Linearizing the product of two binary variables

Let $y_1, y_2 \in \{0, 1\}$ two binary variables, and assume that its product, y_1y_2 , which is a nonlinear expression, appears in a given formulation. We can linearize the product as follows:

$$\delta \leq y_1$$
 $\delta \leq y_2$
 $\delta \geq y_1 + y_2 - 1$
 $\delta \in \{0, 1\}$

Notice that $\delta = y_1 y_2$.

Linearizing the product of a binary and a continous variable

Let z be a continuous variable such that $L \le z \le U$, and $x \in \{0,1\}$ be a binary variable. Assume that its product, zx, which is a nonlinear expression, appears in a given formulation. We can linearize the product as follows:

$$y \le Ux$$

$$y \ge Lx$$

$$z - y \le U(1 - x)$$

$$z - y \ge L(1 - x)$$

Notice that y = zx

- A chain wants to enter in a given area by opening p facilities.
- Those facilities are to be open in *p* of the *s* potential sites pre-selected by the chain.
- There already exists *m* competing facilities operating in the area.
- Customers follow a probabilistic choice rule (they patronize all the facilities, and the amount spent at each facility is proportional to its attraction).
- The objective is to maximize the market share captured by the locating chain.

Example: A discrete competitive location problem under the probabilistic choice rule.

Indices

```
i index for demand points (or customers), i = \{1, ..., n\}.
```

j index for the facilities,

```
j = 1, \dots, s, for the potential new facilities,
```

 $j = s + 1, \dots, s + m$, for the existing competing facilities.

Data

```
w_i demand (or buying power) of demand point i.
```

- d_{ij} distance between demand point i and location j.
- a_{ij} quality of facility j as perceived by deman point i.
- β modulator of the distance

Example: A discrete competitive location problem under the probabilistic choice rule.

Computed data

$$u_{ij} = rac{a_{ij}}{(d_{ij}+1)^eta}$$
 attraction that demand point i feels towards facility j .

Variables

$$x_j = \begin{cases} 1 & \text{if a facility is open at } j \\ 0 & \text{otherwise} \end{cases}, j = 1 \dots, s$$

$$\max \sum_{i=1}^{n} w_i \frac{\sum_{j=1}^{s} u_{ij} x_j}{\sum_{j=1}^{s} u_{ij} x_j + \sum_{j=s+1}^{s+m} u_{ij}}$$
s.t.
$$\sum_{j=1}^{s} x_j = p$$

$$x_j \in \{0, 1\}, j = 1, \dots, s$$

Example: A discrete competitive location problem under the probabilistic choice rule.

$$\max \sum_{i=1}^{n} w_i \frac{\sum_{j=1}^{s} u_{ij} x_j}{\sum_{j=1}^{s} u_{ij} x_j + \sum_{j=s+1}^{s+m} u_{ij}}$$
s.t.
$$\sum_{j=1}^{s} x_j = p$$

$$x_j \in \{0, 1\}, j = 1, \dots, s$$

If we denote

$$z_i = \frac{1}{\sum_{s=1}^{s} u_{ij} x_j + \sum_{j=s+1}^{s+m} u_{ij}}, i = 1, \dots, n$$

max
$$\sum_{i=1}^{n} w_{i} z_{i} \sum_{j=1}^{s} u_{ij} x_{j}$$
s.t.
$$z_{i} = \frac{1}{\sum_{j=1}^{s} u_{ij} x_{j} + \sum_{j=s+1}^{s+m} u_{ij}}, i = 1, \dots, n$$

$$\sum_{j=1}^{s} x_{j} = p$$

$$x_{j} \in \{0, 1\}, j = 1, \dots, s$$

$$z_{i} \geq 0, i = 1, \dots, n$$

max
$$\sum_{i=1}^{n} \sum_{j=1}^{s} w_{i} z_{i} u_{ij} x_{j}$$
s.t.
$$z_{i} = \frac{1}{\sum_{j=1}^{s} u_{ij} x_{j} + \sum_{j=s+1}^{s+m} u_{ij}}, i = 1, \dots, n$$

$$\sum_{j=1}^{s} x_{j} = p$$

$$x_{j} \in \{0, 1\}, j = 1, \dots, s$$

$$z_{i} \geq 0, i = 1, \dots, n$$

max
$$\sum_{i=1}^{n} \sum_{j=1}^{s} (w_{i}z_{i}u_{ij})x_{j}$$
s.t.
$$z_{i} = \frac{1}{\sum_{j=1}^{s} u_{ij}x_{j} + \sum_{j=s+1}^{s+m} u_{ij}}, i = 1, \dots, n$$

$$\sum_{j=1}^{s} x_{j} = p$$

$$x_{j} \in \{0, 1\}, j = 1, \dots, s$$

$$z_{i} \geq 0, i = 1, \dots, n$$

Example: A discrete competitive location problem under the probabilistic choice rule.

If we denote

$$y_{ij} = (w_i z_i u_{ij}) x_j, i = 1, \ldots, n, j = 1, \ldots, s$$

and taking into account that the product y = zx, where $L \le z \le U$ is continuous and x binary can be linearized as

$$y \le Ux$$

$$y \ge Lx$$

$$z - y \le U(1 - x)$$

$$z - y \ge L(1 - x)$$

we have that the product $y_{ij} = (w_i z_i u_{ij}) x_i$ can be linearized as follows

$$y_{ij} \leq w_i x_j,$$

$$y_{ij} \geq 0 x_j \Leftrightarrow y_{ij} \geq 0,$$

$$w_i z_i u_{ij} - y_{ij} \leq w_i (1 - x_j),$$

$$w_i z_i u_{ij} - y_{ij} \geq 0 (1 - x_j) \Leftrightarrow w_i z_i u_{ij} - y_{ij} \geq 0,$$

$$i = 1, \dots, n, j = 1, \dots$$

$$\begin{array}{ll} \max & \sum_{i=1}^{n} \sum_{j=1}^{s} y_{ij} \\ \text{s.t.} & z_{i} = \frac{1}{\sum_{j=s+1}^{s} u_{ij}}, \quad i = 1, \dots, n \\ & \sum_{j=1}^{s} u_{ij} x_{j} + \sum_{j=s+1}^{s+m} u_{ij} \\ & y_{ij} \leq w_{i} x_{j}, & i = 1, \dots, n, j = 1, \dots, s \\ & y_{ij} \geq 0, & i = 1, \dots, n, j = 1, \dots, s \\ & w_{i} z_{i} u_{ij} - y_{ij} \leq w_{i} (1 - x_{j}), & i = 1, \dots, n, j = 1, \dots, s \\ & w_{i} z_{i} u_{ij} - y_{ij} \geq 0, & i = 1, \dots, n, j = 1, \dots, s \\ & \sum_{j=1}^{s} x_{j} = p \\ & x_{j} \in \{0, 1\}, & j = 1, \dots, s \\ & z_{i} \geq 0, & i = 1, \dots, n \\ & y_{ij} \geq 0, & i = 1, \dots, n, j = 1, \dots, s \end{array}$$

$$\max \quad \sum_{i=1}^{n} \sum_{j=1}^{s} y_{ij}$$
 s.t.
$$z_{i} = \frac{1}{\sum_{j=1}^{s} u_{ij} x_{j} + \sum_{j=s+1}^{s+m} u_{ij}}, \quad i = 1, \dots, n$$

$$y_{ij} \leq w_{i} x_{j}, \quad i = 1, \dots, n, j = 1, \dots, s$$

$$y_{ij} \geq 0, \quad i = 1, \dots, n, j = 1, \dots, s$$

$$w_{i} z_{i} u_{ij} - y_{ij} \leq w_{i} (1 - x_{j}), \quad i = 1, \dots, n, j = 1, \dots, s$$

$$w_{i} z_{i} u_{ij} - y_{ij} \geq 0, \quad i = 1, \dots, n, j = 1, \dots, s$$

$$\sum_{j=1}^{s} x_{j} = p$$

$$x_{j} \in \{0, 1\}, \quad j = 1, \dots, s$$

$$z_{i} \geq 0, \quad i = 1, \dots, n$$

$$y_{ij} \geq 0, \quad i = 1, \dots, n, j = 1, \dots, s$$

$$z_{i} = \frac{1}{\sum_{j=1}^{s} u_{ij} x_{j} + \sum_{j=s+1}^{s+m} u_{ij}}$$

$$z_i = \frac{1}{\sum_{j=1}^s u_{ij} x_j + \sum_{j=s+1}^{s+m} u_{ij}} \Leftrightarrow$$

$$z_i(\sum_{j=1}^s u_{ij}x_j + \sum_{j=s+1}^{s+m} u_{ij}) = 1$$

$$z_{i} = \frac{1}{\sum_{j=1}^{s} u_{ij}x_{j} + \sum_{j=s+1}^{s+m} u_{ij}} \Leftrightarrow$$

$$z_{i} \left(\sum_{j=1}^{s} u_{ij}x_{j} + \sum_{j=s+1}^{s+m} u_{ij}\right) = 1 \Leftrightarrow$$

$$z_{i} \sum_{i=1}^{s} u_{ij}x_{i} + z_{i} \sum_{i=s+1}^{s+m} u_{ij} = 1$$

$$z_{i} = \frac{1}{\sum_{j=1}^{s} u_{ij}x_{j} + \sum_{j=s+1}^{s+m} u_{ij}} \Leftrightarrow$$

$$z_{i} \left(\sum_{j=1}^{s} u_{ij}x_{j} + \sum_{j=s+1}^{s+m} u_{ij}\right) = 1 \Leftrightarrow$$

$$z_{i} \sum_{j=1}^{s} u_{ij}x_{j} + z_{i} \sum_{j=s+1}^{s+m} u_{ij} = 1 \Leftrightarrow$$

$$w_{i}z_{i} \sum_{j=1}^{s} u_{ij}x_{j} + w_{i}z_{i} \sum_{j=s+1}^{s+m} u_{ij} = w_{i}$$

$$z_{i} = \frac{1}{\sum_{j=1}^{s} u_{ij}x_{j} + \sum_{j=s+1}^{s+m} u_{ij}} \Leftrightarrow$$

$$z_{i} \left(\sum_{j=1}^{s} u_{ij}x_{j} + \sum_{j=s+1}^{s+m} u_{ij}\right) = 1 \Leftrightarrow$$

$$z_{i} \sum_{j=1}^{s} u_{ij}x_{j} + z_{i} \sum_{j=s+1}^{s+m} u_{ij} = 1 \Leftrightarrow$$

$$w_{i}z_{i} \sum_{j=1}^{s} u_{ij}x_{j} + w_{i}z_{i} \sum_{j=s+1}^{s+m} u_{ij} = w_{i} \Leftrightarrow$$

$$\sum_{i=1}^{s} w_{i}z_{i}u_{ij}x_{j} + w_{i}z_{i} \sum_{i=s+1}^{s+m} u_{ij} = w_{i}$$

$$z_{i} = \frac{1}{\sum_{j=1}^{s} u_{ij}x_{j} + \sum_{j=s+1}^{s+m} u_{ij}} \Leftrightarrow$$

$$z_{i} \left(\sum_{j=1}^{s} u_{ij}x_{j} + \sum_{j=s+1}^{s+m} u_{ij}\right) = 1 \Leftrightarrow$$

$$z_{i} \sum_{j=1}^{s} u_{ij}x_{j} + z_{i} \sum_{j=s+1}^{s+m} u_{ij} = 1 \Leftrightarrow$$

$$w_{i}z_{i} \sum_{j=1}^{s} u_{ij}x_{j} + w_{i}z_{i} \sum_{j=s+1}^{s+m} u_{ij} = w_{i} \Leftrightarrow$$

$$\sum_{j=1}^{s} w_{i}z_{i}u_{ij}x_{j} + w_{i}z_{i} \sum_{j=s+1}^{s+m} u_{ij} = w_{i} \Leftrightarrow$$

$$\sum_{j=1}^{s} y_{ij} + w_{i}z_{i} \sum_{j=s+1}^{s+m} u_{ij} = w_{i}$$

$$\max \sum_{i=1}^{n} \sum_{j=1}^{s} y_{ij}$$
s.t.
$$\sum_{j=1}^{s} y_{ij} + w_{i}z_{i} \sum_{j=s+1}^{s+m} u_{ij} = w_{i}, \quad i = 1, \dots, n$$

$$y_{ij} \leq w_{i}x_{j}, \quad i = 1, \dots, n, j = 1, \dots, s$$

$$y_{ij} \geq 0, \quad i = 1, \dots, n, j = 1, \dots, s$$

$$w_{i}z_{i}u_{ij} - y_{ij} \leq w_{i}(1 - x_{j}), \quad i = 1, \dots, n, j = 1, \dots, s$$

$$w_{i}z_{i}u_{ij} - y_{ij} \geq 0 \quad i = 1, \dots, n, j = 1, \dots, s$$

$$\sum_{j=1}^{s} x_{j} = p$$

$$x_{j} \in \{0, 1\}, \quad j = 1, \dots, s$$

$$z_{i} \geq 0, \quad i = 1, \dots, n$$

$$y_{ij} \geq 0, \quad i = 1, \dots, n, j = 1, \dots, s$$

$$\max \sum_{i=1}^{n} \sum_{j=1}^{s} y_{ij}$$
s.t.
$$\sum_{j=1}^{s} y_{ij} + w_{i}z_{i} \sum_{j=s+1}^{s+m} u_{ij} \leq w_{i}, \quad i = 1, \dots, n$$

$$y_{ij} \leq w_{i}x_{j}, \quad i = 1, \dots, n, j = 1, \dots, s$$

$$y_{ij} \geq 0, \quad i = 1, \dots, n, j = 1, \dots, s$$

$$w_{i}z_{i}u_{ij} - y_{ij} \leq w_{i}(1 - x_{j}), \quad i = 1, \dots, n, j = 1, \dots, s$$

$$w_{i}z_{i}u_{ij} - y_{ij} \geq 0 \quad i = 1, \dots, n, j = 1, \dots, s$$

$$\sum_{s} x_{j} = p$$

$$x_{j} \in \{0, 1\}, \quad j = 1, \dots, s$$

$$z_{i} \geq 0, \quad i = 1, \dots, n$$

$$y_{ij} \geq 0, \quad i = 1, \dots, n$$

$$i = 1, \dots, n, j = 1, \dots, s$$