ways
than the brute-force method. We defined novel metrics to be able to uncover
clusters of different sizes in programs, and also to relate programs in terms
of their degree of clusterization. Finally, we present a possible application of
SEA-based dependences in change impact analysis, and investigate the effect
of dependence clusters on the successfulness of this activity.

Keywords: Source code dependence analysis, Dependence clusters, Linchpins
and linchpin sets, Static Execute After, Change impact analysis

1. Introduction

Dependences in computer programs are natural and inevitable. We can talk
about dependences among any kind of artifacts such as requirements, design
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elements, program code or test cases, but dependences within the source code
capture the physical structure as implemented best. A dependence between two
program elements (e.g. statements or procedures) basically means that the exe-
cution of one element can influence that of the other, hence the software engineer
should be aware of this connection in virtually any software engineering task
involving the two elements. One of the fundamental tasks of program analysis
is to deal with source code entities and the dependences between them [1].

Dependences cannot be avoided, but they do not always reflect the original
complexity of the problem. Sometimes unnecessary complexity is injected into
the implementation, which may cause significant problems. A relatively new
research area explores dependence clusters in program code, which are defined
as maximal sets of program elements that each depend on the other [2]. The
current view is that large dependence clusters are detrimental to the software
development process; in particular, they hinder many different activities includ-
ing maintenance, testing and comprehension [3, 4, 5, 6, 7]. The primary problem
is that in any dependence-related examination, encountering any member of a
cluster forces us to enumerate all other cluster members. If large clusters cover-
ing much of the program code exist in a system, then it is very likely that one
cluster member is encountered and consequently a large portion of the program
code should be considered eventually.

The root causes of this phenomenon are not well understood yet; it seems
to be an inherent property of program code dependence relationships. As ap-
parently dependence clusters cannot be easily avoided in the majority of cases,
research should be focused on understanding the causes for the formation of
clusters, and the possibilities for their removal or reduction. Previous work re-
vealed that in many cases a highly focused part of the software can be deemed
responsible for the formation of dependence clusters [4, 5, 8]. Namely, program
elements called linchpins are seen as central in terms of dependence relations,
and are often holding together the whole program. If the linchpin is ignored
when following dependences, clusters will vanish, or at least decrease consider-
ably. To get an initial idea of the linchpin concept, consider our experimental
program ‘compress’ from Section 5, whose elements and their dependences are
shown in Figure 11. Initially, two large clusters are formed in this program as
outlined by the two outer rectangles, but after removing the function compress,
one of the clusters will be disintegrated into a number of smaller ones as indi-
cated by the inner rectangles. The general approach to define a linchpin is to
find a program element whose removal results in the largest decrease of clusters
according to a given metric.

Of course, it is useful if one is aware of such linchpins, let alone be able to
remove them by refactoring the program. However, currently even the first step
(identifying linchpins) is largely an unexplored area. We still do not understand
fully what makes a particular program point a linchpin, how they can be iden-
tified, or whether there is always a single element to be made responsible in
the first place. The possibilities for linchpin removal by program refactoring are
even harder to assess. Sometimes, dependence clusters are avoidable because
they actually introduce unnecessary complexity to the implementation; this is
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what Binkley et al. call “dependence pollution” [2]. In such cases the program
can be refactored using reasonable effort, but this is not always the case.

In this work, we present the results of our empirical investigation of depen-
dence clusters in a range of programs of moderate (up to 200 kLOC) and large
sizes. In the latter category we investigated two industrial size open source soft-
ware systems, the GCC compiler [9] and the WebKit web browser engine [10],
each consisting of over a million LOC.

We are dealing with procedure-level program dependences computed using
the Static Execute After (SEA) approach (on C/C++ functions and methods).
The SEA relation between two procedures is a conservative type of dependence
that takes into account the possible control-flow paths and call-structures in the
program elements [11]. SEA-based dependences can be used, among others,
in software change impact analysis [12, 13]. The main advantage of SEA is
that it achieves acceptable accuracy, yet can efficiently be computed even for
large systems of millions of LOC. We computed SEA-based dependences of all
procedures in our subject programs and investigated the resulting dependence
clusters in terms of their frequency of occurrence and by identifying potential
linchpins in them.

We identified possible linchpins for all programs in the moderate size cat-
egory using a näıve approach that enumerates all possibilities. We argue that
as the size of the programs increases, it is increasingly less probable that only
a single program element can be identified as a linchpin, rather a certain set
of elements should be treated as such. Next, we investigated the feasibility of
using a simple heuristic to identify the linchpins which takes into account local
properties of the program elements (procedures in our case). We found that the
number of outgoing invocations from a procedure was quite a good estimator
for linchpins. Finally, we present a possible application of SEA dependence sets
and related dependence cluster analysis in impact analysis, and verify the effect
of linchpins on the successfulness of impact analysis considering real software
failures of our largest subject program WebKit.

A previous version of this paper was presented at the 2013 Conference on
Source Code Analysis and Manipulation [14]. The current version extends the
conference paper with more background material on the definitions, the subject
programs, measurements and analyses, as well as theoretical analysis of the
clusterization metrics. Further, we now use two kinds of cluster definitions
using both backward and forward dependences, and relate them from theoretical
and empirical point of view. A new research question has also been added
augmenting a previous result by considering the effect of linchpin removal on
the prediction capability of SEA-based impact analysis.

1.1. Summary

The research questions in this article are the investigation of SEA-based
dependence clusters and possible linchpins in our subject programs, heuristic
methods for linchpin identification and in particular an application of the ap-
proach in impact analysis. More precise description of these can be found at the
end of Section 2, after the necessary technical background has been introduced.
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Our findings are summarized as follows:

• We introduce the term clusterization to indicate the extent programs ex-
hibit dependence clustering, and define novel metrics that characterize
this property quantitatively.

• We computed SEA-based dependence clusters for realistic size programs.
Among the moderate-size ones there were many clusters, but only one
of the big programs included significant clusters, which is an interesting
result.

• We were able to identify linchpin elements – ones whose removal results
in the largest decrease in clusterization – using a näıve approach that
enumerates all possibilities. In many cases however, especially with the
big programs, it is not to be expected that only one program element
(procedure) is responsible for the formation of clusters.

• We give a heuristic method based on local procedure metric for linchpin
approximation. We found that the number of outgoing invocations from
a procedure was quite a good estimator for linchpins.

• After reducing the overall dependence set sizes significantly by removing
the possible linchpins in WebKit, in many of the cases we observed no
change in the prediction capability of impact analysis using SEA.

The rest of the paper is organized as follows. Sections 2 and 3 provide
relevant background information about the motivation, related work and our
experimental environment. Cluster identification is discussed in Section 4, while
the topics related to linchpin determination are given in Section 5. Section 6
deals with cluster-related investigations in WebKit including impact analysis.
Section 7 discusses threats to validity, and finally we conclude in Section 8.

2. Background, motivation and goals

2.1. Previous and related work

The phenomenon of dependence clusters was first described by Binkley and
Harman in 2005 [2] based on program slices and Program Dependence Graphs
(PDG) [15, 16]. Initially, they were defined as maximal sets of statements that
all have the same backward slice, which also means that the elements of a
dependence cluster each depend on the other. So the number of elements in a
cluster and their dependence size (which is at least the size of the cluster) are two
important properties of such formations. Later, the definition using dependence
set coincidence has been substituted with the approximation of checking only
the sizes of the dependence sets, which turned out to be a practically usable
approach [6].

The notion of dependence clusters can be generalized to other kinds of depen-
dence types and different program elements at various granularity. Furthermore,
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it seems that dependence clusters are independent of the programming language
and the type of the system [3, 17, 18]. An interesting approach to locate interre-
lated program elements in programs is based on applying community structure
analysis on software dependence graphs [19, 20]. A set of program elements are
treated to form a community if the number of internal connections is more than
expected given the overall distribution of the connections in the whole program.
It is still an open question how the identified community structures relate to
dependence clusters.

In a recent work, Islam et al. [21] introduced coherent clusters which combine
the backward and forward slice-based dependence clusters, and which may be
better predictors of logical functionality of the program.

The current view is that large dependence clusters hinder many different
software engineering activities, including impact analysis, maintenance, program
comprehension and software testing [3, 6, 7]. It has been suggested that large
dependence clusters leading to “dependence pollution” should be refactored [2,
7], but for such opportunities the identification of the dependence cluster causes
is essential. Specifically, the identification and possible removal of linchpins, the
directly responsible program elements, is an active research area. Virtually, the
only existing approach to identify linchpins is based on a brute-force method
that tries all possibilities. Binkley et al. determined a set of conditions which,
if met, will exclude certain program elements from being potential linchpins [8],
and this way search for linchpins can be significantly optimized. We employ
heuristic methods to identify linchpins, and we are not aware of any previous
work that used a similar approach.

In a previous work [13], we investigated the concept of dependence clusters
on procedure-level program dependences computed using the Static Execute
After (SEA) approach. We computed SEA-based dependence clusters in the
WebKit system and used them to verify the connection to the performance of
change impact analysis in a practical situation, and to enhance our test case
prioritization method based on code coverage analysis. In the present work,
WebKit was one of our subject systems as well.

2.1.1. Static Execute After

The SEA relation [11] is a conservative type of dependence on procedures
that does not calculate nor use data dependences, but takes only the possible
control-flow paths and call-structures inside procedures into account exclusively.
This approach is more efficient at the expense of being a bit less accurate than
slicing, and is defined as follows. For program elements (procedures, in our case)
f and g, we say that (f, g) ∈ SEA if and only if it is possible that any part of
g is executed after any part of f in any one of the executions of the program.

More formally, we define the SEA relation involving two procedures (f, g)
as follows:

SEA = CALL ∪ SEQ ∪RET ∪ ID

where
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(f, g) ∈ CALL
}
⇐⇒ f (indirectly) calls g

(g, f) ∈ RET (or, g (indirectly) returns into f)

(f, g) ∈ SEQ ⇐⇒ ∃h : f (indirectly) returns into h, and
there is a control-flow path to where h
(indirectly) calls g

(f, g) ∈ ID ⇐⇒ f = g

The identity relation ID is included because code dependence relations are
usually defined as reflexive relations. Also, as can be seen from the definition
above, CALL and RET are inverses of each other reflecting the fact that a called
procedure returns to the caller eventually. The inverse of the SEA relation as
a whole is sometimes referred to as the Static Execute Before (SEB) relation.
This way, SEA may correspond to the notion of static forward slice while SEB
is analogous to the static backward slice.

For computing SEA relations, we use a lightweight program representation
called the Interprocedural Component Control Flow Graph (ICCFG) [11, 17]. It
is composed of individual Component Control Flow Graphs (CCFGs) for each
procedure of the program. Each CCFG represents a procedure’s intraprocedural
Control Flow Graph (CFG) [22] but only call site nodes and corresponding flow
edges are retained. It contains one entry node and several component nodes
which are connected by control flow edges. Component nodes are obtained by
collapsing strongly connected subgraphs into single nodes. If the call sites in a
component node are part of a loop the component will have a reflexive control
flow edge. The ICCFG consists of the CCFGs of each procedure and in addition
it includes call edges from each call site (a component) to the entry nodes of
the called procedures.

We illustrate the ICCFG program representation on a small example pro-
gram from Figure 1a. Figure 1b shows the corresponding ICCFG graph, in
which nodes with the function names represent function entry nodes, while the
darkly filled nodes correspond to the components. These are connected by
control flow (solid) and call edges (dotted). Procedures getIndex, printLast
and printParam are represented only by their entry nodes. We can easily see
that this program representation is suitable for deriving SEA (and SEB) rela-
tions. For example, we can follow that printParam may be executed after the
procedures main, getIndex (and printParam itself), while printLast may be
executed after all the procedures of the program including itself.

To compute the ICCFG we start from the interprocedural CFG of the pro-
gram (with basic blocks computed), which can be obtained using traditional
compiler algorithms and which is available in many source code analysis front
ends. Then, the strongly connected components are obtinained and the ICCFG
is constructed, which can be performed efficiently compared to the System De-
pendence Graphs used for program slicing [16].

For computing a dependency set for a particular procedure, a reachability
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texts[] = {...}

procedure getIndex(out index){

read(index);

}

procedure printParam(in index){

write(texts[index]);

}

procedure printLast(){

write(texts[texts.length]);

}

procedure main(){

i = 0;

while (i >= texts.length)

getIndex(i);

if (i != 0)

printParam(i);

printLast();

}

(a) A small example program

printLast

printParam

main

getIndex

(b) The ICCFG of the example

Figure 1: A program and its ICCFG representation

algorithm can then be used on the ICCFG, similar to the SDG reachability
algorithm to compute program slices. One can use either of two variants of
the algorithm depending on the application. The basic algorithm can compute
only one dependence set on demand [11], while an optimized version reuses
already completed dependencies and produces the whole SEA/SEB relation
globally [17], which is more suitable for our empirical investigations.

In earlier work [11], we showed that the SEA relations can be a good ap-
proximation of the static slices. In that experiment we used a suite of small to
medium C programs, and calculated the precision of our relation compared to
the results of the static slicing as the golden standard of static impact analysis.
To this purpose we investigated the differences in the sizes of the respective de-
pendence sets. The precision values we measured were very good, meaning that
there is a comparably small amount of additional dependencies produced by the
SEA method due to its conservative nature. An example of a false dependency
can be seen in our sample program from Figure 1a, where printLast is not de-
pendent on procedures getIndex and printParam because there is no data flow
between them, however SEA identifies them as potential dependences. Since
SEA does not produce false negatives, we always get 100% recall.

In another empirical experiment we showed that the precision of the SEA
approximation is acceptable at procedure or higher level but not at statement
level [23] (the dependencies among the statements computed by the program
slices are assimilated on higher levels).
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2.1.2. SEA-based dependence clusters

Similar to the definition of slice-based dependence clusters, we regard two
procedures to be in the same SEA-based cluster if their dependence sets coincide.
This kind of cluster definition is usual as the maximal mutual dependence-based
cluster definition is prohibitively expensive to compute (which is essentially a
clique identification problem). It is also a sensible definition because the SEA
relation is reflexive, so if two procedures have the same dependence set, then
they depend on each other as well. This definition has the additional good
property that it gives a partitioning of the procedures into clusters. We define
our SEA-based dependence clusters more formally as follows.

Let P = {p1, p2, . . . , pn} be the set of procedures in a program X (for sim-
plicity, we assume n ≥ 2). The SEA relation of program X is a binary relation
defined on its set of procedures, i.e. SEA ⊆ P × P , according to the definition
above. With n̄ = {0, 1, . . . , n}, we give the following auxiliary definitions:

For any procedure p, two sets of procedures are associated with it: the set
of procedures that are dependent on p (i.e. the procedures that are successors
of p according to SEA), and the set of procedures on which p depends (i.e. the
procedures that are predecessors of p according to SEA). The former is referred
to as the SEA-set of p, while the latter is its SEB-set (as mentioned, these
notions are analogous to forward and backward slices, respectively). Because
the SEB relation is defined as the inverse of SEA, in the following we will use
the notations SEA and SEA−1 for simplicity. Additionally, we use a notation
that emphasizes the direction of the dependences as follows:

⇀

D(p) = {q ∈ P | SEA(p, q)}

using forward dependences, and

↼

D(p) = SEA−1(p) = {q ∈ P | SEA(q, p)}

using backward dependences.
As mentioned, in the context of slice-based clusters often the approximation

is used to check the sizes of the dependence sets instead of actual set coinci-
dence [2, 6]. Although dependence set size difference is a good approximation
to set difference in the case of SEA as well (we verified this and found negligi-
ble difference with the smallest sets only), in order to ease formal definition of
cluster metrics we define two types of dependence clusters, one with set coinci-
dence (I) and one with size comparison (S), both having backward and forward
versions. For the latter we will need an additional definition of the dependence
set size, the weight functions

⇀
w and

↼
w:

⇀
w : P → n̄,

⇀
w(p) =

∣∣∣⇀D(p)
∣∣∣ and

↼
w : P → n̄,

↼
w(p) =

∣∣∣↼D(p)
∣∣∣

The formation of dependence clusters of a program based on SEA depen-
dences is in fact a partitioning of the procedure set P (not being transitive,
the SEA relation itself does not exhibit partitions). For both forward and
backward dependence sets we define two kinds of clusters, one by assigning two

8



procedures to the same cluster (partition) if they have the same dependence set,
and another by considering only the sizes (weights) of the dependence sets of the
procedures. For forward dependence sets, the definitions are the following:

⇀

I =
{{

q ∈ P |
⇀

D(q) =
⇀

D(p)
} ∣∣∣ p ∈ P

}
⇀

S =
{{

q ∈ P | ⇀
w(q) =

⇀
w(p)

} ∣∣∣ p ∈ P
}

For any c ∈
⇀

S the weights of its members are equal, so we can assign the
same weight to cluster c itself. Clearly

⇀

D(q) =
⇀

D(p) implies
⇀
w(q) =

⇀
w(p), so

⇀

I
is a refinement of

⇀

S. This also means that the weight function can be extended
naturally to

⇀

I as well. Note, however, that the weight and the size of a cluster
are different notions, the former may also be referred to as dependence set size.

The corresponding backward definitions can be derived from the ones above
easily, and the same considerations apply hence we did not include the definitions
here.

Note, that there is no obvious relationship between SEA-based and slice-
based dependence clusters. From our preliminary investigations we found that in
many cases similar cluster structures will be formed, but we plan to investigate
this more systematically in the future, and see if our findings can be applied to
other notions of dependence clusters.

2.2. Problem statement

Despite the advances in dependence cluster research so far, we do not fully
understand the nature of these formations yet. It is not even clear whether
clusters are good or bad in every situation; when do they represent dependence
pollution. As noted above, clusters are usually treated as detrimental to software
processes, however they carry useful information about program functionality
and structure, and they may not always be avoided. In the case of linchpins,
researchers started investigating practical methods for their identification and
potential removal only recently. Consequently, more research is needed in the
area before considering applications in practice. With this work we contribute
to the topic by using our SEA-based dependences and providing further useful
instruments for the investigation of dependence clusters.

Monotone Size Graphs (MSG) and the related “area under the MSG” met-
ric [2] are often used to characterize dependence clusters in programs. An MSG
of a program (see Figures 2–6 for examples) is a graphical representation of all
dependence sets belonging to the procedures of the program by drawing the sizes
of the sets in monotonically increasing order along the x axis from left to right.
Then the area metric mentioned above is the total sum of all dependence set
sizes. In the case of SEA-based dependences the total number of dependence
sets equals the number of procedures in a program, and this number is also the
maximal dependence set size. In these figures we can see MSGs of such depen-
dences in which – despite its rectangular shape – the same number of procedures
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is represented on both axes. The most straightforward way of interpreting this
graph is to observe dependence clusters as plateaus, whose width corresponds
to the cluster size and the height is the dependence set size. Note, that it may
happen that the same dependence set size incidentally corresponds to different
sets which will not be noticeable in this graphical representation. We verified
the amount of such incidental correspondence and found it negligble as is the
case with slice-based clusters.

It has not yet been investigated thoroughly whether the MSG and its asso-
ciated area metric are good enough descriptors of the level of clusterization. We
further elaborate on this concept with SEA-based clusters and verify the ways
of characterizing dependence clusters using this and other kinds of metrics. A
related investigation was performed by Islam et al., who defined alternative de-
scriptions of the clusterization in form of various graphical representations [24].
These approaches, however, resort to visual investigation only.

As noted above, it is believed that a single linchpin can be associated to
a program with dependence clusters in many cases (see, for example, program
‘compress’ in Section 5, Figure 11). In this work we investigate the effect of
joint removal of linchpin candidates in cases where the removal of a single el-
ement does not produce the desired result. An additional problem is linchpin
identification itself. The näıve linchpin identification algorithm – a brute-force
method trying all possible solutions one by one – is not scalable. Hence, pre-
vious research that employed fine grained analysis could deal with programs of
up to 20 kLOC [4] or 66 kLOC using the advanced method [8]. In a similar
fashion, our SEA-based analysis makes it possible to investigate programs with
sizes of a magnitude larger thanks to the higher level granularity and a simpler,
albeit less precise, analysis method. However, this method is still not usable for
bigger programs as is the case with our two large systems.

We articulate the following Research Questions:

RQ1 How common are large SEA-based dependence clusters in a variety of
programs of different sizes and how can we categorize the programs more
objectively in terms of their degree of clusterization?

RQ2 How typical it is that cluster structures are held together by at most a few
clearly identifiable procedures (linchpins), i.e. ones whose removal reduces
program clusterization significantly?

RQ3 Currently the exact linchpins can be determined by brute-force only,
which is infeasible for bigger programs; Are there any low-cost heuristic
methods that are able to approximate linchpins with acceptable accuracy?

RQ4 How is the prediction capability of SEA-based impact analysis affected
if possible linchpin nodes are disregarded during calculations?

3. Experiments setup

We collected a set of programs that served as the subjects following these
principles: the set had to be comparable to other researchers’ and our own
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previous results, our existing tools had to be able to handle them with ease,
the programs had to be from different domains, and their sizes had to vary
in a wide range. Based on these requirements, we fixed the language of the
programs to C/C++, and in the first instance started with the collection of
programs Harman et al. used in their experiments [6]. We could reuse 60%
of these programs but also extended this set to finally arrive at 29 programs
written in C (we will refer to this set as the moderate size programs). The basic
properties of these programs can be seen in the first three columns of Table 1.
We provide names, lines of code (LOC) and the number of procedures (NP).
The purpose of the other columns will be explained later.

The second part of our data set consisted of two large industrial software
systems from the open source domain. The first one was the WebKit system,
which we have already used in some of our previous investigations [13, 25].
WebKit is a popular open source web browser engine integrated into several
leading browsers by Apple, KDE, Google, Nokia, and others [10]. It consists of
about 2.2 million lines of code, written mostly in C++, JavaScript and Python.
In this research we concentrated on C++ components only, which attributes to
about 86% (1.9 million lines) of the code. In our measurements we used the Qt
port of WebKit called QtWebKit on x86 64 Linux platform. We performed the
analysis on revision 91555, which contained 91,193 C++ functions and methods
as the basic entities for our analysis.

The other large system we used was the GNU Compiler Collection (GCC),
the well-known open source compiler system [9]. It includes front ends for C,
C++, Objective-C, Fortran, Java, Ada, and Go, as well as libraries for these
languages. The GCC system is large and complex, and its different components
are written in various languages. It consists of approximately 200,000 source
files, of which 28,768 files are in C, which was the target of our analysis. In
terms of lines of code, this attributes to about 13% of the code, 3.8 million lines
in total (note that in C, the size of individual functions is usually larger than
that of an average C++ method, hence this difference in lines of code compared
to WebKit). We chose revision 188449 (configured for C and C++ languages
only) for our experiments, in which there were 36,023 C functions as the basic
entities for our analysis.

In our experiments we used our custom build tools as well as some existing
components. To extract base program representations, as parser front ends we
used Grammatech CodeSurfer [26] in the case of moderate size programs and
Columbus [27] for the big programs. For the SEA dependence computation,
our existing implementation of the SEA algorithm using ICCFG graphs [17]
was applied. The benefit of using Columbus with ICCFG graphs for the bigger
programs is that it is more scalable due to higher granularity of analysis.

We modified the SEA computation tool by adding the capability to ignore
one or more procedures (as if they were removed), which was required for linch-
pin determination.

Since we needed to process and store a large number of dependence sets,
we implemented additional tools (for MSG computation, cluster metrics com-
putation, etc.) that employ efficient specialized data structures and algorithms.
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Table 1: Moderate size subject programs with clusterization information, sorted by Visual
class and NP

Program LOC NP: # of Visual Clusterization metrics
name procedures class area entr regu regx

lambda 1766 104 t low

epwic 9597 153 t low

tile-forth 4510 287 t low

a2ps 64590 1040 t low

gnugo 197067 2990 t low

time 2321 12 n med

nascar 1674 23 n med

wdiff 3936 29 n med

acct 7170 54 n med

termutils 4684 59 n med

flex 22200 153 n med

byacc 8728 178 n med

diffutils 17491 220 n med

li 7597 359 n med

espresso 22050 366 n med

findutils 51267 609 n med

compress 1937 24 s high

sudoku 1983 38 s high

barcode 5164 70 s high

indent 36839 116 s high

ed 3052 120 s high

bc 14370 215 s high

copia 1168 242 s high

userv 8009 255 s high

ftpd 31551 264 s high

gnuchess 18120 270 s high

go 29246 372 s high

ctags 18663 535 s high

gnubg 148944 1592 s high
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Specifically, we used the SoDA library [28] to store and process the dependence
sets.

We computed the SEA-based dependence sets for each procedure in the
programs and for both directions (i.e. SEA-sets and SEB-sets) and determined
the two types of associated dependence clusters, as well as the corresponding
sets of clusterization metrics. The calculation of the final results and the whole
measurement procedure was performed using shell scripts and spreadsheets.

We will describe our set of experiments and additional details regarding the
measurements and tools in the corresponding sections.

4. Existence of Dependence Clusters

4.1. Identification of clusters

To obtain the dependence clusters and investigate the level of clusterization
we computed the SEA-based dependence sets for both forward and backward
directions for all procedures in our subject programs. The structure of our
dependence sets is fortunately simple: for each procedure in a program we com-
pute the corresponding set of procedures it is in SEA relation with. Hence, the
total number of dependence sets equals the number of procedures in a program,
and this number is also the maximal dependence set size (note that for other
types of dependence sets, for example program slice based dependences [2], this
is not necessarily true). Altogether we computed 23,970 dependence sets for the
moderate size programs, 182,386 for WebKit and 72,046 for GCC.

In the following, we will investigate the clusterization of programs, which
is the extent they exhibit dependence clustering. To express clusterization we
followed two approaches:

Visual classification is carried out by (subjective) visual inspection of the
MSGs, and assigns one of three levels to each program: low, medium and
high.

Clusterization metrics are rigorously defined measures that are designed to
express clusterization in easily quantifiable numerical form (values from
[0, 1]).

For the moderate size programs, the fourth column (Visual class) of Table 1
shows the results of the visual classification we performed by inspecting the
MSGs of the programs. Overall, we found 5 programs to be low, 11 medium,
and 13 highly clusterized. Figures 2–6 show the actual MSGs organized into
the three levels of clusterization, which were used to perform the classification.
For each program, we provide MSGs computed for both forward and backward
dependence-based clusters (denoted by *-succ and *-pred, respectively). The
differences between the two directions will be discussed shortly.

A cluster reveals itself as a wide plateau consisting of a number of equal-
sized dependence sets. Typically, in a low class we cannot identify any plateaus,
while for the high class there are one or two big ones, the rest being medium. In
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this graphs, we chose to display only the sizes of the dependence sets and this
way the same-size but different sets cannot be distinguished. As mentioned,
same dependence set size may incidentally correspond to different sets, however
this is very unlikely except for the smallest sets, so this will not distort our
visualization.

Let us consider as examples three typical programs from each category. Vi-
sual classification reveals the following:

• Program epwic (Figure 2) does not show any plateaus, the landscape
ascends in small increases.

• findutils (Figure 4) contains some moderately wide plateaus. They are
not significant individually, but altogether cover much of the width of the
landscape.

• For the program gnubg (Figure 6) we can see a single plateau occupying
nearly the whole width of the landscape.

4.2. Measuring clusterization

Beyond visual interpretation, we will need an exact numerical expression
(metric) of the level of clusterization and its relative change for two reasons.
First, this way an automatic classification of programs could be made with
the help of appropriate thresholds. Second, the metrics can be applied for the
analysis of linchpins and measuring the effect of their removal (discussed in
subsequent sections).

The obvious choice of metric to be used in these kinds of experiments is based
on Binkley and Harman’s work [2], who measured the area under MSG and used
the change of this metric to analyze linchpins (we also rely on this metric and
denote it by area in the following). The apparent weakness of area is that
it increases if all dependence sets are increased by the same amount, although
intuitively clusterization should not be different in such cases. Programs with
no dependence clusters can have both small and large dependence sets, and vice
versa.

We experimented with alternative metrics to express clusterization in pro-
grams that are independent of the actual dependence set sizes and could reflect
this property (a preliminary version of the metrics has been used in previous
work [29]). We define the measures so that they are comparable to each other
and yield a value in the interval [0, 1]. For all metrics, 0 is set to mean that
the level of clusterization is close to none, while 1 means that clusterization is
maximal.

We define two variants for each metric corresponding to the two directions
of the base SEA relation and the associated dependence clusters following the
definitions above. However, in the following we will provide formal definitions
only for the forward direction because all metrics for the opposite direction
can be derived in a straightforward way by changing the direction of the base
dependence cluster sets.
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gnugo-pred gnugo-succ

a2ps-pred a2ps-succ

tile-pred tile-succ

epwic-pred epwic-succ

lambda-pred lambda-succ

Figure 2: Low clusterization
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termutils-pred termutils-succ

acct-pred acct-succ

wdiff-pred wdiff-succ

nascar-pred nascar-succ

time-pred time-succ

Figure 3: Medium clusterization, part 1
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findutils-pred findutils-succ

espresso-pred espresso-succ

li-pred li-succ

diffutils-pred diffutils-succ

byacc-pred byacc-succ

flex-pred flex-succ

Figure 4: Medium clusterization, part 2
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bc-pred bc-succ

ed-pred ed-succ

indent-pred indent-succ

barcode-pred barcode-succ

sudoku-pred sudoku-succ

compress-pred compress-succ

Figure 5: High clusterization, part 1
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gnubg-pred gnubg-succ

ctags-pred ctags-succ

go-pred go-succ

gnuchess-pred gnuchess-succ

ftpd-pred ftpd-succ

userv-pred userv-succ

copia-pred copia-succ

Figure 6: High clusterization, part 2
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4.2.1. Definition of metrics

We define the different clusterization metrics as follows (the metrics always
have to be interpreted in the context of a given program). Consistently with
earlier descriptions,

⇀
area has the following definition:

⇀
area =

1

n2

∑
c∈

⇀
I

|c| · ⇀
w(c)

Our next metric is based on an analogy of traditional entropy and measures
the “(dis)order” in the system of dependence sets in terms of their sizes. We
consider a program more clusterized in this respect if there is a greater number
of equal-sized dependence sets, i.e. when the entropy is lower (note, that this
inverse relationship is required to obtain comparable metric intervals with the
other metrics). Our entropy-based clusterization measure is formally defined as:

⇀
entr = 1−

∑
c∈

⇀
S f(c) · log2 f(c)

log2 1/n
, where f(c) =

|c|
n

The above can be simplified to the following formula:

⇀
entr =

∑
c∈

⇀
S |c| · log2 |c|
n log2 n

Finally, our two metrics referred to as regularity metrics are based on the
number of partitions. The idea is that the fewer partitions there are, the larger
their size must be, so there have to be more large clusters among them. In-
versely, more partitions have to take more “regular” different sizes hence they
will represent low clusterization. This metric has two variants, the first is based
on

⇀

S, the other (extended,
⇀

regx) is based on
⇀

I.

⇀
regu =

n−
∣∣∣⇀S∣∣∣

n− 1

⇀
regx =

n−
∣∣∣⇀I∣∣∣

n− 1

As noted earlier, all metrics are normalized (i.e. their value is a real number
from the interval [0, 1]), which is useful to be able to compare the metrics of
programs with different size to each other.

4.2.2. On the difference between forward and backward

In Figures 2–6 we can observe that the MSGs corresponding to the two dif-
ferent directions for a given program generally do not differ very much. Also,
measurements showed that the metric values based on either the backward or
the forward cluster definitions are very close to each other. Table 2 shows the
absolute differences in the different metrics, which we may describe as practi-
cally negligible. This is an interesting finding because theoretically an arbitrary
difference could be possible, and one might easily produce a counterexample.
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Table 2: Differences between backward and forward metric values for the moderate size pro-
grams

area entr regu regx

minimum 0.000 0.000 0.004 0.004
maximum 0.000 0.264 0.300 0.200
average 0.000 0.056 0.051 0.039

Note, that metrics for area will always be equal, as:

⇀
area =

1

n2

∑
c∈

⇀
I

|c|·⇀w(c) =
1

n2

∑
p∈P

⇀
w(p) =

1

n2

∑
p∈P

↼
w(p) =

1

n2

∑
c∈

↼
I

|c|·↼w(c) =
↼

area.

However, in the case of the other metrics in turned out that the difference may be
arbitrarily large between the forward and backward variants. To demonstrate
this, we are going to construct examples with essentially the largest possible
differences between the forward and backward cases. As an aid to these examples
a graph-based representation of the SEA relation will be used, so that we will
have an (a, b) edge in the graph for a, b ∈ P if and only if b ∈ SEA(a).

Let us consider first the regu metric. We build a directed graph
⇀

G1 with
vertex set P as follows.

• For every p ∈ P we include a loop edge
⇀
pp ∈ E(

⇀

G1).

• For every i ∈ {1, 2, . . . , n − 1} we choose a random subset Ri ⊂ P \ {pi}
independently of other choices, so that |Ri| = i. Then we have all edges
⇀
piq where q ∈ Ri.

Observe that the outdegree of pi is exactly i + 1 for every 1 ≤ i ≤ n − 1,
and the outdegree of pn is 1. Hence, the sizes of the outneighborhoods are dif-
ferent, and the regu value for this graph is zero. The sum of the outdegrees is
n(n + 1)/2, and each outgoing edge is also an incoming edge for the other end-
point of the edge. However, the indegrees are randomly and evenly distributed
among the vertices of the graph. On average, every indegree is (n + 1)/2, and
standard probabilistic reasoning (for example, using a martingale inequality by

Azuma [30]) shows that with positive probability each vertex of
⇀

G1 has indegree
in the range[

(n + 1)/2− 6
√

n log n , (n + 1)/2 + 6
√
n log n

]
This implies that the number of different outdegrees is at most 1 + 12

√
n log n.

Hence, the number of backward clusters is at most 1+12
√
n log n, and the regu

value is at least
n− 1− 12

√
n log n

n− 1
≈ 1 if n is not small.

Next, we construct a directed graph
⇀

G2 with vertex set P that will prove to
be a good example for regx and entr. In the following, let k = dlog2 ne.
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• For every p ∈ P we include a loop edge
⇀
pp ∈ E(

⇀

G2).

• Let A = {p1, p2, . . . , pn−k}, and let B = P \ A = {pn−k+1, . . . , pn}.
For easier notation, we rename the vertices of B, that is, we let B =
{b1, b2, . . . , bk}.

• For every pi ∈ A we have the
⇀

pibj edge in E(
⇀

G2), if in the binary repre-
sentation of i the jth bit is 1.

Observe that with this construction we made sure that the outneighborhoods
of the vertices of A are all different. That is, we have at least n− k + 1 forward
dependence clusters, and at least n − k of these have size 1. On the other
hand, the inneighborhood of every vertex of A is A itself, that is the number
of backward dependence clusters is at most 1 + k, furthermore, one of these
clusters has size at least n− k. These facts imply, using the definitions of regx
and entr, that for both metrics, the forward clusterization is very close to zero,
while the backward clusterization is very close to 1, if n is not small.

As a conclusion, although theoretically arbitrary difference could be possible
with the forward and backward variants of the metrics, in practice it is negligi-
ble. This is probably due to the fact that real programs do not produce arbitrary
dependence graph structures but specialized ones, however it would be an in-
teresting future line of research to investigate this phenomenon more deeply. In
the following we will work with only forward dependence (SEA-based) clusters.

4.2.3. Comparison to the visual classification

We computed all four metrics for all of our moderate size subject programs
and compared the rankings of the procedures based on these individual metrics
to the visual classification of the programs. These values are shown in the
last four columns of Table 1 (to ease interpretation, the gray areas inside the
small rectangles are set to be proportional to the metric values). Note that the
ordering of the programs in this table was done based on the visual ranking
first, then on the number of procedures inside each rank group.

Visual clusterization created three groups with 5 (low), 11 (medium), and
13 (high) elements, respectively. We would expect an ideal clusterization metric
to yield values in such a way that the 5 smallest would be assigned to the “low”
level, the middle 11 would be assigned to “medium”, and the largest 13 to the
“high” level group. Based on these criteria, the clusterization metrics can be
characterized by counting how many programs they fail to assign to the group
given by visual ranking. The counts are as follows: area → 10, entr → 7,
regu → 15, regx → 8. The differences in these counts can also be observed
by visual inspection of the metric values. It can clearly be seen that area and
regu are significantly worse than the other two metrics, while the difference
is not so great regarding entr and regx. entr is more precise on low and
medium clusterization levels, while regx performs better on highly clustered
programs.

Based on the above observations we will use entr and regx to measure
the degree of clusterization in the rest of the paper, and will mostly rely on
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entr where low or medium clusterization is concerned and use the other for
high clusterization.

4.3. Dependence clusters in the big programs

So far, we have been dealing only with the moderate size programs, but our
dataset contains two big programs as well, which need more thorough investi-
gation. The MSGs for these two programs, GCC and WebKit, can be seen in
Figure 7.

GCC WebKit

Figure 7: MSGs for GCC and WebKit

The differences between the two programs are clear. GCC belongs to the
low level clusterization category, while WebKit exhibits some clusterization (it
would belong to the medium category in the visual ranking). The entr values
are 0.4347 for GCC and 0.6980 for WebKit, while regx is 0.3134 and 0.3552,
respectively, which supports our initial (visual) classification for these two sys-
tems. While entr shows a notable difference, in the case of regx it is not so
significant, which may also reflect our finding from above that entr was better
for low or medium clusterization.

It would be interesting if we could find any properties of these systems that
justify their classification in terms of dependence clusters. In other words, what
makes GCC not having significant dependence clusters as opposed to WebKit?
In previous work [13], we analyzed the structure of source code and the depen-
dences in WebKit in a slightly different context. After consulting with some
key WebKit developers and showing them the members of the clusters, we came
to the conclusion that clusterization is related to architectural concepts in the
system.

We speculate that the most notable difference between the two systems in
this respect is that while WebKit is essentially a library consisting of highly
coupled elements for the distinct functional areas, GCC is a complex applica-
tion but with much clear behavioural paths that are independent of each other.
In WebKit, most complex functionalities are implemented in a set of highly in-
teracting procedures (for example, webpage rendering is performed by several
hundred procedures calling each other recursively). On the other hand, GCC
implements functionalities like compiler optimization passes that are more iso-
lated from each other. In addition, the two systems are written in different
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programming paradigms (C vs. C++) which may influence their internal struc-
ture. More detailed analysis of the causes for this difference remains for future
work.

In the remaining parts of this paper we will be concerned with the identifica-
tion of linchpins, however for programs of this size only the heuristic approaches
are feasible. Hence we will subsequently use WebKit only to verify the effect of
our heuristic methods, while GCC will play no role from now on.

5. Linchpin determination

Informally, linchpins are those elements that are responsible for keeping large
clusters together, i.e. whose removal causes the clusters to break up into smaller
ones or to disappear. Earlier we introduced clusterization metrics that allow us
to define linchpin elements more precisely: in a program, the linchpin is a pro-
cedure whose removal results in the largest decrease in clusterization according
to a given metric.

First, we identified the linchpins for our moderate size programs using the
brute-force method that enumerates all procedures. As the biggest challenge in
this topic is how to locate linchpins using more efficient methods, in the next
experiment we investigated approximate heuristic methods for this task and
compared their results to the exact results of the brute-force method. Since
we could not apply the brute-force method to our large program WebKit, we
verified the successfulness of the heuristic method on it in the final step.

5.1. Linchpin identification by brute-force

The simplest way to identify a possible linchpin in a program is to remove
procedures one by one and see which one brings the biggest gain according to
some metric. In the following, gain will mean the amount the respective metric
is reduced in percentage: m−m′

m [%], m being the original metric value and m′

the value after linchpin removal.1

Specifically, we computed all SEA dependence sets for a program by re-
moving each procedure, i.e. by ignoring the candidate procedure and all of
its dependences during dependence set calculations. We compared the entr
and regx metrics of the reduced versions of the program to the corresponding
metrics of the original program. This calculation was then repeated for all pro-
cedures in the program with these two metrics. To get these results we had to
compute over 15 million SEA sets altogether, but this was possible to complete
in hours on an average server machine.

For simplicity, we will present our results for regx in the cases when the
results were similar for both metrics, and will note explicitly in other situations.
For the purposes of the remaining discussion, the procedure that caused the
biggest reduction in the regx metric was considered to be the linchpin.

1Note, that we do not actually refactor linchpins and get equivalent programs but we
merely remove the procedures in order to identify them.
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Table 3: Linchpin removal gains as measured by regx

Minimum Maximum Typical
gain gain gain

Low clusterization 5% 20% —
Medium clusterization 18% 55% 20%
High clusterization 13% 99% 37%

Table 3 summarizes results of linchpin determination for different cluster-
ization classes of moderate sized programs. It shows how much reduction in
the regx clusterization value could be attained in the worst case (minimum
gain) for a given clusterization class, and similarly how much was the maximum
gain. It also indicates how much reduction could be attained if the few outlier
programs with least gain—4 in the medium and 3 in the high class—are ignored
(typical gain).

One would expect that programs with low clusterization do not contain linch-
pins, i.e. there is no procedure whose removal significantly reduces the already
low clusterization. This was not entirely supported by our findings, as there
were cases when as much as 20% gain could be achieved. This is not negligi-
ble, but as noted earlier, regx performs better at high clusterization levels, so
results for the low clusterization level are not entirely relevant. However, the
achieveable gain is definitely larger for the medium and high classes, and gains
for highly clusterized programs vary widely.

An interesting observation we made was that in many programs the pro-
cedure with the highest gain was not the only one causing a big change in
clusterization; there were several others in the row that performed comparably.
More precisely, typically the first 1–3 procedures caused a high drop in clusteri-
zation, while the others followed with much less gain. Figure 8 shows the overall
results for the moderate size programs with high clusterization, where the gain
of individual removal of the first 30 procedures is shown. As can be seen, in
many cases the second and the third procedure also behaves as a linchpin, not
only the first one.

In Table 4, we listed the actual linchpins identified (the first 1–3 proce-
dures are shown that showed significant difference to the remaining ones). The
second column shows the regx gain after removing the linchpin with the high-
est gain, which was quite significant (at least 37%) in almost all of the cases,
43.7% on average for this class of programs. The last columns of the table show
the names of the respective procedures identified (which, except for compress,
gnubg and go, were the same for entr as well). It is interesting to observe that,
as names themselves suggest and a manual analysis of the programs confirms,
most of the identified procedures indeed have central role in the programs. It
is an open question, however, how many of these procedures could be deemed
responsible for avoidable dependence clusters, in other words, dependence pol-
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Figure 8: Highest reductions gained by individual linchpin removal for moderate size programs
with high clusterization

lution [2]. Expectedly, procedures acting as the main procedures could not be
easily refactored.

5.2. Heuristic determination of linchpins

We estimated that the brute-force method to determine the potential linch-
pin for the WebKit system would take about 70 years to complete using our
strongest servers. So, obviously, we must find alternative methods to find (or at
least approximate) the linchpins to enable practical application of dependence
cluster related research.

The existence of dependence clusters and any related linchpins are deter-
mined by the structure of the dependences under investigation (SEA and the
underlying ICCFG program representation in our case). Therefore, it is to be
expected that by investigating the topology of the underlying dependence graph
one could gain insight into what makes a program point a potential linchpin.

The problem does not have an obvious solution, so we wanted to investigate
whether local properties of the dependence graph nodes (procedures) could be
leveraged to approximate lichpins. We used the following heuristic metrics as po-
tential indicators: NOI (Number of Outgoing Invocations from the procedure),
NII (Number of Incoming Invocations to the procedure), sum of the former two
(SOI=NOI+NII), and their product (POI=NOI·NII). We tried the sum and
the product because we expected that in linchpin formation both incoming and
outgoing dependences could be important.
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Table 4: Linchpins for moderate size programs with high clusterization

Program Max Procedure1 Procedure2 Procedure3

gain

barcode 57% Barcode Encode

bc 37% dc func execute

compress 37% compress main spec select action

copia 99% scegli seleziona

ctags 13% createTagsForFile

ed 53% exec command

ftpd 43% parser

gnubg 52% HandleCommand

gnuchess 53% main parse input

go 14% evalshapes callfunc get reason for moves

indent 47% indent main loop handle the token

sudoku 41% rsolve

userv 22% parser servicerequest main

To compare the actual linchpins identified by the brute-force method to the
performance of the heuristic metrics, we related two values for each procedure
in the programs: a clusterization metric (entr or regx) after removing the
procedure and one of the heuristic metrics (NOI, NII, SOI, POI) associated with
the procedure. We then used Pearson and Kendall correlation checks between
the corresponding vectors of these values.

We do not provide detailed data for these measurements because they all
pointed out the same best heuristic estimation. Instead, in Table 5 we show
Pearson correlation results for all programs. We marked the strongest corre-
lation values for each program underlined; the last two rows show the average
correlation values and the counts of strongest cases for each metric. It can
clearly be seen that the NOI metric (Number of Outgoing Invocations) is the
best estimator for both entr and regx. The best values are negative in the
NOI columns, which means that for the procedures of a program there is a high
correlation between a high NOI value and a low clusterization value resulting
from the removal of that procedure. In other words, the higher NOI value a
procedure has, the more likely it is that its removal would decrease the cluster-
ization considerably, i.e. the more likely it is that the procedure is a linchpin.

In the case of entr and regx metrics, in 59% and 79% of the cases NOI
showed the strongest correlation; the average correlation was −0.36 and −0.63
(with standard deviations 0.4 and 0.18), respectively. The second best was POI
showing strongest correlation in 38% and 14% of the programs with average
correlation values −0.26 and −0.42. NII performed poorly, which was surprising
because we expected NOI and NII will perform similarly. The promising results
for NOI are strengthened by the fact that the highest NOI value predicts a
linchpin correctly in most of the cases: in the highly clustered group in 12 out
of 13 programs, in the medium group in 7 out of 11 programs the procedure
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Table 5: Pearson correlation between heuristic metrics and the entr and regx metric. Un-
derlined numbers indicate strongest correlation in the corresponding block.

entr regx
Program NOI NII SOI POI NOI NII SOI POI
lambda 0.30 0.53 0.50 0.58 -0.61 -0.49 -0.64 -0.57
epwic 0.28 0.12 0.32 0.32 -0.50 -0.02 -0.48 -0.32
tile 0.48 0.46 0.62 0.63 -0.27 -0.18 -0.29 -0.28
a2ps -0.27 0.03 -0.16 -0.04 -0.57 -0.01 -0.39 -0.40
gnugo -0.45 0.04 -0.06 0.01 -0.53 -0.01 -0.13 -0.05
time 0.70 -0.29 0.47 0.70 -0.55 0.08 -0.47 -0.12
nascar -0.13 -0.18 -0.23 -0.41 -0.77 0.15 -0.76 -0.33
wdiff 0.04 -0.23 -0.02 -0.50 -0.89 0.18 -0.89 -0.66
acct -0.67 0.21 -0.52 -0.53 -0.67 0.13 -0.57 -0.46
termutils -0.35 0.18 -0.21 -0.13 -0.46 0.17 -0.33 -0.20
flex -0.79 0.07 -0.70 -0.54 -0.88 0.08 -0.78 -0.62
byacc -0.11 -0.01 -0.08 -0.20 -0.72 0.05 -0.42 -0.40
diffutils -0.42 -0.02 -0.36 -0.51 -0.66 -0.02 -0.56 -0.57
li -0.07 -0.17 -0.18 -0.18 -0.09 -0.15 -0.17 -0.18
espresso -0.55 0.03 -0.33 -0.46 -0.70 0.04 -0.42 -0.43
findutils -0.25 0.07 -0.20 -0.04 -0.34 0.07 -0.29 -0.01
compress -0.72 0.04 -0.63 -0.49 -0.89 -0.09 -0.85 -0.63
sudoku -0.69 0.22 -0.26 -0.40 -0.79 0.20 -0.35 -0.52
barcode -0.59 0.07 -0.55 -0.65 -0.71 0.06 -0.66 -0.74
indent -0.64 0.04 -0.45 -0.17 -0.69 0.05 -0.48 -0.16
ed -0.67 0.03 -0.49 -0.56 -0.82 0.04 -0.59 -0.62
bc -0.72 0.04 -0.56 -0.57 -0.75 0.05 -0.58 -0.59
copia -0.72 -0.66 -0.98 -1.00 -0.70 -0.68 -0.98 -1.00
userv -0.49 0.02 -0.35 -0.40 -0.57 0.04 -0.39 -0.39
ftpd -0.74 0.03 -0.53 -0.40 -0.78 0.02 -0.57 -0.42
gnuchess -0.54 0.07 -0.47 -0.31 -0.55 0.06 -0.48 -0.29
go -0.49 0.03 -0.16 -0.31 -0.58 0.04 -0.18 -0.33
ctags -0.42 0.03 -0.18 -0.23 -0.53 0.04 -0.23 -0.24
gnubg -0.66 -0.07 -0.55 -0.68 -0.69 -0.07 -0.57 -0.71
average -0.36 0.03 -0.25 -0.26 -0.63 -0.01 -0.50 -0.42
strongest 17 0 1 11 23 0 2 4

with the highest NOI value turned out to be a linchpin. What causes NOI to
be the best estimator will be discussed in the next section.

As a statistical test to support our choice for NOI, we make a null-hypothesis
that the other three metrics are at least equally good. For instance, consider
NOI and NII with entr measure. Out of the 28 programs, in 22 instances
NOI has stronger correlation than NII. Using Chernoff’s bound we get that the
probability of NII being at least as good as NOI is at most 0.01035. Chernoff’s
bound shows that NOI is in fact better with a probability of at least 0.9235
than any of the other three with respect to any of the considered measures.

Another interesting observation we made about the data is that for smaller
programs the agreement between the NOI metric and both clusterization met-
rics was slightly better, suggesting that this heuristic will perform better for
smaller programs. Figure 9 shows how the correlation values between NOI and
entr as well as NOI and regx change as a function of program size. Only
programs with high clusterization are shown because in the other cases the re-
lationship was not so evident. Particularly, from left to right, we can see the
average correlation values for the programs ordered increasingly by their number
of procedures. Although not drastically, but a tendency of worsening correlation
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can clearly be observed. This could also indicate the need for combined iden-
tification of linchpins as outlined at the end of this section. The exact causes
of this phenomenon are not clear yet, they are probably related to the different
topologies of small and bigger programs.

Figure 9: Correlation change with program size of highly clusterized programs

Once we got these results about the best linchpin estimator heuristic met-
ric, we applied it to WebKit to see whether we can achieve significant entr or
regx metric reduction and hence potentially find linchpins in that system too.
In the first instance we calculated the NOI metrics for WebKit and applied the
filtered dependence set calculation excluding the first 10 procedures with high-
est NOI values individually, thus obtaining a set of 10 clusterization reduction
values. Unfortunately, after this experiment we could not observe any notable
improvement in clusterization: even the largest entr and regx reductions were
negligible and visual inspection could not reveal anything either. Then we tried
the other heuristic metrics as well in a similar way, but we got even worse re-
sults, so we decided to continue the research with the combined exclusion of
procedures as discussed in later sections of this paper.

5.3. On the connection between NOI and linchpin procedures

To explain the high correlation between the NOI metric and clusterization
we made a few observations and performed additional measurements as follows.

1. The high linchpin prediction capability of NOI was observed for depen-
dence clusters computed based on forward dependences (

⇀

I). Our first
hypothesis was that there could be a dual property that linchpins in clus-
ters based on backward dependences (

↼

I) could be predicted by high NII
values. However, this turned out to be false, which directly follows from
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the observation that the clusterization metrics for the two types of clusters
were essentially identical (see Section 4.2).
Consequently, what we only have to show is why procedures with small
NOI values are unlikely to be linchpins in either of the dependence cluster
types. We use results of our study on the structure of the (forward) SEA
relation, namely SEA = CALL ∪ RET ∪ SEQ ∪ ID. Clearly, the ID
component of the relation does not affect the clusterization aspects, so
we concentrate on the typical composition of SEA sets regarding calling
structures and sequential executions.

2. We empirically investigated how the SEA sets of procedures with high
NOI values are typically composed. We found that the ratio of CALL ∪
RET in the SEA relations positively correlates with NOI: Pearson corre-
lation was between 0.45–0.87 with the median of 0.58 for programs where
the correlation of NOI to the linchpins was at least 0.5. In other words, a
large NOI value implies a small SEQ component in the SEA set and vice
versa. This will be an important basis for our arguments that follow.

3. We illustrate the basic mechanisms how a linchpin node in the ICCFG
graph breaks up a large dependence cluster. Figure 10 shows a typical
situation. Assume that we remove a procedure p ∈ P, and this results in
a significant change in the clusterization of the SEA dependences in some
metric. That is, there is at least one cluster C such that after removing p
it will fall apart into at least two subclusters, C1 and C2 (here C1, C2 ⊂ C
and C1 ∩ C2 = ∅). For example, there is an a ∈ C1 and a b ∈ C2 such that
before the removal of p we had SEA(a) = SEA(b), but after the removal
SEA′(a) 6= SEA′(b) (here SEA′ denotes the new dependence relations
after removal). In this case we also say that the removal of p separates a
and b.
Separation happens in the following way. There is an execution of the
program in which first some part of b is executed, then some part of p is
executed, finally, some part of q ∈ SEA(b) is executed. However, after p
is removed, no part of q is executed after any part of b, while a still has a
part that is executed before some part of q, hence, SEA′(a) 6= SEA′(b).
This will happen because SEA(a) does not require p to include q, while
SEA(b) does.

4. Now, observe the following important fact: if (p, b) 6∈ CALL ∪ RET and
(b, p) 6∈ CALL∪RET, then the removal of p will not separate b from any
other a ∈ P \ {p}. Namely, by definition of SEQ, there must be a caller
procedure p′ that calls p and subsequently all other q ∈ SEQ(p) as well,
so no matter if we remove p the other callees will still remain parts of the
common dependence set.
Let us illustrate this situation on a program from our data set, which is
‘compress’, the smallest program with high clusterization. Figure 11 shows
a simplified version of this program’s ICCFG graph (essentially a call-
graph), in which procedure compress is the linchpin. The rectangular areas
represent the clusters before (the two outer ones denoted by cluster #1
and cluster #2) and after removing the linchpin (the inner boxes). This
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procedure has the highest NOI value as expected, and if it is removed, all
its callees will be separated from the original dependence cluster and it
will significantly collapse.
However, consider now procedure getbyte, which also has the same large
SEA set (it is in the same cluster). The difference is that it comes with a
large SEQ component and not many callers and callees so after removing
it the dependence cluster size will be reduced but it will not be broken.

5. To summarize, the necessary properties for p to be a linchpin are as follows.
First, it has to have a large SEA set (this is similar to one of the findings
by Binkley et al. [8]). But merely the size of the SEA set is not enough: we
measured very low correlation (in the range 0–0.15) between the SEA size
and clusterization. This large SEA set must include a large CALL∪RET
component for p to be a linchpin. If the NOI value of p is small, we expect
that a large proportion of its SEA set is a SEQ component, which will not
be separated by the removal of p making it unlikely a linchpin (while we
cannot completely rule out this possibility). On the other hand, if the NOI
value of p is large then the proportion of the CALL∪RET component of
its SEA will be large as well and the SEQ component relatively small. In
this case it will be more likely that the removal of p will separate many
procedures.

6. Finally, a large CALL ∪ RET component does not necessarily have to
come from a large number of direct calls (high NOI). Theoretically, it may
happen that there are many more indirect calls and returns. But we found
that procedures with higher NOI values do not include comparably more
indirect calls: the ratio of CALL ∪ RET in all the transitively accessible
procedures usually positively correlates with NOI (the median is 0.5).

This essentially explains why is high NOI a likely predictor for a linchpin.
However, since this is very hard to show analytically for a general case, this find-
ing should be generalized with caution. Theoretically, many different situations
are possible for a general program structure, however it seems that for realistic
programs these special properties of dependences are more probable. We expect
that similar phenomena would be observed for slice-based dependence clusters
as well, but this should be verified separately.

5.4. Reducing clusterization by sets of linchpins

Linchpin identification and removal can be rephrased in graph theoretical
terms as well. Given a graph G on an n element vertex set V, we say that
S ⊂ V is a separator set, if G \S contains only small connected components. If
G does not contain certain substructures (large excluded minors, to be precise),
then it must contain a small separator set. Still, in many cases the size of the
separator set grows with n, usually it is about O(

√
n) [31].

While clusters in a SEA graph (or other graphs associated with a program)
are more complex than connected components (for instance, most dependence
graphs including SEA are not transitive), it is easy to see an analogy between
the two kinds of problems. We think that analogously to separation of graphs,
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Figure 10: Illustration of how a linchpin breaks a dependence cluster

one cannot always expect to find a single linchpin vertex whose removal can
significantly decrease clusterization. Rather, one should look for a hopefully
small subset of vertices that somehow glue together the graph, and deleting
them results in small clusters.

Graph theory also tells that not every graph has a small separator, for exam-
ple, one has to delete a large number of vertices from a so-called expander graph
in order to make it disconnected. We expect that the graphs associated with
programs are not expander graphs, and therefore the deletion of a relatively
small subset can reduce clusterization. Finding such a linchpin set effectively
seems to be challenging.

To verify this theoretical concept, we performed empirical measurements
with sets of linchpins as opposed to only one on some representative programs
from our moderate size subjects. In this series of measurements, three programs
from the medium level clusterization group (findutils, termutils, nascar),
and three other from the high clusterization group (go, ed, sudoku) were se-
lected. Moreover, care was taken to include programs with different sizes in both
groups. We then took the first 10 procedures of a program with the highest NOI
values, performed the calculation of the dependence sets while ignoring the first
0, 1, 2, . . . , 10 procedures together and investigated the resulting clusterization
metrics. We were interested to see whether there was indeed one linchpin that
brought significantly more gain alone than together with its followers, or were
the differences not so significant between these first 10 candidate groups. (Note,
that in Section 5.1 we investigated the individual gains of linchpin candidates,
while here we are interested in their joint effect.)
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Figure 11: Simplified ICCFG (call) graph of program ‘compress’

Figure 12 shows the entr metric for the cumulative removal of the first k
procedures (k-element linchpin sets), where the different k values are represented
on the horizontal axis. One can observe that at most the sets with the first three
procedures are notable and require further investigation. It can also be observed
that for the three programs of medium level clusterization, the overall decrease
in the metric is less than for the other group, as expected. More interestingly,
it seems that regardless of the level of clusterization, program size plays an
important role in the rate of decrease. Consider programs sudoku and the ten
times larger go, for instance. We can see that for sudoku a significant decrease
of clusterization occurs right after the first procedure, while for go even the
second procedure contributes to the decrease significantly. As an example from
the other group, the same effect can be observed for nascar and findutils.
(The anomalous behavior of increasing clusterization can be expected in certain
cases, the effect is more pronounced in the case of nascar due to its small size.)

6. Cluster-related investigations in WebKit

In this section we present the results of our detailed investigations performed
on the WebKit system. In particular, we deal with two topics: linchpin identi-
fication and the application of clusters in impact analysis.
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Figure 12: Changing of the gains for the first 10 linchpins removed together

6.1. Linchpins in WebKit

Findings from the previous section suggest that in many cases, especially for
large programs, not only one program element (procedure) could be responsible
alone for the formation of dependence clusters but a set of program elements
together.

We performed similar experiments with the WebKit system in the hope to
identify linchpin sets that significantly reduce clusterization. We expected that
it would need more than only 2-3 procedures to achieve the same effect but we
did not know how many. We tried removing several first procedures with the
biggest NOI values but could not observe significant change in the clusterization
up to until we removed about the first 200-250 procedures together. Removing
256 methods with the highest NOI values resulted in entr reduced by 7.2%,
and regx metric value reduced by 19.1% (area was reduced by 32.2%). In
other words, the dependence sets collapsed this way, also changing dependence
cluster formations, which can be observed in Figure 13.

Here, we can compare the original dependence clusters and the ones after
removing these procedures (note, that in both cases the total number of pro-
cedures are represented on both axes, which is in the second case smaller by a
comparatively negligible amount, hence the graphs are still comparable to each
other). Although we cannot state that the clusters completely disappeared, the
change is significant. To check if this result can indeed be attributed to the spe-
cial role of the procedures with the top 256 NOI, we performed validation tests
with three sets of randomly chosen 256 procedures. We found that randomly fil-
tering procedures does not bring any improvement to the clusterization, change
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WebKit full WebKit top 256 NOI

Figure 13: WebKit MSGs before and after removing top 256 NOI procedures

in entr was 0.04%, in regx it was 0.25% on average.
It remains for future work to analyze in depth these linchpin sets and their

effect on clusterization. From preliminary investigation, it seems that the clus-
ters did not really disappear, they just changed their structure. Some of the
procedures with high NOI could represent some very general connecting proce-
dures, which do not really bear significant functionality (for example, we noticed
a procedure that consisted of only a big switch statement and a huge number of
method calls). When removing such procedures, the core dependences respon-
sible for the main functionalities will remain, although the overall size will be
smaller.

6.2. Reduced SEA sets in impact analysis

One of the primary applications of dependence relations such as SEA is in
software change impact analysis [12]. Here one seeks to predict the required
propagation of changes made to the system based on the initial changes and
following the dependences (in this context, we call the (SEA) dependence set
the impact set). If the change propagation is imperfect, then residual defects
will be present in the system, so dependence based impact analysis has great
significance in practice.

In an earlier work, we successfully applied SEA sets for change impact anal-
ysis experimentation in the WebKit system [13]. In particular, we used real
defect data based on regression test execution result histories, and related them
to changes that introduced and later eliminated defects. We checked whether the
SEA impact sets of the failure introducing changes contained the modifications
at the fixing revisions (we call this the prediction capability of impact analysis).
In the present work, we recreate previous results using the reduced dependence
sets of WebKit with the heuristic linchpin identification of the preceding section,
and verify the effect of this reduction to the prediction capability.

Our basic approach is the following (the details are described in the men-
tioned publication). We identify revision pairs from the version control system,
in which the first revision is treated as the failure introducing one and the sec-
ond as the failure fixing one. This process is based on monitoring the regression
test results and revisions where some of the test cases change their status from
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‘pass’ to ‘fail’ or the opposite, respectively. Our hypothesis is that the impact
set of the modified procedures at the revision the error was introduced contains
the procedures that were modified between this point and the revision where it
was fixed.

In the original experiment, we examined 33,542 revisions altogether, which
corresponds to a development period of over a year. After we identified a number
of revision candidates we had to filter them due to various reasons, so we arrived
to a total list of 240 revision pairs for further investigation. We then computed
the corresponding SEA impact sets for the changes at the first element of each
pair and counted the number of correctly predicted procedures by the SEA
set at the second element of the pair. The prediction numbers varied greatly
within the whole range of 0-100%; the average was 83.9% with a deviation of
27.7%. This means that, in the original experiment, on average about 83.9% of
the failure fixing procedures have been correctly identified by the corresponding
impact sets. The downside was that the SEA sets were often large. In terms
of percentage of the total number of procedures it was just below 19% (17,203
procedures) on average. This can be a problem when using the impact sets
for manual change propagation, but for other applications such as automatic
regression test selection and prioritization they still can be useful. Consequently,
methods to reduce the impact set sizes, such as based on dependence cluster
and linchpin identification, are important in this application. Earlier we did
not investigate the possibilities for the impact set size reduction, but the results
from the preceding section could be reused for this purpose.

We performed the above experiment again, but this time using the reduced
set of SEA dependences after ignoring our heuristic linchpin candidates: proce-
dures with the top 256 NOI values. On average, the impact sets of the changes
at the investigated revisions became smaller by 12.4%. At the same time the
overall prediction reduced to 77.7% (from 83.9%), but if we look at individual
changes we see that in 77.5% of the cases there was no change in the predic-
tion, while a significant reduction in impact set size could be observed. There
were very few cases when the prediction degraded significantly, in only 7 cases
the prediction reduced by more than 50%. We attribute this result also to the
special nature of the removed dependences, namely it seems that they were too
general for these particular cases in change propagation.

To go into the details of dependence set size reduction and prediction capa-
bility of impact analysis, Figure 14 shows the data points for all 240 investigated
revision pairs on an XY plot. Each dot corresponds to one measurement point
where the X dimension shows the reduction rate of the prediction, while Y is
the set size reduction rate, both in percentages. We can observe that even in the
case of more significant size reduction the predicition capability did not reduce
significantly: there were many data points with 0 prediction loss with various
size reductions. Generally, any reduction in impact set size is welcome even if it
involves a certain amount in precision loss, but data points close to the Y axis
are especially good.
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Figure 14: Dependence set size reduction and impact analysis prediction capability (X: pre-
diction loss, Y: reduction rate)

7. Threats to validity

We believe that the range of subject programs we used is representative for
C/C++ as it ranges over various sizes and the domains are different. How-
ever, it would be important to see whether these findings can be generalized to
other languages and types of dependences. The imprecision of our SEA-based
dependences could slightly distort the results due to dependences that could
have been avoided using a more precise method. However, as previous research
showed [11], such false dependences are expectedly tolerable. We did not inves-
tigate if similar results would have been obtained using different, for instance,
slice-based clusters.

We generalized our findings regarding the heuristic method based on the
NOI metric to the WebKit system. We could not verify how good this heuristic
actually performs on this system as we do not know the exact linchpin data, we
could only state that some improvement has been obtained.

Our findings related to the presence of linchpin sets instead of individual
linchpins showed that this is more probable with bigger programs. However, this
highly depends on the system itself so this observation should be generalized
with caution.

We verified the results in an application related to change impact analysis,
however it would be beneficial if more applications are tried out to find out
about practicaly uses of dependence clusters in general.
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8. Discussion and conclusions

This paper presented an empirical investigation of SEA-based dependence
clusters. We may now answer the research questions set forth in this paper,
however, our contributions to the better understanding of dependence clusters
raised a number of additional questions.

Answering RQ1, we found that large dependence clusters occur frequently in
programs regardless of their domain and size, however there are also programs
which exhibit very little clusterization. We gave precise definitions for four
clusterization metrics and used them throughout to evaluate the results of our
experiments. The results so far enable us to expect that the clusterization of
programs can be measured with greater precision in the future. Additionally,
we plan to experiment with more complex metrics that are less sensitive to the
cluster- and dependence set sizes.

RQ2 dealt with identifying one or more linchpins in programs. We were able
to identify linchpin procedures using the brute-force method for all moderate
size programs, but it is still to be explored in which cases we must seek for
multiple linchpins and not only one. What we found is that as the program size
increases it is less probable that only one program element is responsible for the
formation of clusters.

Exhaustive exploration of possible linchpin combinations is computationally
even more hopeless than for a single case. Hence additional, more sophisticated
heuristic methods should be explored. Specifically, analyzing certain proper-
ties of the dependence graphs in terms of the graphs’ topology is promising.
Answering RQ3, we found that a specific metric based on graph structure, the
Number of Outgoing Invocations for a procedure (NOI) is quite a good heuristic
estimator for the linchpin, and the highest NOI value indeed predicts linchpins
correctly in most of the cases. We also tried to explain what causes this met-
ric to be such a good predictor. Investigating other more sophisticated but
still efficient methods is among our future plans, including the use of machine
learning classifiers based on graph topology properties. Involving the hierar-
chical structure of the programs (packages, classes and methods) could also be
promising.

Assessing the fitness of a particular heuristics is not simple. In the case of
large programs where we do not really know what are the linchpins, we can
only indirectly assess the heuristic. The correlation of our linchpin prediction
metric to the clusterization metrics gradually degraded as the system size grew.
For WebKit, we could achieve significant clusterization reduction (although the
three large clusters did not completely vanish) only after we removed the first
256 procedures with the highest NOI metric.

We are still looking for the causes of the dependence clusters in WebKit,
however. Although our heuristics gave interesting insights into the structure of
these clusters, further investigation of the internals of this software is required.
For this task we will consult WebKit developers, who already noticed that there
are some elements in the identified clusters which they cannot explain. We need
to investigate whether these are the consequence of the imprecision of the SEA
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algorithm or they represent some more hidden dependences in the system.
Recent advances in dependence cluster research with slice-based clusters will

give additional themes for future research, for instance the identification and
analysis of coherent clusters [21], which will probably be observable in SEA-
based clusters as well, but it is a question if they would better represent logical
structures in code.

We think that further research is needed to find out the connection of depen-
dence clusters and the structures identified by methods of community structure
analysis on software dependence graphs [19, 20]. Since this method is based
on probabilities and is “less strict” we could possibly reuse related results in
linchpin identification.

In this work we did not systematically investigate to decide if a dependence
cluster reflects a dependence pollution [2] or not, and if the associated linchpins
could be actually refactored, which is one of our future research directions.

A possible way to assess the role of dependence clusters would be through
actual software engineering applications. In this work we started this line of
research with change impact analysis (RQ4) and found that dependence set
sizes can be significantly decreased by removing linchpin candidates (by about
15%) without seriously affecting the prediction capability of impact analysis. We
speculate that by removing linchpins (which are very general, collecting program
points like main control flow routers) the program dependences become more
specialized, but the actually important dependences are retained. However, we
need to perform additional experiments on other real life problems to verify the
experimentation results, e.g. for test case prioritization [13]. A study involving
human evaluation could be a possible way as well to gain more insight into the
benefits and risks related to dependence clusters.
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