'pascal' is a function from the file /usr/local/share/octave/4.4.1/m/special-matrix/pascal.m -- pascal (N) -- pascal (N, T) Return the Pascal matrix of order N if 'T = 0'. The default value of T is 0. When 'T = 1', return the pseudo-lower triangular Cholesky factor of the Pascal matrix (The sign of some columns may be negative). This matrix is its own inverse, that is 'pascal (N, 1) ^ 2 == eye (N)'. If 'T = -1', return the true Cholesky factor with strictly positive values on the diagonal. If 'T = 2', return a transposed and permuted version of 'pascal (N, 1)', which is the cube root of the identity matrix. That is, 'pascal (N, 2) ^ 3 == eye (N)'. See also: chol. Additional help for built-in functions and operators is available in the online version of the manual. Use the command 'doc ' to search the manual index. Help and information about Octave is also available on the WWW at https://www.octave.org and via the help@octave.org mailing list. ==> Folytatás ENTER-rel === n = 4 P = 1 1 1 1 1 2 3 4 1 3 6 10 1 4 10 20 P0 = 1 1 1 1 1 2 3 4 1 3 6 10 1 4 10 20 ==> Folytatás ENTER-rel === Pm1 = 1 0 0 0 1 1 0 0 1 2 1 0 1 3 3 1 LP = 1 0 0 0 1 1 0 0 1 2 1 0 1 3 3 1 ans = 1 ==> Folytatás ENTER-rel === P1 = 1 0 0 0 1 -1 0 0 1 -2 1 0 1 -3 3 -1 P1inv = 1 0 0 0 1 -1 0 0 1 -2 1 0 1 -3 3 -1 ans = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ==> Folytatás ENTER-rel === P2 = -1 -1 -1 -1 3 2 1 -0 -3 -1 -0 -0 1 -0 -0 -0 ans = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ==> Folytatás ENTER-rel === detP = 1 invP = 4 -6 4 -1 -6 14 -11 3 4 -11 10 -3 -1 3 -3 1 ans = 0.038016 0.453835 2.203446 26.304703