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University of Szeged, Department of Software Engineering
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Abstract

Slicing C programs has been one of the most popular
ways for the implementation of slicing algorithms; out of
the very few practical implementations that exist many deal
with this programming language. Yet, preprocessor related
issues have been addressed very marginally by these slicers,
despite the fact that ignoring (or handling poorly) these
constructs may lead to serious inaccuracies in the slicing
results and hence in the comprehension process. Recently,
an accurate slicing method for preprocessor related con-
structs has been proposed which – when combined with ex-
isting C/C++ language slicers – can provide a more com-
plete comprehension of these languages. In this paper, we
overview our approach for this combination and report its
benefits in terms of the completeness of the resulting slices.
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1. Introduction

There is a seemingly small, but important factor which
differentiates C and C++ from other programming lan-
guages from the program understanding point of view: the
preprocessor. It is not strictly part of the C/C++ language
syntax, but it cannot be separated from it. The absence of
the constructs and the possibilities provided by the prepro-
cessor would make programming virtually impossible with
these two languages.

The two forms of source code (original and preprocessed
form) are always mentioned as an obstacle in program com-
prehension. Many automated tools designed to carry out
program analysis and maintenance tasks work on prepro-
cessed code, which results in mistakes at program points
where directives are used. Researchers in some fields need
to cope with the preprocessor, for example a refactoring
transformation cannot be performed safely without prepro-
cessor analysis [24, 25]. Even a transformation as simple

as a “rename variable” requires the analysis of preprocessor
configurations [10].

Program slicing [19, 26] is seen as a very powerful tech-
nique applicable in various fields related to program com-
prehension and maintenance in general. These include
specifically: change impact analysis [4], program decom-
position [9], software re-use [5, 27], debugging [1] and re-
gression testing [3, 18]. However, preprocessor issues are
many times completely neglected by slicing algorithms, or
at least, handled very poorly. Features like file inclusion
or conditional compilation are sometimes handled in an ac-
ceptable way, but macro expansion is a different story. The
best what existing slicers do about them is to mark those
program points coming from macros and display this infor-
mation to the user. CodeSurfer [11] for instance – which
is known as the probably best static C/C++ slicer available
as of today –, displays information on macros appearing in
slices, but is unable to involve them in slicing itself. A re-
markable exception is the Ghinsu C slicing tool [14] which
implements notable features for comprehending programs
with preprocessor constructs, but unfortunately this project
seems not be maintained anymore.

In recent work, the notion of macro slicing has been in-
troduced [23]. In this approach slices can be computed on
the structure of preprocessor macro calls and macro defi-
nitions. This is enabled by a special dependency relation
defined on the call-definition structure. When a macro call
is expanded, the initial (or toplevel) macro name is replaced
with the replacement text of the macro definition. The defi-
nition may contain further macro calls which are expanded
as well, so the full expansion of a toplevel macro may in-
volve many definitions. In the opposite direction the text of
a macro definition may be used (through other definitions)
in many macro calls. Separating the relevant replacements
in a specific macro usage is the task of macro slicing (in the
following, we refer to this kind of slices as macro slices).

However, with this method the slices are computed on
preprocessor constructs only hence the slices are restricted
to macro constructs. Having seen the weaknesses in this
respect of existing C/C++ language slicers existing today,



it seemed promising to combine macro slices and regular
C/C++ language slices computed based on the dependen-
cies between the syntactic elements of the source code (re-
ferred to as language slices is the following). The com-
bined slice contains more accurate information about the
C/C++ program as we will see in the remaining of the pa-
per, which is very important from program comprehension
point of view. In this connection a special role is played
by the toplevel macro calls (which are in program text, not
in macro definition text). A toplevel macro call is a part of
macro slices, but when it is fully replaced, the resulting text
is part of the C/C++ program, therefore it may be a part of
the C/C++ slices as well. This way the endpoint of a macro
slice serves as a starting point for a language slice. We can
also define a similar combination in the opposite direction,
in which case a C/C++ slice may be a starting point for pre-
processor slices. (See below for a motivating example.)

In this paper, we discuss the method and the issues of
connecting slices, and report the results of our first experi-
ments. Next section contains a motivating example, then we
introduce macro slices and the connection of the two kinds
of slices in Section 3. Section 4 reports the empirical results
of our implementation, while Section 5 contains a discus-
sion about related research activities. Finally, in Section 6
we summarize our contribution.

2. Motivating example

Macro slices can be used, among others, for change im-
pact analysis purposes. The developer usually has to carry
out small changes during the system maintenance tasks, but
in a large software the effect even of a small change is hard
to predict. Let us assume that the small program part to be
changed is a macro definition. Our first motivating prob-
lem is to find the points of a C/C++ program which are af-
fected by a changed macro definition. The changed defini-
tion may be used in (called from) other macro definitions,
which can be called again from many points of the program
(these are conceivable as macro slices). Finally, the calls
that use the definition are replaced and become part of the
C/C++ language constructs. But these constructs may affect
other parts of the program, which may be captured by tradi-
tional C/C++ language slices. In other words, the affected
part of a program consists of both preprocessor-related ele-
ments and C/C++ program elements. The union of the for-
ward macro slice starting from the given definition and the
forward language slice starting from replaced parts gives all
the affected points. A small example illustrating this issue
can be seen in Figure 1.

The slicing criterion for macro slicing is the macro def-
inition at line 1. The corresponding macro slice contains
lines 1, 3 and 4, while the macro call at line 4 is the connec-
tion between the two kinds of slices. During preprocessing,
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Figure 1. Small example on macro and regu-
lar forward slices (note that there is a line break in line
3 to fit in width)

the macro call DECLI(i,2) is expanded to unsigned
int i = 2;, which is a C/C++ program element. The
replaced macro is the slicing criterion for C/C++ language
slicing, and the language slice contains lines 4 and 5. The
combined slice contains all lines of the example code except
line 2, which means that changing the macro definition at
line 1 affects four lines. Failure to identify these additional
dependencies can be a problem in change impact analysis,
for example.
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Figure 2. The example source code after pre-
processing

The combination of slices works in the opposite direction
as well. Figure 2 shows the example code after the prepro-
cessing phase. The macro definitions are hidden from the
compiler. Let the slicing criterion contain the variable i in
line 5. The C/C++ backward slice algorithm does not know
about macros, the slice contains lines 4 and 5. Using the
fact that line 4 comes from macro replacement, a backward
macro slice can be computed on line 4, which contains lines
4, 3, 2, 1. The combined backward slice contains all lines
of the original example, instead of two lines of the C/C++
slice. An example where this can cause problems is that if
this additional information is not available in a debugger,
the user could not track down to all possible causes of a
failure debugged.

In the next section we overview our approach to compute
such combined slices.

3. Combining C/C++ preprocessor and lan-
guage slices

The connection between the two types of slices can be
performed in both forward and backward directions. In the



forward direction the slicing criterion is a macro definition.
The macro slice contains toplevel macro calls as connection
points, the replaced toplevel macro calls are (part of) C/C++
program elements, which program elements serve as slicing
criteria for regular language slicing. The final slice contains
both preprocessor and C/C++ program elements. The back-
ward direction is similar but here the slicing criterion is a
C/C++ program element, and the language slice may con-
tain program elements which are in turn parts of the result
of a macro call. These macro calls are used for macro slic-
ing and the final slice contains the language slice and all the
macro slices as well.

In this section, we first overview macro slices and then
we describe our approach for combining the two kinds of
slices.

3.1. Macro slices

For a detailed description of macro slices we refer to our
previous work [23]. Here, only an overview is presented
with some figures and definitions.

Slices are usually defined on a graph structure which rep-
resents dependency relations between program elements.
Accordingly, the structure of macros is defined by using sets
and relations, and a dependency graph is defined based on
macros using the dependency relation which is appropriate
for slicing macros.

The following terms are used to formalize the macro re-
placements (see the example in Figure 3, the macro call re-
sults in 1 2):
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Figure 3. Example macro call

• macro definition – the place of the #define directive.
The definition consists of three parts: macro name, op-
tionally parameters, and macro body (also called re-
placement list).

• macro invocation – the place in the program where a
macro name is used (where the name is to be replaced

with the macro body from the definition). The invoca-
tion may contain macro arguments in the case of func-
tion like macros because there may be more macro in-
vocations in the same line with the same name.

• macro expansion – the process of macro replacement:
macro arguments are also expanded and replaced.

• full macro expansion - the starting from the point of a
macro invocation there may be many expanded macros
since the macro body may contain further macro invo-
cations. On full macro expansion we mean all the ex-
pansions which are necessary to get the final result of
the beginning macro invocation.

• toplevel macro invocation - starting point of a full
macro invocation (a full macro expansion necessarily
starts outside the #define directives).

Let us construct a set called MC containing macro in-
vocation nodes and macro definition nodes. Both types of
nodes are multi nodes (node sets) in the sense that they
contain many preprocessor elements, but for the sake of
simplicity and readability we use them as one node. The
first type is based on toplevel macro invocations (filled with
black in Figure 4): each node contains a toplevel invocation
and the invocations which are in its arguments. The second
type is based on macro definitions: each node contains a
macro definition and the macro invocations contained by its
macro body. The set is constructed in order to eliminate all
relations other than macro calls. Based on macro calls, the
dependency relation on the MC set can be defined as fol-
lows (the mcall (x ) = y means that macro x calls definition
y):

Definition 1 dep : MC → MC, dep(a) = b if and only if
mcall(b) = a.
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Figure 4. The mcall and the dep relations on
the simplified MC set

An example set with relations can be seen in Figure 4.
The dependency arrow points to the opposite direction than



the mcall arrow. Informally a node is dependent from an-
other if and only if there is a macro call from inside the first
node to the second node.

After the preparations let us construct the Macro Depen-
dency Graph (MDG). The nodes of the graph are the el-
ements of the MC set and the directed edges are created
from the dep relation. The edges are multiple edges be-
cause there may be more full macro expansions which have
a common subset of dependency edges, but we have to dis-
tinguish them. Edge coloring is used to sign the edges that
belong to a particular full macro expansion.

Definition 2 Let MDG = (V, E, I, C) be the Macro De-
pendency Graph, where V is the set of nodes (vertices) and
E is the set of edges, I ⊆ V × E is the incidence relation,
for ∀e ∈ E the {e ∈ V : vIe} set has two ordered elements
(the endpoints of the edge), and C ⊆ E ×N is the coloring
relation which assigns the same color to the edges which
belong to the same full macro expansion. The set E con-
tains multiple edges colored with different colors, if more
full expansions would use the same edge.

It is important to note that the MDG is an acyclic graph
even when it contains subgraphs of the whole software sys-
tem.

Producing slices can be done on the MDG. For a slicing
criterion < p, x > there is a node k ∈ MC in the depen-
dency graph which represents the macro definition x at the
program point p. The forward macro slice contains exactly
those program points which are reachable from k along col-
ored edges in the graph.

Definition 3 Let < p, x > be a slicing criterion where x

is a definition and k ∈ MC the node corresponding to x.
Let Col be the set of colors which are used on dependency
edges starting from k:
Col = {c ∈ N|c ∈ C(e) : e ∈ E, ∃l ∈ V : (k, l) ∈ I }.
The forward macro slice of the criterion is the set S = {y ∈
MC|y ∈ dept

i(k), i ∈ Col}, where dept

i is the transitive
closure of dep colored with i.

Backward macro slices can be defined similarly, the slice
starts at a macro call and contains all definitions which are
used during the full expansion of the macro.

A small example source code and dependency graph can
be found in Figure 5. The dependency edge colors are
shown as numbers. The forward macro slice based on the
definition of Y as a criterion contains the definition of X and
the second macro invocation X2.

3.2. Connecting slices

The combination of macro and language slices requires
a common set of nodes and edges to be defined with the
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Figure 5. Example code and MDG: (a) pro-
gram code (b) MDG with edge coloring

dependency relation as well. C/C++ language slices are
usually computed on some kind of a Program Dependence
Graph (PDG) [16], or more generally on a System Depen-
dence Graph (SGD) introduced by Horwitz et al [12]. The
SDG models interprocedural dependencies between proce-
dures where each procedure is modelled with a PDG. The
MDG can be constructed to contain dependencies from all
compilation units in a software, there is no need to define
two kinds of graphs for the macros.

The MDG can be used in combination with the SDG
as follows. Both of them have a well defined structure,
the only problematic point is the connection. The MDG
is based on the original source code, while the SDG con-
tains C/C++ language elements. Practically it is based on
the preprocessed code (.i file). The toplevel macro invo-
cation (call) serves as a connection point (see the motivat-
ing example in Section 2.). The macro call is replaced with
the replacement text. From that point the source code is
really in C/C++ language and consists of C/C++ program
elements.

Unfortunately, there is no obligation for the replacement
text to be a C/C++ syntactical unit. Moreover, the SDG is
built up of program elements, but contains various kinds of
nodes like declaration, expression, return and so on. The
macro replacement may be a sequence of statements which
is represented by more nodes in the SDG, and the macro
may even be a constant which is only a part of an SDG node.
This means that there is a many-to-many relation between
macro replacement texts and SDG nodes. Some kind of
dependency relation can be defined between the SDG nodes
that at least partially come from a macro replacement and
between the macro call. Let repl (a) be the replacement text
of macro call a, where repl(a) consists of characters with
their position in the preprocessed file. (The SDG node b also
contains characters with their position in the preprocessed
file.)

Definition 4 Let depcomb : MDG → SDG, a ∈ MDG,
b ∈ SGD, dep(a) = b if and only if a is toplevel, ∃x : x ∈
repl(a) ∧ x ∈ b.
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Figure 6. Forward direction of combining slices - dependency relation between macros and C/C++
program points

An SDG node depends on an MDG node if at least, one
of its characters comes from the replacement of the MDG
node.

Using the existing definitions, the combined slice can be
defined. Let depm be the macro dependency and depcc be
the C/C++ dependency relation. Let CombDG be the com-
bined dependency graph and dep the combined dependency
relation:

CombDG = SDG ∪ MDG

dep(x) =

{

depm(x), if x ∈ MDG

depcc(x) ∪ depcomb(x), if x ∈ SDG

Definition 5 Let < p, x > be a slicing criterion of program
p, where x ∈ p is a program point. The combined forward
slice of the criterion is the set S = {y ∈ p|y ∈ dept(x)},
where dept is the transitive closure of the dep relation.

Definition 6 Let < p, x > be a slicing criterion of program
p, where x ∈ p is a program point. The combined backward
slice of the criterion is the set S = {y ∈ p|x ∈ dept(y)},
where dept is the transitive closure of the dep relation.

The forward direction is depicted in Figure 6. The cap-
ital letters in figure elements reflect their type in this figure
(and not their names). The slice starts at the slicing cri-
terion, which is a macro definition (D). There is a set of
dependent definitions (D), and there is a set of dependent
toplevel macro invocations (T). (Note that there are many
dependency edges among the elements of this set omitted
from the figure.) When toplevel invocations are replaced,
the result of each invocation takes part in a set of C/C++
program elements (P). A regular language slicing algorithm
computes the slice for each program element, so the final
combined slice contains all elements in the figure.

The backward direction is outlined in Figure 7. Here
also, the capital letters in figure elements reflect their type
and not their names. The slicing criterion is a C/C++ pro-
gram element (P). The slice may contain SDG nodes which
are (at least partially) the results of one or more macro in-
vocations. The toplevel invocations which take part in the
C/C++ slice can be found along the dependency edges. For
all of these toplevel invocations, macro slice sets can be ob-
tained using backward macro slicing. The final combined
backward slice contains all elements in the figure.

The combined graph and the combined slices of the sam-
ple source code from Section 2 can be seen in Figure 8.
Nodes belonging to forward and backward slices are de-
noted with a capital ’F’ and ’B’ respectively. The toplevel
macro call DECLI(i,2) is present in both of its forms: as
a macro and as a program point. The forward slice contains
all nodes but the definition of SGN, while the backward slice
contains all nodes of the graph.
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Figure 8. Nodes and slices of the motivating
example

Note that the method does not use special information
about the SDG of the C/C++ slicing algorithm. We only
use the dependency relation and the character positions of
the node texts. Therefore, in theory the method can be used
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Figure 7. Backward direction of combining slices - dependency relation between macros and C/C++
program points

for static or dynamic slicing, furthermore, it does not matter
whether data, control or other dependency relation is used
for slicing.

4. Measurements

4.1. Tool setup

We have set up an experimental toolchain for computing
combined slices in which we mainly reused and integrated
existing tools. From the preprocessor part we added new
features to our macro slicing tool, and from the C/C++ part
we implemented a CodeSurfer plugin to get slicing infor-
mation [11]. The macro slicer is built on top of the Colum-
bus technology [7, 8]. In the first stage, the tool analyses
the project and, as a result, creates a graph instance of the
preprocessing schema [22]. The graph contains dependency
edges between preprocessor elements on which macro slic-
ing can be done. Similarly, CodeSurfer builds the SDG
graph representation from a software project and determines
language level dependencies (among many other informa-
tion). CodeSurfer gives access to the internal representation
of the SDG and the dependency information through plug-
ins. We used the C API, which is appropriate for using the
core functionality (the Scheme API provides full access).

The outline of the toolchaing can be seen in Figure 9. It
consists of the macro slicer tool, the CodeSurfer plugin and
a small tool which summarizes the results. The tools com-
municate with each other through a set of toplevel macros,
which are presented by their line information, which is the
common denominator of the two slicers.

In the case of forward slicing the process starts in a
macro definition as the slicing criterion. The macro slicer
produces the macro slice whose final result is the set of

toplevel macros, which is provided to the language slicer
through its plugin. In the next step CodeSurfer identifies
places in the source where macro replacement was done,
which is available by line and column information in the
vertices returned. The match between toplevel macros and
vertices is done based on this information (from the various
types of vertices only those are used which have position in
the source). Finally, the language slicing algorithm is exe-
cuted to produce slices for each toplevel macro. The results
are summarized for each beginning macro definition crite-
rion (the C/C++ slice is the union of the slices belonging to
the toplevel macros).

In the backward direction we start with a C/C++ pro-
gram point as the criterion. For it, the CodeSurfer plugin
produces the backward slice, which is then scanned for ver-
tices which are results of a (toplevel) macro call. The slice
is written into the output, and the set of toplevel macros
contained by the slice is given to the macro slicer tool. The
macro slicer counts backward slice sets for each toplevel
macro and this way it extends the existing slice. Finally the
slices are summarized.
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Figure 9. Outline of the tools

There are many factors which make the matching of



macros and vertices based on file position a challenging
task. The behaviour of the tools had to be adjusted in many
areas including: physical and logical lines (for example
in the case of #line directive CodeSurfer preserves the
original line information), handling macros in conditional
directives, and handling macros defined in command line.
The CodeSurfer plugin iterates through vertices belonging
to procedures, which means that some vertices are omit-
ted (forward declarations, for example). Another important
factor is the handling of standard libraries. The SDG con-
tains some additional vertices from standard libraries (not
all of them), and some vertices used in its internal repre-
sentation. Accordingly, the macro slicing tool is adjusted to
match macros from standard libraries, but not to complain
about omitted ones.

4.2. Subject programs

We performed the experiments on some small open
source projects. There is a wide range of open source soft-
ware which are analyzed by Ernst et al [6]. They report the
preprocessor directive usage in open source software and
find that flex can be treated as average in terms of prepro-
cessor directive usage (preprocessor directives make about
8.4% of program code). Therefore we also chose this pro-
gram as the main subject for our experiments. It is relatively
small but a relevant project in this context. The projects
used in our measurements with their sizes can be seen in
Table 1 (sizes given in non empty lines of code and node
numbers, respectively).

Size MDG size SDG size
(neLOC) (nodes) (nodes)

flex-2.5.34 18346 1781 131052
time-1.7 1975 162 5633
wdiff-0.5 3283 217 7643
ed-0.8 2662 117 38756

Table 1. Subject programs

4.3. Slices in details

In our experiments we used number of source code lines
which contain vertices from the slice, since this is the best
common denominator for the different slicing tools. Other
researchers also followed this approach [2].

Because of the difficulties in matching mentioned in the
previous section, there were slices in both directions which
the tools failed to match. The failure rate was generally
about 8% in forward case, and less than 0.1% in backward
case, which we found acceptable for the first experiments.
The data given in this section contains only the perfectly
matched slices.

The number of combined forward slices and their aver-
age sizes can be observed in Table 2. We computed all pos-
sible forward slices, meaning that we started from all macro
definitions, and measured the sizes of the individual macro
and language slices along with the combined slices. The
given numbers are the average slice size values. We treat
the set of toplevel macros specially so we count the toplevel
macros into both the macro slice and the belonging vertices
into the C/C++ slice as they belong to both kinds of slices.

No Macro s. C lang s. Combined s. Macro s. %
s. size (avg) size (avg) size (avg) (M/C lang)

flex 332 15.9 6369.2 6385.1 0.25
time 33 8.6 42.4 51 20.28
wdiff 25 7 270.3 277.4 2.59
ed 27 3.3 772.3 775.6 0.43

Table 2. Summary of forward slices

Backward slices may not necessarily contain macro
calls. Although the number of macro calls is not so high
in an average program, most of the backward slices con-
tain macro calls. The percentage of the slices which con-
tain macro calls in the analyzed projects are between 81.5%
and 92%. The number of combined slices (which neces-
sarily contain macros) and their average sizes are shown
in Table 3, in which we used the same approach for mea-
surement as with the forward slices. It can be observed
that the backward macro slices are generally bigger than
the forward slices, which can be explained by the fact that
language slices usually contain much more code lines and
hence more potential starting points for macro slices exist
(we used both data and control dependencies for slicing C
code). Another reason may be that in backward case we
produce slices for all vertices, so more of the large slices are
counted, while in the forward case we selected only some
vertices (according to the macro calls). This way the aver-
age may be higher in the backward case.

The last column in both tables show the ratio of macro
slice size relative to the C language slice size in percents.
The table shows that the individual macro slices are rela-
tively small, but this may be due to the size difference of
the SDG and the MDG graphs. For a given slicing criteria
the smaller the slice the better, of course not missing any
dependency. Macro slices are safe in this sense, while still
having relatively small added percentage.

It can be observed that in both directions the added
code lines by macro slices are relatively small compared
to the language slices, so one could argue about their
usefulness. However, we believe that in many cases
exactly these additions may be crucial from program
comprehension point of view. In this respect, traditional
C/C++ language slices can be treated as unsafe, missing
important information. This can be well illustrated by



No C lang s. Macro s. Comb. s. Macro s. %
s. size (avg) size (avg) size (avg) (M/C lang)

flex 12376 9498.3 1774.7 11273.1 15.74
time 603 203.2 18.6 221.8 9.15
wdiff 1001 287.6 44 331.6 15.3
ed 3860 1884 37.4 1921.4 1.99

Table 3. Summary of backward slices

the following example taken from the flex subject pro-
gram. The size of the combined forward slice of macro
reallocate integer array(flexdef.h:686)
is 8271. Macro slice takes only 67 from this size. An
example path in the slice is when the definition is called
from the DO REALLOCATION(dfa.c:261) and
PUT ON STACK(dfa.c:269) macros. The file dfa.c
at line 308 contains a simple macro call
PUT ON STACK (ns);
but when the source is preprocessed, it is replaced by a
do-while loop which is 358 characters long. The combined
slice goes through 31 toplevel macros, from which the
above mentioned is just one. This way the dependencies
for the loop would be missed from the slice if macro slices
would not have been used.

5. Related work

There are relatively few slicing tools available for C/C++
programs. Binkley and Harman [2] conducted an empirical
study about static slice size of C programs and they mention
three general purpose tools: Unravel [21], Sprite [15] and
CodeSurfer [11], using the latter in their experiments. Un-
ravel was a research prototype developed in a discontinued
project. It includes a number of deficiencies including that
it only accepts preprocessed ANSI C code, which makes it
obvious that handling macros is not implemented. Sprite
implements some enhancements to traditional slicing algo-
rithms most notably in the field of points-to data. Since the
tool is not publicly available and the related publications do
not deal with this issue, it is not clear how macro dependen-
cies are handled with this approach.

The commercial slicing tool CodeSurfer, marketed by
GrammaTech Inc., is probably the most current and mostly
developed slicing program for C/C++ as of today. It is able
to compute various static dependency data employing the
latest code analysis and program slicing technologies. How-
ever, it also has modest support for handling preprocessor
related artifacts. It is able to identify the location of macro
definitions and usages and present these data to the user.
However, it is not possible to compute slices from macro
definitions as criteria, furthermore the slices will include
only statements that exist after macro expansion. Never-
theless, we used this tool in our experiments since the in-

formation supplied by CodeSurfer about macro usage was
sufficient to implement our approach.

The Ghinsu software maintenance environment is the
most closely related tool to our approach [14]. With it,
by clicking on a macro invocation the called definitions are
highlighted (backward macro slice using our terms). Fur-
thermore, it also supports both static and dynamic slicing,
ripple analysis and other program analyses on ANSI com-
pliant C source code. This tool also utilizes a dependency
graph in which the tokens of preprocessed code are clas-
sified according to whether and how they are involved in
macro expansion. Unfortunately, it seems that this project
has been discontinued, and based on the latest informa-
tion that we were able to find the implementation has some
drawbacks which disables its use for real programs. For ex-
ample, certain language features and complex projects con-
sisting of multiple source files are not handled.

There are also some other tools which are not particu-
larly slicers but involve similar functionality for the com-
prehension of macro usage. The GUPRO program under-
standing framework implements a macro folding mecha-
nism, where a macro can be hidden or revealed at the place
of the call [13]. The Understand for C++ reverse engineer-
ing tool provides cross references between the use and def-
inition of software entities [20]. This includes the step-by-
step tracing of macro calls in both directions. The user can
track back the usages of a given macro definition easily but
the information is not accurate in some situations. These
tools however do not involve C/C++ language slicing as we
propose in our approach.

6. Conclusion and future work

The work presented has been motivated by the observa-
tion that virtually all available program slicing tools for the
C/C++ language lack the proper and complete handling of
preprocessor constructs. From the program comprehension
point of view, existing methods are often incomplete. For
example, the impact of changing a macro definition cannot
be accurately followed throughout the program’s preproces-
sor and non-preprocessor related parts. Existing tools either
compute the slices based on dependencies in the language
constructs or either provide rich features to model macro
usages, but not both. This could have a negative impact on
various fields related to program comprehension and main-
tenance in general. For instance, in change impact analysis,
a failure to identify a dependency of a change could have
the effect of inaccurately predict the cost of changes and of
performing incomplete change propagation, which in turn
results in increased risk of regression [17].

With this work we fill this gap and propose a combined
approach to computing slices in C/C++ programs. We sup-
port the approach with a realistic sample program compre-



hension problem. Existing tools were employed in an exper-
imental tool setup with which a number of program slices
have been computed. We counted the program points re-
turned by the combined approach and compared it to slices
without the preprocessor components.

Our first results measured on open source projects are
promising, undoubtedly showing the benefits of the ap-
proach. However, the method needs to be refined and larger
case studies should be performed. We plan to qualitatively
evaluate the approach in more depth to find out usage sce-
narios in which it would be most beneficial. We also plan
to conduct more experiments with much bigger systems,
like the Mozilla source code. But even in this phase of
the research we definitely suggest to integrate similar com-
bined strategies for slice calculation in existing tools like
CodeSurfer. In it, it could be a possibility to use and ex-
tend the existing internal representation for this purpose.
We plan to work in this direction as well in the near future.
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