
AMPL: A Mathematical Programming Language

Robert Fourer

Northwestern University
Evanston, Illinois 60201

David M. Gay

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

Brian W. Kernighan

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

PUBLISHED VERSION

Robert Fourer, David M. Gay and Brian W. Kernighan, “A Modeling Language for Mathematical
Programming.” Management Science 36 (1990) 519–554.

ABSTRACT

Practical large-scale mathematical programming involves more than just the application of an

algorithm to minimize or maximize an objective function. Before any optimizing routine can be

invoked, considerable effort must be expended to formulate the underlying model and to generate

the requisite computational data structures. AMPL is a new language designed to make these

steps easier and less error-prone. AMPL closely resembles the symbolic algebraic notation that

many modelers use to describe mathematical programs, yet it is regular and formal enough to be

processed by a computer system; it is particularly notable for the generality of its syntax and for the

variety of its indexing operations. We have implemented a translator that takes as input a linear

AMPL model and associated data, and produces output suitable for standard linear programming

optimizers. Both the language and the translator admit straightforward extensions to more general

mathematical programs that incorporate nonlinear expressions or discrete variables.

1. Introduction

Practical large-scale mathematical programming involves more than just the minimiza-
tion or maximization of an objective function subject to constraint equations and inequal-
ities. Before any optimizing algorithm can be applied, some effort must be expended to
formulate the underlying model and to generate the requisite computational data struc-
tures.

If algorithms could deal with optimization problems as people do, then the formulation
and generation phases of modeling might be relatively easy. In reality, however, there are
many differences between the form in which human modelers understand a problem and the
form in which algorithms solve it. Reliable translation from the “modeler’s form” to the
“algorithm’s form” is often a considerable expense.

In the traditional approach to translation, the work is divided between human and
computer. First, a person who understands the modeler’s form writes a computer program
whose output will represent the required data structures. Then a computer compiles and
executes the program to create the algorithm’s form. This arrangement is often costly and
error-prone; most seriously, the program must be debugged by a human modeler even though
its output—the algorithm’s form—is not meant for people to read.

In the important special case of linear programming, the largest part of the algorithm’s
form is the representation of the constraint coefficient matrix. Typically this is a very
sparse matrix whose rows and columns number in the hundreds or thousands, and whose
nonzero elements appear in intricate patterns. A computer program that produces a com-
pact representation of the coefficients is called a matrix generator. Several programming
languages have been designed specifically for writing matrix generators (Haverly Systems
1977, Creegan 1985) and standard languages like Fortran are also often used (Beale 1970).

Many of the difficulties of translation from modeler’s form to algorithm’s form can be
circumvented by the use of a computer modeling language for mathematical programming.
A modeling language is designed to express the modeler’s form in a way that can serve as
direct input to a computer system. Then the translation to the algorithm’s form can be per-
formed entirely by computer, without the intermediate stage of programming. The advan-
tages of modeling languages over matrix generators have been analyzed in detail by Fourer
(1983). Implementations such as GAMS (Bisschop and Meeraus 1982; Brooke, Kendrick
and Meeraus 1988) and MGG (Simons 1987) were under way in the 1970’s, and the pace of
development has increased in recent years.

We describe in this paper the design and implementation of AMPL, a new modeling
language for mathematical programming. Compared to previous languages, AMPL is no-
table for the generality of its syntax, and for the similarity of its expressions to the algebraic
notation customarily used in the modeler’s form. It offers a variety of types and operations
for the definition of indexing sets, as well as a range of logical expressions. AMPL draws
considerable inspiration from the XML prototype language (Fourer 1983), but incorporates
many changes and extensions.

AMPL is introduced below through the example of a simple maximum-revenue produc-
tion problem. Sections 2, 3 and 4 then use more complex examples to examine major aspects
of the language design in detail. We have attempted to touch upon most of the language’s
fundamental features, while avoiding the lengthy specifics that would be appropriate to a
user’s guide or reference manual. Our emphasis is on aspects of the language that represent
particularly important or difficult design decisions.

By itself, AMPL can only be employed to specify classes of mathematical programming
models. For the language to be useful, it must be incorporated into a system that manages
data, models and solutions. Thus Section 5 discusses a standard representation of data
for an AMPL model, and Section 6 describes our implementation of a translator that can

1

interpret a model and its associated data. The translator’s output is a representation of a
mathematical program that is suitable as input for most algorithms. Timings for a variety
of realistic problems, ranging to over a thousand constraints and ten thousand variables,
suggest that the computing cost of translation is quite reasonable in comparison to the cost
of optimization.

We intend AMPL to be able to express many kinds of mathematical programs. In the
interest of keeping this paper to a reasonable length, however, we confine the discussion and
examples to linear programming. Section 7 compares AMPL to the languages used by var-
ious linear programming systems, but also indicates how AMPL is being extended to other
kinds of models and how it may be integrated with other modeling software. Appendices
list the four AMPL linear programs from which the illustrations in the text are extracted.

1.1 An introductory example

Figure 1–1 displays the algebraic formulation of a simple linear programming model,
as it might appear in a report or paper. The formulation begins with a description of the
index sets and numerical parameters that the model requires. Next, the decision variables
are defined. Finally the objective and constraints are specified as expressions in the sets,
parameters and variables.

The algebraic formulation in Figure 1–1 does not define any particular optimization
problem. The purpose of this formulation is to specify a general class of problems that
share a certain structure and purpose: production over time to maximize revenues. If we
want to define a specific problem, we must supplement this formulation with values for all
of the sets and parameters. Each different specification of set and parameter values will
yield one different problem. To distinguish between a general formulation and a particular
problem, we call the former a model and the latter a linear program or LP.

The distinction between general models and specific LPs is essential in dealing with very
large linear optimization problems. As an illustration, Figure 1–2a presents a collection of
data for a small instance of the preceding formulation: 2 raw materials, 3 final products
and 4 periods. In such a small example the objective and constraints are easy to write
out explicitly, as shown in Figure 1–2b. Suppose now that there are 10 raw materials,
30 final products and 20 periods. The model in Figure 1–1 is unchanged, and the data
tables in Figure 1–2a still fit on perhaps two pages; but the linear program expands to 230
constraints in 810 variables, and its explicit listing (in the manner of Figure 1–2b) is too
big to be usefully readable. If the periods are further increased to 40, the model is again
unchanged and only one data table (the expected profits cjt) doubles in size, even though
the numbers of variables and constraints in the linear program are both roughly doubled.

We will use the term model translator to describe a computer system that reads a model
in the compact algebraic form of Figure 1–1 along with data in the form of Figure 1–2a, and
that writes out a linear program in the verbose explicit form of Figure 1–2b. For a practical
implementation, the data input can be given a more machine-readable arrangement, and
the explicit output can be written in a format more suitable to an efficient algorithm. The
major challenge of translation, however, is to devise a language that can clearly represent
the compact algebraic model, yet that can be read and interpreted by a computer system.

AMPL is such a language. The AMPL representation of Figure 1–1’s model is shown in
Figure 1–3, and is used throughout this introduction to illustrate the language’s features.

An AMPL translator starts by reading, parsing and interpreting a model like the one in
Figure 1–3. The translator then reads some representation of particular data; Figure 1–4
displays one suitable format for the data of Figure 1–2a. The model and data are then
processed to determine the linear program that they represent, and the linear program is
written out in some appropriate form.

2

Given P a set of products,
R a set of raw materials,

T > 0 the number of production periods,
M > 0 maximum total production per period;

and aij ≥ 0 i ∈ R, j ∈ P: units of raw material i needed to manufacture one
unit of product j;

bi ≥ 0 i ∈ R: maximum initial stock of raw material i;

cjt j ∈ P, t = 1, . . . , T : estimated profit (if ≥ 0) or disposal cost (if
≤ 0) of product j in period t;

di ≥ 0 i ∈ R: storage cost per period per unit of raw material i;

fi i ∈ R: estimated residual value (if ≥ 0) or disposal cost (if ≤ 0) of
raw material i after the last period.

Define xjt ≥ 0 j ∈ P, t = 1, . . . , T : units of product j manufactured in period t;

sit ≥ 0 i ∈ R, t = 1, . . . , T + 1: units of raw material i in storage at the
beginning of period t.

Maximize
∑T
t=1

(∑
j∈P cjtxjt −

∑
i∈R disit

)
+
∑
i∈R fisi,T+1:

total over all periods of estimated profit less storage cost, plus
value of remaining raw materials after the last period;

subject to
∑
j∈P xjt ≤M ,

t = 1, . . . , T : total production in period t must not exceed the
specified maximum;

si1 ≤ bi, i ∈ R: units of raw material i on hand at the beginning of period
1 must not exceed the specified maximum;

si,t+1 = sit −
∑
j∈P aijxjt,

i ∈ R, t = 1, . . . , T : units of raw material i on hand at the begin-
ning of period t+ 1 must equal units on hand at the beginning of
period t less units used for production in period t.

Figure 1–1. Algebraic formulation of a maximum-revenue production problem.

3

P = –nuts, bolts, washers˝
R = –iron, nickel˝
T = 4, M = 123.7

aij nuts bolts washers
iron .79 .83 .92

nickel .21 .17 .08

cjt 1 2 3 4
nuts 1.73 1.8 1.6 2.2
bolts 1.82 1.9 1.7 2.5

washers 1.05 1.1 .95 1.33

i bi di fi
iron 35.8 .03 .02

nickel 7.32 .025 −.01

Figure 1–2a. Data for Figure 1–1 with two raw materials, three products, four periods.

Maximize 1.73x11 + 1.82x21 + 1.05x31 − .03s11 − .025s21

+1.8x12 + 1.9x22 + 1.1x32 − .03s12 − .025s22

+1.6x13 + 1.7x23 + .95x33 − .03s13 − .025s23

+2.2x14 + 2.5x24 + 1.33x34 − .03s14 − .025s24

+.02s15 − .01s25,

subject to x11 + x21 + x31 ≤ 123.7,
x12 + x22 + x32 ≤ 123.7,
x13 + x23 + x33 ≤ 123.7,
x14 + x24 + x34 ≤ 123.7,

s11 ≤ 35.8,
s21 ≤ 7.32,

s12 = s11 − .79x11 − .83x21 − .92x31,
s13 = s12 − .79x12 − .83x22 − .92x32,
s14 = s13 − .79x13 − .83x23 − .92x33,
s15 = s14 − .79x14 − .83x24 − .92x34,
s22 = s21 − .21x11 − .17x21 − .08x31,
s23 = s22 − .21x12 − .17x22 − .08x32,
s24 = s23 − .21x13 − .17x23 − .08x33,
s25 = s24 − .21x14 − .17x24 − .08x34.

Figure 1–2b. Linear program defined by Figures 1–1 and 1–2a.

4

SETS

set prd; # products
set raw; # raw materials

PARAMETERS

param T > 0 integer; # number of production periods

param max_prd > 0; # maximum units of production per period

param units {raw,prd} >= 0; # units[i,j] is the quantity of raw material i
needed to manufacture one unit of product j

param init_stock {raw} >= 0; # init_stock[i] is the maximum initial stock
of raw material i

param profit {prd,1..T}; # profit[j,t] is the estimated value (if >= 0)
or disposal cost (if <= 0) of
a unit of product j in period t

param cost {raw} >= 0; # cost[i] is the storage cost
per unit per period of raw material i

param value {raw}; # value[i] is the estimated residual value
(if >= 0) or disposal cost (if <= 0)
of raw material i after the last period

VARIABLES

var Make {prd,1..T} >= 0; # Make[j,t] is the number of units of product j
manufactured in period t

var Store {raw,1..T+1} >= 0; # Store[i,t] is the number of units of raw material i
in storage at the beginning of period t

OBJECTIVE

maximize total_profit:

sum {t in 1..T} (sum {j in prd} profit[j,t] * Make[j,t] -
sum {i in raw} cost[i] * Store[i,t])

+ sum {i in raw} value[i] * Store[i,T+1];

Total over all periods of estimated profit,
minus total over all periods of storage cost,
plus value of remaining raw materials after last period

CONSTRAINTS

subject to limit {t in 1..T}: sum {j in prd} Make[j,t] <= max_prd;

Total production in each period must not exceed maximum

subject to start {i in raw}: Store[i,1] <= init_stock[i];

Units of each raw material in storage at beginning
of period 1 must not exceed initial stock

subject to balance {i in raw, t in 1..T}:
Store[i,t+1] = Store[i,t] - sum {j in prd} units[i,j] * Make[j,t];

Units of each raw material in storage
at the beginning of any period t+1 must equal
units in storage at the beginning of period t,
less units used for production in period t

Figure 1–3. The model of Figure 1–1 transcribed into AMPL.

5

data;

set prd := nuts bolts washers;
set raw := iron nickel;

param T := 4;
param max_prd := 123.7;

param units : nuts bolts washers :=

iron .79 .83 .92
nickel .21 .17 .08 ;

param profit : 1 2 3 4 :=

nuts 1.73 1.8 1.6 2.2
bolts 1.82 1.9 1.7 2.5
washers 1.05 1.1 .95 1.33 ;

param : init_stock cost value :=

iron 35.8 .03 .02
nickel 7.32 .025 -.01 ;

end;

Figure 1–4. Data from Figure 1–2a in standard AMPL format.

When AMPL is used in this way, the major work left to people is the formulation of the
model and the collection of the data. In addition, if a model is initially formulated by use
of the traditional algebraic notation, then a person must convert it to AMPL statements
before the translator can be applied. AMPL is designed, however, so that such a conversion
is more transcription than translation. Almost every expression in Figure 1–3, for example,
can be determined in a straightforward way from some analogous expression in Figure 1–1.

Because AMPL is read by a computer, it does differ from algebraic notation in several
obvious ways. The syntax is more regular; every declaration of parameters begins with
param, for instance, and ends with a semicolon. Traditional mathematical notations like
aijxjt, i ∈ R and

∑T
t=1 are replaced by unambiguous expressions that use only ASCII

characters. The AMPL syntax does permit multicharacter names, however, in place of the
single letters that are more appropriate to algebraic expressions.

The five major parts of an algebraic model—sets, parameters, variables, objectives and
constraints—are also the five kinds of components in an AMPL model. The remainder of
this section briefly introduces each component and its AMPL representation; at the end, we
also remark on the data format.

1.2 Sets

A set can be any unordered collection of objects pertinent to a model. Two unordered
sets in our example are the set P of final products and the set R of raw materials. They
are declared by the AMPL statements

set prd; # products

set raw; # raw materials

The membership of these sets is specified as part of the LP data (in Figures 1–2a and 1–4).

Comments accompanying the declarations of prd and raw begin with the symbol # and
extend to the end of the line. Models are almost always easier to understand if they contain
appropriate comments, such as those throughout Figure 1–3. For brevity, however, we omit

6

comments when declarations are presented as examples in the following text.

Another kind of set is a sequence of integers. In the sample model, the sequence of all
periods from 1 to T is such a set. It is represented in AMPL by the expression 1..T, where
T is a parameter whose value is the number of periods. The members of a sequence set are
obviously ordered, and may appear in arithmetic expressions.

Section 2 considers the requirements of sets and indexing in detail.

1.3 Parameters

A parameter is any numerical value pertinent to a model. The simplest kind of param-
eter is a single, independent value, such as the number of periods or the maximum total
production in our example.

Most AMPL statements that declare parameters also specify certain restrictions on them.
For instance, the number of periods is declared by

param T > 0 integer;

which says that the value of T must be a positive integer. The integer restriction is under-
stood implicitly by the human reader of the algebraic model, but it must be made explicit
for the computer system that translates AMPL. Data inconsistent with this restriction are
rejected by the translator.

Most of a model’s parameters are not individual values, but are instead grouped into
arrays indexed over sets. The initial stocks are a typical case; there is one stock level, bi, that
must be specified for each raw material i in the set R. AMPL expresses this relationship by

param init_stock {raw} >= 0;

which declares one nonnegative parameter corresponding to each member of the set raw.
Later, in describing the constraints, an index i is defined and the parameter corresponding to
member i of raw is denoted init_stock[i]. (AMPL expressions in braces always represent
entire sets, while expressions in brackets represent specific members of sets.)

The parameters aij and cjt are arrays indexed over two sets. The AMPL declaration
corresponding to cjt is

param profit {prd,1..T};

This defines one parameter for each combination of a member from prd and a member from
1..T. Naturally, the parameter corresponding to a particular j in prd and t in 1..T is later
denoted profit[j,t]. (AMPL respects the case of letters, so the index t is not confused
with the set T.)

Section 3 takes a closer look at the handling of parameters and expressions.

1.4 Variables

A linear program’s variables are declared much like its parameters. The only substantial
difference is that the values of the variables are to be determined through optimization,
whereas the values of the parameters are data given in advance.

A typical declaration of variables is the one for raw material in storage:

var Store {raw,1..T+1} >= 0;

One nonnegative variable is here defined for each combination of a member from raw and
a member from 1..T+1. By analogy with the notation for a parameter, the variable corre-
sponding to a particular i in raw and t in 1..T+1 is denoted Store[i,t].

7

In writing 1..T+1 above, we use an arithmetic expression to help define a set. For the
most part, expressions may be used in AMPL anywhere that a numeric value is needed.

1.5 Objective

An objective function can be any linear expression in the parameters and variables.
The AMPL representation of the objective in Figure 1–3 is transcribed from the algebraic
objective expression in Figure 1–1.

AMPL representations of indexed sums appear for the first time in our example’s objec-
tive. The sum of the estimated profits for period t is typical:

sum {j in prd} profit[j,t] * Make[j,t]

The identifier j is a dummy index that has exactly the same purpose and meaning as its
counterpart in the algebraic notation. It is defined for the scope of the sum, which extends
to the end of the following term.

1.6 Constraints

A constraint may be any linear equality or inequality in the parameters and variables.
Thus a model’s constraints use all the same kinds of expressions as its objective. Whereas
the objective in Figure 1–1 is a single expression, however, the constraints come in collections
indexed over sets. There is one production-limit constraint, for example, in each period.

The AMPL representation for a collection of constraints must specify two things: the
set over which the constraints are indexed, and the expression for the constraints. Thus the
production limits look like this:

subject to limit {t in 1..T}: sum {j in prd} Make[j,t] <= max_prd;

Following the keywords subject to and the identifier limit, the expression in braces gives
1..T as the indexing set. The identifier t is another dummy index, playing the same role as
its counterpart in the algebraic form; its scope is the entire inequality following the colon.
Thus the declaration specifies a different inequality constraint for each choice of a member
t from 1..T.

AMPL constraint expressions need not have all the variables on the left of the relational
operator, or all the constant terms on the right. The balance constraints are an example
of a more general form:

subject to balance {i in raw, t in 1..T}:

Store[i,t+1] = Store[i,t] - sum {j in prd} units[i,j] * Make[j,t];

The reference to Store[i,t+1] shows how a member of the set 1..T is conveniently used
in an arithmetic expression.

The start constraints can be regarded as simple upper bounds on the Store variables
for period 1. Most LP optimizers work more efficiently by handling such bounds as im-
plicit restrictions on the variables, rather than as an explicit part of the constraint matrix.
Nevertheless, bounds may be specified in AMPL just like any other algebraic constraint;
detection and treatment of bounds are left for the computer system to carry out as part of
its processing of the model.

Most of Section 4 is devoted to issues that arise in representing AMPL constraints.

1.7 Data

Once the AMPL translator has read and processed the contents of Figure 1–3, it is ready
to read the data. Strictly speaking, the rules for the data are not a part of AMPL; each

8

implementation of an AMPL translator may accept data in whatever formats its creators
deem appropriate. As a practical matter, however, we wish to have a standard data format
that all versions of the translator will accept. Figure 1–4 shows a small data set for the
sample LP in our standard format; it is a largely self-explanatory transcription of Figure
1–2a. Section 5 considers the data format in more detail.

Once the data values have been read successfully, the members of all sets and the values
of all parameters are known. The AMPL translator can then identify the variables that
will appear in the resulting linear program, determine the coefficients and constants in the
objective and constraints, and write the output suitable for an algorithm. Section 6 describes
our implementation of an AMPL translator.

9

2. Sets and Indexing

Index sets are the fundamental building blocks of any large linear programming model.
Most of a model’s components are indexed over some combination of these sets; for models
of practical interest, moreover, the sets are seldom as easy to describe as P, R and 1, . . . , T
in Figure 1–1. Thus the design of a modeling language cannot afford to place too many
restrictions on the variety of set and indexing expressions. Any restriction is likely to reduce
the range of models that can be conveniently represented.

In light of these observations, we have sought to offer a particularly broad variety of set
types in our modeling language. AMPL provides for “sparse” subsets, for sets of ordered
pairs, triples and longer “tuples”, and for indexed collections of sets. Sets can be defined
by applying operations like union and intersection to other sets, or by specifying arbitrary
logical conditions for membership. Parameters, variables and constraints can be indexed
over any set; common iterated operations, such as summation, are indexed over sets in the
same way.

We begin this section by introducing the simpler kinds of AMPL sets in §2.1, and the
concept of an indexing expression in §2.2. We then take a longer look at sets of ordered
pairs and other compound sets in §2.3, and at indexed collections of sets in §2.4.

Most examples in this and subsequent sections are taken from four extensive AMPL
models that are collected in the appendices. prod and dist are adapted from a multiperiod
production model and a multicommodity distribution model that were developed for a large
manufacturer. egypt is a static model of the Egyptian fertilizer industry (Choksi, Meer-
aus and Stoutjesdijk 1980). train is an adaptation of a model of railroad passenger-car
requirements (Fourer, Gertler and Simkowitz 1977, 1978).

2.1 Simple sets

An unordered set of arbitrary objects can be defined by giving its name in an AMPL set
declaration:

set prd;

set center;

set whse;

AMPL also provides for the declaration of arbitrary subsets. As an example, dist is formu-
lated on the assumption that distribution centers are located at a subset of the warehouses,
and that factories are located at a subset of the distribution centers:

set dctr within whse;

set fact within dctr;

These subset declarations serve both as an aid to anyone reading the model, and as a check
on the data. If the data include, say, a member of set fact that is not a member of set
dctr, then the translator will reject the data for fact and report an error.

The actual set declarations in dist are a little longer than those above, because they
include a quoted alias following the set identifier:

set whse 'warehouses';

set dctr 'distribution centers' within whse;

set fact 'factories' within dctr;

An alias can be regarded either as a brief comment, or as a long identifier to be passed along
by the AMPL translator for eventual use in reports. A similar syntax is used in appending
aliases to other identifiers in an AMPL model. To save space, however, we will henceforth
omit aliases in quotations from our examples.

10

Simple sets may also be defined in terms of other sets or parameters, rather than directly
from the data. AMPL provides operators for the union, intersection and difference of sets,
as used in egypt to build the set of commodities from the sets of final, intermediate and
raw materials:

set commod := c_final union c_inter union c_raw;

There is also the .. operator that constructs sets of consecutive integers between two limits.
In prod, the name time is given to the set of integers beginning with the value of parameter
first and ending with the value of parameter last:

param first > 0 integer;

param last > first integer;

set time := first .. last;

Set expressions built from these operators can also be used anywhere else that a set value
is required in an AMPL model. For example, a declaration such as

set c_prod within c_final union c_inter;

would declare a set c_prod whose members must lie within either c_final or c_inter.

2.2 Indexing expressions

A more general syntax is required to specify the sets over which parameters, variables
and constraints are indexed. The same syntax can then be used to describe the sets over
which summations and other operations are iterated, as explained in Section 3 below.

In algebraic notation, indexing is indicated informally by a phrase such as “for all i ∈ P ”
or “for t = 1, . . . , T ”. AMPL formalizes these phrases as indexing expressions delimited by
braces. As seen in prod, the simplest kind of indexing expression is just the name of a set,
optionally preceded by a named dummy index:

{prd}

{t in time}

The set in an indexing expression may also be specified by use of set operators:

{first-1..last}

{a in 1..life}

In keeping with the conventions of algebraic notation, we do not require that the name
of a dummy index bear any particular relation to the name of any set. Sometimes it is
convenient to use the same index name with different sets (as t is used with several sets
representing times in prod) or different index names with the same set (as pl, p1, p2 are
used with plant in egypt). The dummy index may be dropped entirely in parameter and
variable declarations where it is not needed.

Large models cannot be adequately described by indexing over the members of individ-
ual sets. Many parameters, variables and constraints are most naturally indexed over all
combinations of members from two or more sets. AMPL denotes such indexing by listing the
sets sequentially within the braces of an indexing expression, as in the following examples
from prod:

{prd,time}

{prd,first..last+1}

{prd,time,1..life}

{p in prd, t in time}

{p in prd, v in 1..life-1, a in v+1..life}

11

The sets are evaluated from left to right. Thus, in the last example above, p runs through
all members of prd and v runs from 1 to life-1; for each such combination, a runs from
v+1 to life. This is a natural way to define a “triangular” array of index values. AMPL
also permits “square” arrays, as in egypt:

{p1 in plant, p2 in plant}

This expression specifies indexing over all possible pairs of members from plant, in the
definition of a table of interplant distances.

Realistic models often require more complicated indexing, in which the membership of
the indexing set is somehow restricted. AMPL provides for this possibility by allowing
a logical condition to be specified after the set or sets in the indexing expression. For
example, dist indexes a collection of constraints over all product-factory pairs for which the
production cost is specified as zero:

{p in prd, f in fact: rpc[p,f] = 0}

The qualification in an indexing expression may also compare the dummy indices directly.
Thus we could write

{p1 in plant, p2 in plant: p1 <> p2}

to index over all possible pairs of different members from plant.

2.3 Compound sets

It is often most natural to think of a set as comprising not individual items, but ordered
pairs of items, or possibly ordered triples, quadruples or longer lists. As an example, in dist
the allowed shipment routes comprise a set of ordered pairs (d,w) such that d is a member
of the set of distribution centers and w is a member of the set of warehouses. Variables
representing shipment amounts are indexed over these pairs.

If every distribution center could ship to every warehouse, then AMPL could handle
(d,w) pairs by means of the expressions introduced in §2.2 above. Indeed, the indexing
expression {dctr,whse} or {d in dctr, w in whse} specifies precisely the set of all ordered
pairs of centers and warehouses. In the application that gives rise to the dist model, how-
ever, shipments from a distribution center are permitted only to certain related warehouses.
Thus the set of shipment routes is a “sparse” subset of the center-warehouse pairs, and
the variables representing shipments are defined only for the pairs in this subset. Such a
situation is common in distribution and network models. To handle it naturally, a modeling
language must be able to index over “all (d,w) in the set of routes” and similar kinds of
sets.

In AMPL the set of shipment routes could be declared most simply as follows:

set rt dimen 2;

This would say that rt is a set whose members must be “2-dimensional”: ordered pairs of
objects. The routes in dist, however, cannot be just any pairs of objects; each member must
be a distribution center paired with a warehouse. A more appropriate AMPL declaration
has the following form:

set whse;

set dctr within whse;

set rt within (dctr cross whse);

The set operator cross is a cross, or Cartesian, product; applied to two simple sets, its result
is the set of all ordered pairs comprising a member of the left operand followed by a member

12

of the right operand. Thus the above statements say that the data for rt must consist of
ordered pairs whose first components come from dctr and whose second components come
from whse.

An indexing expression for rt might be either of

{rt}

{(d,w) in rt}

depending on whether the dummy indices are needed. Indexing expressions may also com-
bine rt with other sets, as in

var Ship {prd,rt} >= 0;

In the objective and constraints of dist, references to these product shipment variables have
the form Ship[p,d,w], where p is a member of prd and (d,w) is a member of rt.

If the shipment routes are to be read directly as data, then a human modeler must
compile the list of route pairs and enter them into the data file. For the dist application,
however, the permitted routes are always a certain function of the shipping costs and other
numerical data. Thus a more convenient and more reliable AMPL model defines rt in terms
of logical conditions on the parameters, by use of an indexing expression. First of all, the
shipping cost rates are specified by

param sc {dctr,whse} >= 0;

param huge > 0;

Only the routes from d to w for which sc[d,w] is less than huge are to be permitted. Thus
rt can be defined by

set rt := {d in dctr, w in whse: sc[d,w] < huge};

Since each distribution center is also a warehouse, however, this set contains a route from
each distribution center to itself. Such routes have a shipping rate of zero in the data, so
they need to be ruled out separately:

set rt := {d in dctr, w in whse: d <> w and sc[d,w] < huge};

In the full dist example, a route may also be disallowed if it runs to a warehouse where
there is no demand (unless the warehouse is also a distribution center), or if it is subject to
a “minimum size restriction” and the total demand at the warehouse fills less than a certain
number of shipping pallets. The entire definition is

set rt := {d in dctr, w in whse:

d <> w and sc[d,w] < huge and

(w in dctr or sum {p in prd} dem[p,w] > 0) and

not (msr[d,w] and sum {p in prd} 1000*dem[p,w]/cpp[p] < dsr[d]) };

The lengthy logical condition in the indexing expression is built up mainly from arithmetic
comparisons connected by and, or and not. It also uses the logical expression w in dctr,
which is true if and only if w is a member of the set dctr.

Sets of longer ordered lists are handled in an analogous fashion. As an example, in
train each line of the railroad schedule is an ordered quadruple: city of departure, time of
departure, city of arrival, time of arrival. The AMPL declarations are

set cities;

param last > 0 integer;

set times := 1..last;

set schedule dimen 4;

13

A variable X representing the number of cars in each train is declared by indexing it over
the set of quadruples:

var X {schedule} >= 0;

In the data for this model (Appendix D) cities has 4 members and last is 48. There are
4× 48× 4× 48 = 36864 potential quadruples, yet schedule has only about 200 members.
The ordered quadruples are essential to a clear and efficient model description.

2.4 Sets of sets

Just as parameters, variables and constraints can be indexed over sets, it sometimes
makes sense to define a collection of sets indexed over some other set. The egypt model,
for example, postulates a set of fertilizer plants and a set of production processes. At
each plant, however, a certain subset of processes is prohibited. The collection of all these
prohibited subsets is a “set of sets” indexed over the set of plants.

In AMPL, the collection of subsets of prohibited processes is declared straightforwardly:

set plant;

set proc;

set p_except {plant} within proc;

One set p_except[pl] is here defined for each member pl in plant. All of these sets must
be subsets of proc; their actual membership is specified along with the rest of the set data,
as seen in the Appendix B listing.

AMPL’s set operators can be used to define new collections of sets from ones that are
similarly indexed. For instance, a second set of sets, p_cap, represents the subset of processes
for which capacity is available at each plant. Then the subset of all possible processes at
each plant is declared as

set p_pos {pl in plant} := p_cap[pl] diff p_except[pl];

For each pl in plant, this declaration defines a separate set p_pos[pl] equal to the “dif-
ference” of p_cap[pl] and p_except[pl]. Thus, for each plant, the subset of possible
processes consists of the ones that have capacity available and that are not prohibited.

AMPL’s indexing expressions can also be used to define indexed collections of sets.
Consider the set unit of production units that may be found in fertilizer plants; for each
combination of unit u and plant pl, there is an initial capacity icap[u,pl]. It is desirable
to define m_pos[pl] as the subset of units that have positive initial capacity at plant pl:

set m_pos {pl in plant} := {u in unit: icap[u,pl] > 0};

More complicated expressions of this kind define several other convenient sets of sets in the
egypt model.

Sets of sets are typically employed in compound indexing expressions for parameters,
variables and constraints. As an example, the variables Z[pl,pr] represent the levels of
processes pr at plants pl. They are declared by

var Z {pl in plant, p_pos[pl]} >= 0;

The simpler indexing expression {plant,proc} might have been used, but then a variable
would have been defined for every combination of plant and process. The above declaration
creates a variable only for every combination of a plant and a possible process at that plant.

Sets of sets have much in common with ordered pairs. Both allow a model to specify a
sparse subset of the cross product of two sets. The sets p_cap and p_except above could

14

be represented instead as sets of ordered pairs within plant cross proc, in which case the
process possibilities would be given by set p_pos := p_cap diff p_except and the process
level variables would be declared as var Z {p_pos} >= 0. The unit-plant pairs for which
there is positive capacity could likewise be declared by

set m_pos := {u in unit, pl in plant: icap[u,pl] > 0};

All of the other sets of sets in egypt can be similarly converted.

Conversely, the set of pairs rt in the dist model could be represented instead as a set
of sets:

set rt {d in dctr} := {w in whse: d <> w and sc[d,w] < huge};

For each distribution center d, this would define rt[d] as the subset of warehouses to which
the center can ship.

Almost any model that uses sets of sets can be made to use ordered pairs instead, and
vice versa. The choice depends on which notation the modeler finds more appropriate and
convenient. The examples above suggest that ordered pairs sometimes offer more concise
but less descriptive expressions. The most important differences, however, are likely to arise
in the formulation of the constraints, discussed further in Section 4.

15

3. Numerical Values

An effective large-scale modeling language must be able to describe “vectors” and “matri-
ces” and similar collections of numerical values indexed over sets. As the preceding sections
have explained, only a symbolic description of these values need appear in the model, while
the actual data can be given separately in some convenient way (such as in the format
described by Section 5).

In AMPL a single symbolic numerical value is called a parameter. Since parameters are
most often indexed over sets, we will loosely refer to an indexed collection of parameters
as “a parameter” when the meaning is clear. To begin this section, §3.1 describes AMPL’s
rules for declaring indexed parameters and for specifying simple conditions on them.

Representations of numerical values are combined by arithmetic and logical operations
to produce the expressions in a model’s objective and constraints. Along with the familiar
unary and binary operators, conventional algebraic notation provides iterated operators such
as
∑m
i=1 for addition and

∏n
j=1 for multiplication. AMPL’s versions of these operators are

surveyed in §3.2, with particular attention to the use of AMPL sets in indexing the iterated
summations that are essential to linear programming. We also introduce a conditional (if-
then-else) construction that is frequently useful within the arithmetic expressions of complex
models.

An AMPL numerical expression may be used almost anywhere in a model that a number
is appropriate. However, an algebraic model is easiest to read and to verify if the expressions
in its objective and constraints are kept fairly simple. Thus AMPL provides for using
arithmetic expressions to define new parameters in terms of previously-defined parameters
and sets, as explained in §3.3.

3.1 Parameters

An AMPL parameter declaration describes certain data required by a model, and in-
dicates how the model will refer to those data in symbolic expressions. Syntactically, a
parameter declaration consists of the keyword param followed by an identifier and by op-
tional phrases for indexing, checking and other purposes.

The formation of indexing expressions and the declaration of indexed parameters have
been introduced in Sections 1 and 2. A straightforward example is

param io {commod,proc};

which defines the input-output coefficients for the egypt model. Given members c and p
of the sets commod and proc, respectively, the corresponding parameter value is denoted
io[c,p].

Unlike io, most parameters cannot meaningfully assume arbitrary positive and nega-
tive values. Thus typical declarations contain a qualifying expression, as in the following
examples from prod:

param iinv {prd} >= 0;

param cri {prd} > 0;

param life > 0 integer;

All values for iinv must be nonnegative, and all for cri must be strictly positive; life
must be a positive integer. These restrictions are essential to the validity of the model, and
are enforced by the translator when it gets to the point of inspecting the data values. Any
violation is treated as an error.

Although simple restrictions like nonnegativity and integrality are most common, others
are sometimes appropriate. In prod, the last period of the planning horizon must be after

16

the first:

param first > 0 integer;

param last > first integer;

Similarly, in every period, the maximum crew size must be no less than the minimum:

param cmin {time} >= 0;

param cmax {t in time} >= cmin[t];

In a few cases, simple inequalities are insufficient to express the desired restrictions. To
accommodate all possibilities, we have included in our design a separate check statement
that may accompany a parameter declaration; as an example, the following could be used
to require that the minimum crew sizes be nondecreasing:

param cmin {first..last};

check {t in first..last-1} cmin[t] <= cmin[t+1];

In general, a check statement can appear at any convenient place in an AMPL model, and
can specify any logical condition on the sets and parameters; the translator tests all such
conditions and reports any violations.

The parameters of an AMPL model most commonly represent numerical values. How-
ever, parameters may be declared symbolic to specify that their values are arbitrary objects
such as might be the members of any set.

3.2 Arithmetic and logical expressions

Arithmetic expressions in AMPL evaluate to floating-point numbers. Any parameter
reference or numerical literal (17, 2.71828, 1.0e+30) is an arithmetic expression by itself.
Common arithmetic functions of one variable (abs, ceil, floor) and of two or more vari-
ables (min, max) are also expressions, as seen in train. Longer arithmetic expressions are
built up by use of the familiar operators such as + and *.

AMPL’s logical expressions evaluate to true or false. They are most often created through
the use of standard comparison operators like = and <=. AMPL also provides a set member-
ship operator, in, which produces a true result if and only if its left operand in a member
of its right operand. Finally, logical expressions can be combined and extended by logic op-
erators like or and not. Table 3–1 provides a summary of operators and operations, listed
in order of decreasing precedence.

Operator Operation

^ exponentiation
+ - not unary plus, minus, logical negation
* / mod multiplication, division, remainder
sum, etc. iterated addition, etc. (see Table 3–2)

+ - less addition, subtraction, non-negative subtraction
in set membership

< <= = >= > <> comparison
and logical conjunction
or logical disjunction

if...then...else... conditional evaluation

Table 3–1. Arithmetic and logical operators, in order of decreasing precedence.

17

Iterated Underlying
operator binary operator

sum +
prod *
min
max

exists or
forall and

Table 3–2. Iterated operators.

Expressions can also be built by iterating certain operations over sets. Most common is
the iterated summation, represented by a Σ in algebraic notation and by sum in AMPL:

sum {p in prd} dem[p,w]

Any indexing expression may follow sum. The subsequent arithmetic expression is evaluated
once for each member of the index set, and all the resulting values are added. Thus the above
sum from dist represents the total demand for all products at warehouse w. In precedence
the sum operator lies between binary + and *, so that the expression following sum includes
everything up to the next + or − not within a parenthesized subexpression.

By allowing any indexing expression after sum, AMPL provides a general and flexible
notation for summations. Even the complicated sums in linear constraints can be transcribed
straightforwardly, as examples in Section 4 will show. Moreover, the generality of this
notation actually makes the language simpler, in that the rules for indexing a sum are no
different from the rules for indexing a param declaration. The AMPL user needs to learn
only one syntax for index sets.

Other associative, commutative operators can be iterated just like sum. Table 3–2 shows
those available in AMPL for arithmetic and logical operations. An example of forall, an
iterated operator that returns a logical result, is found in the egypt model:

forall {u in unit: util[u,pr] > 0} u in m_pos[pl]

Given a process pr and a plant pl, this expression is true if and only if, for every member
u of unit such that util[u,pr] is positive, u is also a member of the set m_pos[pl]. In
other words, since m_pos[pl] is the set of units for which initial capacity exists at plant pl,
while util[u,pr] is positive exactly when process pr requires unit u, the expression is true
if and only if there is initial capacity at the plant for every unit required by the process.

(There are also iterated union and intersection operations on sets, as well as an iterated
setof operator that builds sets from arbitrarily specified members. As an illustration, the
train model defines a set links of all city pairs that may appear in the schedule; we have
specified this set as part of the data, but it could instead be computed as

set links := setof {(c1,t1,c2,t2) in schedule} (c1,c2);

The same set could be defined by use of the iterated exists operator:

set links := {c1 in cities, c2 in cities:

exists {t1 in times, t2 in times} (c1,t1,c2,t2) in schedule};

The setof expression is easier to read, however, and permits the AMPL translator to carry
out the computation of links more efficiently. These concerns have proved particularly

18

important for one of our larger test problems that manipulates a set of quintuples.)

Finally, there are instances in which a parameter’s value must depend on some logical
condition. As an example, road[r,pl] is the distance from plant pl to region r, or zero
if plant pl is in region r. Transportation from a plant to a region incurs a fixed cost plus
a cost proportional to distance, but only if the plant is outside the region. The arithmetic
expression for transportation cost is thus as follows:

if road[r,pl] > 0 then .5 + .0144 * road[r,pl] else 0

If the condition between if and then is true, then the entire expression takes the value
between then and else; if instead the condition is false, then the expression takes the value
after else. The entire if...then...else... construct may itself serve as an operand
wherever appropriate; egypt uses a sum of conditionals,

(if impd_barg[pl] > 0 then 1.0 + .0030 * impd_barg[pl] else 0)

+ (if impd_road[pl] > 0 then 0.5 + .0144 * impd_road[pl] else 0)

to combine the costs for barge and road transportation of imported raw materials.

The else part of a conditional expression may be omitted, in which case else 0 is as-
sumed. This default is particularly convenient in specifying optional terms of constraints,
as will be seen in Section 4. The scope of the expression following else (or then, if
there is no else) is to the end of the expression that follows. Thus if...then... and
if...then...else... constructs are normally parenthesized to make their scope clear.

3.3 Computed parameters

It is seldom possible to arrange that the data available to a model are precisely the
coefficient values required in the objective and constraints. Thus the coefficients are often
specified by expressions in the parameters. For example, prod gives the total regular wages
for crews in period t as

rtr * sl * dpp[t] * cs * Crews[t]

where rtr is the wage rate per worker in dollars per hour, sl is the number of hours in a
daily shift, dpp[t] is the number of days in the period, cs is the number of workers in a crew,
and Crews[t] is a variable that stands for the number of crews in the period. Expressions
also appear as constant terms (right-hand sides, in LP terminology) for the constraints. In
the first-period demand requirement constraint for product p, the term

dem[p,first] less iinv[p]

is evaluated as demand minus initial inventory if demand exceeds initial inventory, or zero
otherwise.

Although any parameter expression may be used in the objective and constraints, the
expressions are best kept simple as in the examples above. When more complex expressions
are needed, the model is usually easier to understand if new, computed parameters are
defined in terms of the data parameters.

Declarations for computed parameters are much like the declarations for computed sets
that were seen in the previous section. In prod, the minimum inventory for product p
in period t is defined to be its demand in the following period times either pir or rir,
depending on whether it will be promoted:

param minv {p in prd, t in time}

:= dem[p,t+1] * (if pro[p,t+1] then pir else rir);

The expression following := is evaluated for each combination of a member p from prd and a

19

member t from time, and the result assigned to minv[p,t]. The amount of initial inventory
available for allocation after period t is also a computed parameter; it is the initial inventory
(if any) that remains after deducting the demand for the first t periods:

param iil {p in prd, t in time}

:= iinv[p] less sum {v in first..t} dem[p,v];

Both minv and iil subsequently appear in the inventory requirement constraints, where
the constant term is minv[p,t] - iil[p,t].

Any attempt to provide explicit values for minv or iil, in the specification of the model’s
data, will be rejected as an error. However, if the keyword default is employed in place
of the := operator, then values for some or all of the parameters minv[p,t] and iil[p,t]
may be given along with the other data, and will override the computed values.

As another alternative, a separate preprocessing program could be used to compute all
the values for parameters such as minv and iil, in which case they could be treated like
any other data parameters in the AMPL model. Such an approach is unavoidable when
the computations involve something more complicated than the evaluation of an arithmetic
expression (such as the application of an algorithm). We prefer, however, to represent the
“raw” data as parameters in the model whenever possible; then any arithmetic processing
of these data must appear explicitly in the model’s declarations, which are easy to read and
check for validity. The power and variety of AMPL’s arithmetic expressions should tend to
encourage this practice.

20

4. The Linear Program

The most complicated components of linear programs are the constraints. Thus, fol-
lowing a brief consideration of the variables in §4.1, most of this section is concerned with
constraint declarations. In §4.2 we first examine some fairly straightforward indexed col-
lections of algebraic constraints and their transcriptions into AMPL. We then investigate
the issues that must be resolved in handling three common but more difficult cases: double
inequalities, optional linear terms, and “slices” over compound sets.

To conclude this section, a few comments on the specification of the objective are col-
lected in §4.3.

4.1 Variables

The variables of an algebraic linear programming model are described in much the same
way as the numerical data. Thus an AMPL declaration for a variable consists of the key-
word var followed by an identifier, followed by the same kinds of optional indexing and
qualification expressions that might appear in a param declaration.

A few variables in the egypt model are neither indexed nor qualified:

var Psip;

However, most of the variables in a large linear program are defined as indexed collections,
and are nonnegative. Thus prod, for example, contains the following declarations:

var Crews {first-1..last} >= 0;

var Hire {time} >= 0;

var Rprd {prd,time} >= 0;

var Inv {prd,time,1..life} >= 0;

The qualification >= 0 represents a simple constraint on these variables. Because nonnega-
tivity is so common, and because it is handled implicitly by nearly all algorithms for linear
programming, it is almost always specified as part of a variable’s declaration rather than as
an explicit constraint.

More generally, the qualification expression may specify any lower or upper bound on
each variable. Two such expressions may be given to specify both a lower and an up-
per bound. Alternatively, one or both one or both bounds may be described by explicit
constraints, as discussed further below.

4.2 Constraints

A linear constraint says that one linear arithmetic expression is equal to, greater than
or equal to, or less than or equal to another linear arithmetic expression. Typical linear
programs have few distinct kinds of constraints; 10 kinds or fewer is normal, and 20 is large.
Each kind of constraint can be represented by a single symbolic equality or inequality in the
parameters, the variables and one or more dummy indices. As the dummy indices run over
certain sets, a symbolic constraint gives rise to many explicit ones.

The AMPL transcription of a constraint declaration thus has two major parts: an index-
ing expression, identical in form to those found elsewhere in an AMPL model, and a com-
parison expression using =, <= or >=. Preceding these are the optional keywords subject to,
and a constraint identifier. (In the declaration of the model, the constraint identifier serves
only as a syntactic place-holder, and perhaps as a suggestive name for documentary pur-
poses. The identifier could also be useful, however, as a name for the constraint in reports
of slack and dual values following optimization.)

Several typical uncomplicated constraints are found in prod. For each planning period,

21

total hours of work required by production may not exceed the hours available from all
crews employed:

rlim {t in time}:

sum {p in prd} pt[p] * Rprd[p,t] <= sl * dpp[t] * Crews[t];

For each product in each period, all previously produced inventory, plus any initial inventory
still unused, must total at least the required minimum inventory:

ireq {p in prd, t in time}:

sum {a in 1..life} Inv[p,t,a] + iil[p,t] >= minv[p,t];

The amount of inventory that is a periods old at the end of period t cannot exceed the
amount that was a-1 periods old at the end of period t-1:

ilim {p in prd, t in first+1..last, a in 2..life}:

Inv[p,t,a] <= Inv[p,t-1,a-1];

The AMPL translator determines which variables have nonzero coefficients in the constraints
implied by these declarations; it then computes the coefficients of these variables and the
value of the constant term. In our implementation, the coefficients are determined as if all
variables had been moved to the left of the relational operator, and all constants to the right,
but such transformations need not concern the modeler. Any expression in parameters and
variables is acceptable as a constraint, so long as the expressions on each side of the relation
can be interpreted as linear. For instance, the language allows a parameter to multiply a
sum of variables, or a variable to be divided by a parameter.

Certain pairs of related constraints are most conveniently expressed as double inequal-
ities. In prod, the number of crews employed each period must lie between the minimum
and maximum for that period:

emplbnd {t in time}: cmin[t] <= Crews[t] <= cmax[t];

If cmin[t] is less than cmax[t] then this constraint gives upper and lower bounds for
variable Crews[t]; if cmin[t] equals cmax[t] then Crews[t] is effectively fixed at their
common value. Two further possibilities occur in dist, where the number of crews required
to carry out all regular-time production in a period must lie within specified bounds at each
factory:

rlim {f in fact}: rmin[f] <=

sum {p in prd} (pt[p,f] * Rprd[p,f]) / (dp[f] * hd[f]) <= rmax[f];

Because only the middle expression contains variables, this double inequality can be treated
as a single constraint. For each member f of fact, if rmin[f] is less than rmax[f] then the
associated constraint is an inequality whose slack is bounded by rmax[f] - rmin[f] (that
is, a range in traditional linear programming terminology); if rmin[f] equals rmax[f] then
the constraint is just an equality.

Altogether, from the standpoint of an algorithm for solving linear programs, there are
four kinds of double inequalities that may be treated in four different ways. From a mod-
eler’s standpoint, however, these are all just linear constraints. Hence the AMPL language
provides no special syntax for distinguishing one kind from another; the distinction is made
optionally by the model translator, as Section 6 will explain.

Some kinds of constraints have two or more closely related variants. In dist, as an
example, there are two varieties of transshipment constraints. At each ordinary distribution
center, the amount of each product transshipped must equal at least the amount shipped
out of the center; at each factory distribution center, the amount transshipped must equal
at least the amount shipped out of the center minus the amount produced at the factory.

22

By use of a conditional expression, these variants can be declared together:

trdef {p in prd, d in dctr}:

Trans[p,d] >= sum {(d,w) in rt} Ship [p,d,w] -

(if d in fact then Rprd[p,d] + Oprd[p,d]);

For d not in fact, the value of the if...then... expression is zero—since it has no else—
and so the production term Rprd[p,d] + Oprd[p,d] is omitted. An example with three
variants is seen in the material balance constraints for each product at each warehouse:

bal {p in prd, w in whse}:

sum {(v,w) in rt} Ship[p,v,w] +

(if w in fact then Rprd[p,w] + Oprd[p,w]) =

dem[p,w] + (if w in dctr then sum {(w,v) in rt} Ship[p,w,v]);

The first if represents production at w, which can occur only if w is a factory; the second if
represents shipments from w to other warehouses, which can occur only if w is a distribution
center.

The above examples also show how ordered pairs are commonly used in constraints. In
bal there are two sums that involve the set rt of pairs:

sum {(v,w) in rt} Ship[p,v,w]

sum {(w,v) in rt} Ship[p,w,v]

These sums lie within the scope of the constraint’s overall indexing expression, {p in prd,
w in whse}, which has already defined the dummy index w. Hence, for a particular warehouse
w, the first sum is over all v such that (v,w) is a pair in rt; in other words, it is a sum
over all distribution centers that ship to w. The second sum is over all v such that (w,v)
is a pair in rt, or equivalently over all warehouses that receive from w. In effect, the first
sum’s indexing expression takes a “slice” from rt in the second coordinate, while the second
sum’s indexing expression takes a slice in the first coordinate. This kind of arrangement,
with slices in first one coordinate and then the other, is likely to be found in any network
application that uses sets of pairs to specify the arcs.

AMPL’s concise notation for slicing pairs does introduce a certain ambiguity, in expres-
sions like

sum {(v,w) in rt} ...

If this phrase lies within the scope of another indexing expression that has already defined
the dummy index w (as in the case of bal) then the summation is over a slice through rt.
On the other hand, if the sum does not lie in any scope defining w, then the summation is
over all ordered pairs in rt.

As an alternative, we have considered requiring a more explicit indexing expression in
summations over slices, so that the bal constraint, for instance, would have to begin as

bal {p in prd, w in whse}:

sum {v in dctr: (v,w) in rt} Ship[p,v,w] + ...

or

bal {p in prd, w in whse}:

sum {(v,w1) in rt: w1 = w} Ship[p,v,w] + ...

The latter is rather awkward, however, while the former works only in models (such as dist)
that explicitly define the set of all v such that (v,w) is in the set rt. We have come to
believe that the simplicity and generality of the more concise slice notation outweigh any
disadvantages arising from its ambiguity. (The advantages are even more evident in the
train model, which takes sums over slices through ordered quadruples.)

23

Sets of sets, rather than ordered pairs, could have been used in formulating dist. Suppose
that rt[d] were declared as the set of warehouses to which products may be shipped directly
from distribution center d. Then the constraint bal in dist would be

bal {p in prd, w in whse}:

sum {v in dctr: w in rt[v]} Ship[p,v,w] +

(if w in fact then Rprd[p,w] + Oprd[p,w]) =

dem[p,w] + (if w in dctr then sum {v in rt[w]} Ship[p,w,v]);

The slice {v in rt[w]} along the first coordinate is noticeably easier to specify than the
slice {v in dctr: w in rt[v]} along the second coordinate. The symmetry between the two
kinds of slices is lost.

The egypt model can also be formulated in terms of either ordered pairs or sets of sets,
but its situation is different. The sets of pairs do not represent network flows, and can be
arranged so that they are always sliced on the first coordinate when used in the constraints.
The material balance constraints for commodities provide an extended example:

subject to mb {c in commod, pl in plant}:

sum {pr in p_pos[pl]} io[c,pr] * Z[pl,pr]

+ (if c in c_ship then

(if pl in cp_pos[c] then sum {p2 in cc_pos[c]} Xi[c,pl,p2])

+ (if pl in cc_pos[c] then sum {p2 in cp_pos[c]} Xi[c,p2,pl]))

+ (if (c in c_raw and pl in cc_pos[c]) then

((if p_imp[c] > 0 then Vr[c,pl])

+ (if p_dom[pl,c] > 0 then U[c,pl])))

>= if (c in c_final and pl in cp_pos[c]) then sum {r in region} Xf[c,pl,r];

Here sets of sets offer a natural and concise notation that may make them preferable to
ordered pairs.

4.3 Objectives

A linear program’s objective function has all the properties of a constraint, except that
it lacks a relational operator. Thus the declaration of an objective has the same form as
the declaration of a constraint, except for starting with the keyword minimize or maximize
rather than subject to.

Although a linear program need only have a single objective, AMPL permits the decla-
ration of any number of alternative objectives, either singly or in indexed collections. Thus
train has both an objective to represent total cars in the fleet, and an objective to represent
total car-miles traveled in the schedule; in the application for which it was developed, these
objectives were traded off against each other by use of a parametric simplex algorithm.

24

5. Data

As we have emphasized in earlier sections, specific set and parameter data must be
combined with an AMPL model to describe one particular linear program. Data values have
varied sources, but usually a computer is used to help collect and organize them. Database
software is often employed for this purpose, and spreadsheet programs are also proving to
be convenient. In an ideally integrated system, a modeling language translator would have
some direct connection to the database or spreadsheet software; either the translator would
read their files, or it would be invoked by them as a subroutine.

Even if interfaces to specialized software were available, however, it would be desirable
that a modeling language also support some simple, standard format for data files. The
availability of such a format has several benefits: permitting the translator to run in the
greatest variety of environments, encouraging exchange of models for educational purposes,
and facilitating the collection of standard models for the testing of algorithms.

As part of our initial implementation, therefore, we have designed a standard AMPL
data file format. Our format supports several natural ways of specifying set and parameter
values, using one-dimensional lists and two-dimensional tables. Wherever possible, similar
syntax and concepts are used for both the set and parameter statements. Files in our
format can be created by any text editor; they are also fairly easy to generate as the output
of database and spreadsheet programs.

Examples of data in standard AMPL format appear in Figure 1–4 and in the Appendices.
We comment on the specification of set members in §5.1 below, and on the specification of
parameter values in §5.2.

5.1 Sets

The members of a simple set are specified straightforwardly. In data for the egypt
model, as an example, the sets of nutrients and processes are given by

set nutr := N P205 ;

set proc := SULF_A_S SULF_A_P NITR_ACID AMM_ELEC AMM_C_GAS

CAN_310 CAN_335 AMM_SULF SSP_155 ;

The same approach serves to specify the members of each set belonging to an indexed
collection of sets:

set p_except[HELWAN] := CAN_310 ;

set p_except[ASWAN] := CAN_335 ;

The data for a set of pairs can be organized as either a one-dimensional list or a two-
dimensional table. For example, if p_except were defined as a set of pairs (as suggested in
§2.4) then the above data could be listed as

set p_except := (ASWAN,CAN_335) (HELWAN,CAN_310) ;

or written in a table as

set p_except : CAN_335 CAN_310 :=

ASWAN + -

HELWAN - + ;

In the table, a + indicates a pair that is in the set, and a - indicates a pair that is not in
the set.

Sets of triples and longer compound members are usually most conveniently presented
in several “slices” along certain coordinates. In the train model, the schedule parameter
is a set of quadruples, and the specification of its members in the data file begins as follows:

25

set schedule :=

(WA,*,PH,*) 2 5 6 9 8 11 10 13

12 15 13 16 14 17 15 18

16 19 17 20 18 21 19 22

20 23 21 24 22 25 23 26

24 27 25 28 26 29 27 30

28 31 29 32 30 33 31 34

32 35 33 36 34 37 35 38

36 39 37 40 38 41 39 42

40 43 41 44 42 45 44 47

46 1

(PH,*,NY,*) 1 3 5 7 9 11 11 13

13 15 14 16 15 17 16 18 ...

The template (WA,*,PH,*) indicates a slice through WA in the first coordinate and PH in the
third; various pairs of values for the second and fourth coordinates are then supplied. A list
specification for the same set would begin as

set schedule := (WA,2,PH,5) (WA,6,PH,9) (WA,8,PH,11)

(WA,10,PH,13) (WA,12,PH,15) (WA,13,PH,16) (WA,14,PH,17) ...

The sliced representation is clearly easier to read, and is perhaps also easier to create. Our
data format offers a variety of slicing options in addition to those shown here; slices having
two coordinates free may be described in tables as well as in lists.

The entire set schedule is specified as a union of six different slices (of which only two
are seen above). Generally, any series of slices may be used to define a set, so long as no
member is given twice; different slicing options may even be used in the specification of the
same set. Thus a large set of triples or quadruples can be specified in many ways. The
choice is determined by the modeler’s convenience; as an example, if the set members are
maintained in a database then it may be easier to slice along coordinates that correspond
to sort keys.

5.2 Parameters

Simple, unindexed parameters are assigned values in an obvious way, as shown by these
examples from Figure 1–4:

param T := 4;

param max_prd := 123.7;

Most of a typical model’s parameters are indexed over sets, however, and their values are
specified in a variety of one-dimensional lists and two-dimensional tables.

The most elementary case is a parameter indexed over a single set, such as

param init_stock :=

iron 35.8

nickel 7.32 ;

Line breaks are disregarded, so this statement could be put all on one line:

param init_stock := nickel 35.8 iron 7.32 ;

In Figure 1–4, init_stock is indexed over the same set as the parameters cost and value.
Thus a single table can conveniently give the data for all:

param : init_stock cost value :=

iron 35.8 .03 .02

nickel 7.32 .025 -.01 ;

26

In this special form of the param statement, each column gives values for a different param-
eter; the parameter names appear as labels at the top of the columns.

For parameters indexed over two sets, the data are naturally presented in a table like
the following from Figure 1–4:

param units : nuts bolts washers :=

iron .79 .83 .92

nickel .21 .17 .08 ;

The row labels indicate the first index, and the column labels the second index. Thus
units[iron,bolts] is .83.

Several further options can be useful in the generation or display of certain tables,
particularly when the rows would be very long. First, a table may be transposed; in prod,
as an example, the demands are declared as

param dem {prd,first..last+1} >= 0;

and the data specification is as follows:

param dem (tr) :

18REG 24REG 24PRO :=

1 63.8 1212.0 0.0

2 76.0 306.2 0.0

3 88.4 319.0 0.0

4 913.8 208.4 0.0

5 115.0 298.0 0.0

6 133.8 328.2 0.0

7 79.6 959.6 0.0

8 111.0 257.6 0.0

9 121.6 335.6 0.0

10 470.0 118.0 1102.0

11 78.4 284.8 0.0

12 99.4 970.0 0.0

13 140.4 343.8 0.0

14 63.8 1212.0 0.0 ;

The qualifier (tr) says that the column labels indicate the first index and the rows labels the
second, just the opposite of the arrangement in the preceding example. The same data could
be given in an untransposed form, but then the table would have 3 rows and 14 columns, and
would not be nearly so easy to display or edit. If the transposition option were not available,
we could instead change the model to declare param dem {first..last+1,prd}. We prefer,
however, to let the algebraic model be declared in the most natural way, regardless of how
the data will be represented. (In prod we maintain the convention that, where a model
component is indexed over both products and times, the set of products comes first.)

Sometimes even transposing a table would leave its rows uncomfortably long. Then the
table may be divided column-wise into several smaller ones, as can be seen in the data for
cf75 from the egypt model (Appendix B). Or, since line breaks are not significant, each
of the rows may be divided across several lines of the data file.

When reading data, our AMPL translator makes no assumptions about the values of any
parameters. If a parameter is not assigned a value in the model or in the data file, then any
attempt to use its value in the model will be rejected as an error. In this way some kinds of
discrepancies in the data, such as missing rows or columns of a table, can be caught during
the execution of the translator.

In some applications certain indexed collections of parameters are “sparse”: the param-

27

eter values are zero for many combinations of the indices. We then find it convenient to
specify a default value of zero, and to give only the nonzero values explicitly. As an example,
the egypt model declares interplant rail distances by

param rail_half {plant,plant} >= 0;

param rail {p1 in plant, p2 in plant} :=

if rail_half[p1,p2] > 0 then rail_half[p1,p2] else rail_half[p2,p1];

and specifies the data as follows:

set plant := ASWAN HELWAN ASSIOUT KAFR_EL_ZT ABU_ZAABAL ;

param rail_half default 0 :

KAFR_EL_ZT ABU_ZAABAL HELWAN ASSIOUT :=

ABU_ZAABAL 85 . . .

HELWAN 142 57 . .

ASSIOUT 504 420 362 .

ASWAN 1022 938 880 518 ;

The phrase default 0 specifies that the default value is zero. Parameters are assigned this
value in two ways. First, each appearance of . in the table indicates the default value;
rail_half[ABU_ZAABAL,ABU_ZAABAL] and five other parameters are set to zero by this
device. Second, parameters that fail to appear in the table are automatically given the
value zero; these include rail_half[ASWAN,ASWAN] and eight others.

Several other examples of default zeros can be seen in the egypt model. Parameter sc
in dist uses a default of 99.99 to represent “huge” shipping costs on routes where shipment
is not allowed. In some of these examples, the use of the default symbol rather than 0.0
or 99.99 serves mainly to make the tables more readable; it can be changed from . to any
preferred symbol.

For parameters subscripted by three or more indices, the data values must be specified
in a series of slices. Each slice, in turn, is represented as a list or table. Both the ideas
and the syntax of slicing are much the same as given for sets in §5.1 above. In train, for
instance, demands are declared by

param demand {schedule} > 0;

and the specification of the demand data begins as follows:

param demand :=

[WA,*,PH,*] 2 5 .55 6 9 .01 8 11 .01

10 13 .13 12 15 1.59 13 16 1.69

14 17 5.19 15 18 3.55 16 19 6.29

17 20 4.00 18 21 5.80 19 22 3.40

20 23 4.88 21 24 2.92 22 25 4.37

23 26 2.80 24 27 4.23 25 28 2.88

26 29 4.33 27 30 3.11 28 31 4.64

29 32 3.44 30 33 4.95 31 34 3.73

32 35 5.27 33 36 3.77 34 37 4.80

35 38 3.31 36 39 3.89 37 40 2.65

38 41 3.01 39 42 2.04 40 43 2.31

41 44 1.52 42 45 1.75 44 47 1.88

46 1 1.05

[PH,*,NY,*] 1 3 1.05 5 7 .43 9 11 .20

11 13 .21 13 15 .40 14 16 6.49 ...

This listing has much in common with the listing of the members of schedule in §5.1. The
slice-defining templates are the same, except that they are enclosed in brackets rather than

28

parentheses; each slice is through two cities, and consists of pairs of times. Following each
pair of times, however, the parameter specification also gives a demand value.

Many other arrangements of slices are possible. Slicing can even be valuable in specifying
sparse collections of parameters indexed over only two sets. In the egypt model, the plant-
specific prices for raw materials could have been given in a table like this:

param p_pr default 0.0 :

LIMESTONE COKE_GAS EL_ASWAN PHOS_ROCK :=

KAFR_EL_ZT . . . 5.0

ABU_ZAABAL . . . 4.0

HELWAN 1.2 16.0 . .

ASSIOUT . . . 3.5

ASWAN 1.2 . 1.0 . ;

Instead, they are condensed into four slices, one for each raw material:

param p_pr default 0.0 :=

[HELWAN,COKE_GAS] 16.0

[ASWAN,EL_ASWAN] 1.0

[*,LIMESTONE] ASWAN 1.2

HELWAN 1.2

[*,PHOS_ROCK] ABU_ZAABAL 4.0

ASSIOUT 3.5

KAFR_EL_ZT 5.0 ;

The choice between these representations is a matter of convenience or readability. Two
larger examples also appear in the egypt data, for parameters io and dcap.

29

6. Implementation

In addition to designing the AMPL language, we have implemented a complete AMPL
translator. This section briefly summarizes important aspects of our linear programming
implementation. We describe the processing steps of the translator in §6.1 and give some
statistics on its efficiency in §6.2.

6.1 Processing

A modeler initiates an application of AMPL by working out a representation of the
model as described in Sections 2–4, and a representation of the data such as that presented
in Section 5. These representations are stored in model and data files, which can be created
by use of any text editor.

The primary job of the AMPL translator is to read the model and data files, and to
write a representation of a linear program suitable for use by optimization algorithms. The
translator must also store enough model information to allow for an understandable listing
of the optimal solution. Our translator implementation carries out this work in seven logical
phases: parse, read data, compile, generate, collect, presolve, and output.

The parse phase reads the model file and parses it into a corresponding expression
tree. It uses a LEX program for lexical analysis, and a parser produced by the YACC
parser generator. LEX and YACC substantially simplify the job of language development,
particularly in the early stages when the syntax undergoes frequent changes (Kernighan and
Pike 1984).

Next, the read data phase carries out the initial input and checking of the data. Since
the parameters and sets are allowed to appear in any order within the data file, the data
cannot be thoroughly checked until all have been read. Hence this phase merely checks that
nothing is defined twice, that no set contains duplicate elements, that set members have the
right dimensions, and that the values supplied for numerical parameters are numbers.

The compile phase transforms the expression tree (created by parse) to permit efficient
computation of sets, parameters, variables, constraints and other derived entities. It moves
invariants out of loops, collects common subexpressions, and combines the work of retrieving
parameter values indexed over the same set (as in the case of rmin[f], dp[f], hd[f] and
rmax[f] from the rlim constraint of prod). Since the content of index sets depends on the
data file, compile must follow read data.

In the subsequent generate phase, the data are thoroughly checked and all derived entities
are computed. The checking portion of this phase verifies all conditions imposed by the
model (such as integrality and nonnegativity restrictions on parameters) and ensures that
indices are valid for the model components that they are indexing.

At the conclusion of generate, the translator has created a list of all linear terms in the
model. A variable may still appear, however, in two or more terms within the same objective
or constraint. The collect phase merges such multiple appearances into one, and sorts each
variable’s coefficients to match the ordering given to the constraints.

After completing the first five phases, the translator has determined the linear program
that was implied by the model and data files. The presolve phase next performs various
transformations that may make this LP smaller or otherwise easier to solve:

• Dropping variables that appear in no constraint or objective.

• Removing variables that are fixed at a single value, either by upper and lower bounds
that are equal, or by equality constraints that involve just one variable. In the latter
case, the constraints are also dropped. This activity may proceed for several passes,

30

since the removal of variables may result in additional equality constraints that involve
just one variable.

• Converting to bounds any inequality constraints that involve just one variable, as
discussed in Section 4. Such bounds are combined with any that have been specified
in a variable’s declaration. Additional constraints of this kind may also be found in
multiple passes as variables are fixed.

• Converting to ranges or equalities any double-inequality constraints, as explained in
Section 4.

• Removing certain inequality constraints that must be slack in any feasible solution.
Such constraints are identified by substituting upper or lower bounds (as appropriate)
for the variables. (This test may also identify certain constraints that can never be
satisfied, in which case the user is warned of a mis-specified model.)

Except for the dropping of unused variables, these transformations are optional. Our com-
putational experience indicates that the resulting simplified linear program is seldom any
harder to solve, and is sometimes much easier.

The final output phase makes the translated model available to an optimizer. Our intent
is to let different applications link appropriate output routines with the AMPL translator.
Initially we have provided an output routine suitable for use with optimizers that read linear
programs in the standard MPS form (as described by Murtagh 1981 and by the reference
manuals of many linear programming systems). Our routine generates arbitrary 8-character
row (constraint) and column (variable) names to conform to the MPS format. It writes one
file containing the MPS output, and supplementary files providing a variety of information:

• The “true” row and column names from the AMPL model.

• The constant term from each objective (not needed for purposes of optimization).

• Names of constraints eliminated by presolve.

• Names of unused variables dropped by presolve.

• Names and values of fixed variables removed by presolve.

The output also includes a “SPECS” file suitable for use by the MINOS optimizer (Murtagh
and Saunders 1987).

6.2 Tests

We modified version 5.3 of the MINOS optimization system to read the MPS, name and
SPECS files described above, and to cite AMPL variable and constraint names in its solution
report. We then tested our implementation by translating and solving some linear programs
ranging up to over a thousand constraints, and over ten thousand variables. Statistics for
these tests are collected in Table 6–1.

The model called egypt2 is the one reproduced in the Appendix; egypt1 is an alterna-
tive version using ordered pairs instead of sets of sets, but the same data. Among the other
models quoted in this paper (and listed in Fourer, Gay and Kernighan 1987), the sequences
dist03, dist08, dist13 and prod03, prod08, prod13 are our dist and prod examples with
progressively larger data sets (based on 3, 8 and 13 products). train1 and train2 are
versions of our train example.

Among the other test problems, oil is a small refinery model (Kendrick, Meeraus and
Suh 1981). cms is a cash management model that has an interesting variety of indexing

31

expressions. git1, git2 and git3 are shipping models that sum over various slices from a
set of quintuples (using the concise notation discussed in §4.2); the first two differ only in
that git1 expresses certain simple bounds as separate constraints, whereas git2 specifies all
relevant bounds within the variable declarations. Finally, hprod1 and hprod2 are based
on a production planning model that makes extensive use of sets generated through set
expressions; they differ only in the size of the data.

Table 6–1 presents summary statistics for a pair of runs on each model, the first using
the presolve phase, and the second without it. All timings are in seconds on a Sun-3/160,

Problem rows cols nonzeros AMPL output MINOS iter read write

cms 1682 24277 142054 232.6 294.3 38249.8 18041 611.1 255.8
cms 2522 24277 142894 204.1 294.5 39989.0 17292 623.1 264.6

dist03 185 1090 4325 9.9 8.7 32.1 209 19.8 14.3
dist03 299 1179 4682 8.9 9.5 44.5 226 21.8 16.0

dist08 449 2451 9703 19.7 19.6 144.7 473 44.3 31.8
dist08 790 2728 10792 17.2 21.9 200.6 416 50.2 37.5

dist13 448 1563 6073 23.0 13.3 102.3 429 28.4 21.8
dist13 1265 2262 8868 19.6 19.0 236.0 367 43.5 37.1

egypt1 146 351 1268 4.8 2.7 20.5 247 6.5 5.1
egypt1 285 351 1336 4.5 2.9 32.8 261 7.1 6.3

egypt2 146 351 1268 4.4 2.8 20.9 250 6.5 5.2
egypt2 285 351 1336 4.1 2.9 35.0 284 7.2 6.3

git1 381 1089 4303 14.2 10.2 65.6 397 23.0 15.7
git1 1300 1089 5192 12.8 12.0 177.7 334 29.9 24.0

git2 377 1089 4293 13.6 9.7 61.7 374 23.0 15.7
git2 411 1089 4303 12.4 9.8 70.3 407 23.1 15.9

git3 1331 12745 54854 320.3 101.6 3230.3 3966 244.1 138.4
git3 1331 12745 54854 309.3 101.8 3230.3 3966 244.1 138.4

hprod1 128 140 1383 10.2 3.5 3.6 17 6.6 2.8
hprod1 129 140 1384 9.9 3.5 3.7 17 6.5 2.7

hprod2 231 367 3445 30.6 7.4 19.5 90 16.1 5.9
hprod2 232 367 3446 30.0 7.4 19.6 90 15.9 5.8

oil 43 59 232 1.4 0.4 1.6 41 1.2 1.1
oil 47 60 236 1.3 0.4 1.7 49 1.2 1.1

prod03 179 231 870 1.9 1.9 12.2 127 4.5 4.4
prod03 210 235 922 1.8 2.0 12.2 109 4.8 4.7

prod08 418 551 2163 3.5 4.6 36.4 178 11.1 10.5
prod08 470 560 2262 3.1 4.8 40.8 189 11.6 10.8

prod13 648 871 3438 5.3 7.2 84.7 289 17.6 16.4
prod13 730 885 3602 4.5 7.6 84.7 260 18.3 16.9

train1 194 411 1058 3.1 2.9 4.8 31 6.3 6.4
train1 413 411 1277 2.8 3.4 7.7 31 8.4 8.2

train2 194 410 1055 7.6 2.7 5.8 48 6.3 6.2
train2 413 411 1277 7.2 3.2 9.9 48 8.2 8.2

Table 6–1. Timings in Sun-3/160 seconds, with and without presolve.

32

running SunOS Release 4.0 and equipped with 12 megabytes of memory and a Motorola
68881 mathematics co-processor. Columns in the first group indicate the sizes of the linear
programs: the numbers of rows (constraints), columns (variables, excluding any added by
MINOS) and nonzero elements. The middle columns then give the total AMPL model
processing times—through generate, plus presolve if used—and the times in the concluding
output phase.

In the final group of columns, the first two show the times and numbers of iterations
required by MINOS to solve the linear programs. Faster execution could be achieved in many
cases by selectively resetting certain parameters of the simplex method, but the timings
shown are sufficiently realistic for purposes of comparison with the AMPL times. The
MINOS figures do not include reading the input files and writing the solutions; additional
times for these tasks appear in the two rightmost columns.

These results vary considerably from one model structure to another. On the whole,
however, our timings suggest that the computing cost of converting an AMPL model and
data into a linear program is at worst comparable to the cost of solving the linear program,
and is often significantly less. As a result, we can conclude that the computer time required
for an AMPL application to LP modeling should seldom be more than twice the time
required for any alternative approach. Since AMPL is intended to save people’s time by
giving as much translation work as possible to the computer, we interpret this conclusion
as evidence that the use of AMPL is likely to be less costly overall.

33

7. Conclusion

We complete our description of AMPL by briefly comparing it, in §7.1, to the languages
employed by some of the more widely used linear programming systems. Finally, in §7.2 we
indicate several current and likely directions of further development.

7.1 Comparisons

As the introduction to this paper has indicated, AMPL is quite unlike the matrix genera-
tion languages that have long been employed in linear programming. AMPL is a declarative
language that specifies a linear program by directly describing each of its components.
Systems such as MaGen (Haverly Systems 1977) and DATAFORM (Management Science
Systems 1970, Creegan 1985) are built instead around specialized programming languages
that describe how to generate a coefficient matrix and other parts of a linear program.
Further differences are discussed in detail by Fourer (1983).

AMPL also differs significantly from the matrix-oriented declarative languages provided
by recent systems such as PAM (Ketron 1986) and MIMI/LP (Baker and Biddle 1986).
These languages specify a linear program by declaring the position and content of nonzero
blocks of coefficients in the constraint matrix. Such a specification can be concise and
convenient, particularly for models whose block structure is fairly regular.

We have chosen instead to make AMPL a declarative language based on an algebraic
description of constraints and objectives. One advantage of the algebraic approach is its
familiarity; almost anyone engaged in large-scale linear programming is acquainted with the
algebraic form, and hence is also familiar with most of AMPL’s conventions. For many
people who formulate linear programs by first writing the equations out on paper, the
conversion to AMPL may be mostly a matter of transcription. A further advantage lies in
the generality of algebraic notation. It extends gracefully to handle complicated kinds of
indexing expressions, ad hoc logical conditions, and even nonlinear constraints that have no
natural representation as a matrix of coefficients.

Numerous modeling systems have been designed to incorporate algebraic languages com-
parable to AMPL in purpose and design. Some of these systems, of which LINDO (Schrage
1989) is a popular example, do not provide symbolic indexing; all of the numerical parame-
ter values appear directly in the constraints, and each individual constraint must be written
out explicitly. Languages without indexing can be simple and convenient, but only for small
linear programs.

Closest to AMPL are the algebraic modeling languages that do offer symbolic index-
ing. Such languages are provided in several commercially distributed modeling systems,
including LINGO (Schrage and Cunningham 1988), GAMS (Brooke, Kendrick and Meeraus
1988) and MGG (Simons 1987). AMPL differs most fundamentally from these languages
in two respects: it very strongly encourages the independence of model and data, and it
distinguishes dummy indices from the sets over which they run.

For purposes of illustration we consider the GAMS language, which is one of the most
popular and advanced. In a GAMS model, the same statements may serve both to describe
an indexed table of data and to specify the data values. For example, one may write

TABLE RAIL-HALF(I,I)

KAFR-EL-ZT ABU-ZAABAL HELWAN ASSIOUT

ABU-ZAABAL 85

HELWAN 142 57

ASSIOUT 504 420 362

ASWAN 1022 938 880 518

to simultaneously state that a parameter RAIL-HALF exists, to specify its indexing, and

34

to give its nonzero values. In contrast, AMPL is designed so that the parameter’s name,
indexing and other characteristics are declared in the model,

param rail_half {plant,plant} >= 0;

while the literal numerical values must be given separately as part of the data:

param rail_half default 0 :

KAFR_EL_ZT ABU_ZAABAL HELWAN ASSIOUT :=

ABU_ZAABAL 85 . . .

HELWAN 142 57 . .

ASSIOUT 504 420 362 .

ASWAN 1022 938 880 518 ;

If users are concerned to be able to state the model and data together as compactly as
possible, then it makes sense for a language to employ the same statements in declaring
data characteristics as in specifying data values. By comparison, the AMPL user must cite
an indexed set or parameter twice—once in the model and once in the data—when providing
literal data values as in the example above. We see significant compensating advantages,
however, to such an arrangement:

• The statement of the symbolic model can be made compact and understandable, while
the bulky and less readable data tables are provided elsewhere.

• The independence of the symbolic model can encourage modelers to specify precise
conditions for the validity of the associated data, and can help to prevent accidental
changes to the model when only the data are supposed to be changed.

• The separate data specification can be regarded as just a supplementary part of the
modeling language. Alternative data formats, tailored to various computing environ-
ments, may then be substituted for the standard format (of Section 5) without any
change to the fundamental syntax of the modeling language.

The independence of model and data can also make AMPL easier to use in extended mod-
eling exercises, where one typically wants to either run the same model on different data
sets, or apply different models to the same data.

Another concise notation in many languages permits the name of a set to also indicate
indexing over the set. The overtime limit constraints from our prod example could be
written in GAMS, for instance, as

OLIM(TIME).. SUM (PRD, PT(PRD) * OPRD(PRD,TIME)) =L= OL(TIME);

These constraints are indexed over the set TIME, and the summation is indexed over PRD;
but the names of these sets are also used as “subscripts” in the parameter expressions
PT(PRD) * OPRD(PRD,TIME) and OL(TIME). The same thing could be said in less space by
giving the sets shorter names:

OLIM(T).. SUM (P, PT(P) * OPRD(P,T)) =L= OL(T);

By contrast, the equivalent AMPL expression,

olim {t in time}: sum {p in prd} pt[p] * Oprd[p,t] <= ol[t];

requires that the subscripts be “dummy” indices t and p that are explicitly declared to
run over differently named sets time and prd. For simple constraint expressions like this,
the form without dummy indices has advantages of brevity and simplicity. Nevertheless, we
have chosen to require the dummy indices in AMPL, for two reasons:

35

• Dummies are widely used by modelers in writing algebraic expressions.

• Complex expressions required by large-scale models remain easy to write using dummy
indices, but are often quite awkward to write without them.

Examples of common complexities include dummy indices used in set and arithmetic ex-
pressions,

izero {p in prd, v in 1..life-1, a in v+1..life}: Inv[p,first+v-1,a] = 0;

and in logical expressions to qualify an indexing set:

noRprd {p in prd, f in fact: rpc[p,f] = 0}: Rprd[p,f] = 0;

Dummy indices are also essential to effective use of the variety of compound sets discussed
in Section 2. We might have chosen to make dummies optional in AMPL, so that subscripts
could be either the names of sets or the names of indices declared to run over sets; but we
felt that the convenience of avoiding dummy indices in some expressions would be greatly
outweighed by the confusion of allowing two different conventions.

AMPL also differs from widely used modeling languages in the relational, logical and
conditional operators that it provides, and in the set and arithmetic expressions that it al-
lows. Many of these differences are intended to make AMPL more familiar in its resemblance
to algebraic notation and more powerful in its ability to describe complex constraints. The
success of particular design elements will ultimately have to be judged, however, by the
reactions of individual users.

Newer languages under development may be closer to AMPL in some aspects of design.
For example, SML (Geoffrion 1988) also enforces the independence of model and data.

7.2 Further development

We have confined the above comparisons to the languages that are used by computer
systems for linear programming. Yet all of the successful languages are supplied as part of
integrated systems, which provide other facilities—for solving linear programs, for manipu-
lating data, and for reporting solutions—that can be as important to users as the convenience
of any modeling language. Indeed, there is considerable interest in software that provides
an interface between linear programming and existing modeling systems whose languages
were developed for other purposes. Examples are What’s Best (General Optimization 1986),
which works with 1–2–3 spreadsheets, and IFPS/OPTIMUM (Roy, Lasdon and Lordeman
1986) within the IFPS planning system.

In developing AMPL, we have initially concentrated on the language’s design and im-
plementation. Thus we have chosen to employ the simplest practicable interfaces to other
systems. Our translator accepts tabular data input that can be prepared by any text editor,
and its output provides the information needed by most LP optimizers; no special provi-
sion is made for maintaining different versions of data and models, or for examination and
display of the solutions.

We envision, however, that further development of AMPL software will provide a closer
integration of the language with other parts of the modeling environment. We have already
mentioned in Section 5 that, as a start, any database or spreadsheet could be used to
generate data in our standard format. As a modest further step, the AMPL translator
could be modified to read directly from database or spreadsheet files, and a supplementary
processor could be designed to write the optimal primal and dual values back to the same
files. Standard software could then serve as a tool for examining and reporting solutions as
well as for managing data.

A more ambitious plan would modify both the AMPL translator and an LP solver to

36

be callable from the system that manages the data. Then AMPL models might be de-
fined, solved and analyzed entirely within a database or spreadsheet environment. Possibly
database software could serve to maintain multiple versions of a model that use similar data,
as well as multiple versions of data for similar models (see also Dolk 1986).

Algorithm control is another activity with which the language could be more closely
integrated. Control software could allow for links between models, as in current systems
like GAMS, so that variables from one model become parameters to another. As another
example, a postoptimal parametric analysis might be conducted by simply giving the names
of AMPL parameters to be varied (and their relative rates of variation, if different).

Finally, we are actively developing extensions to the AMPL language itself. For the very
common case of network structures in linear programs, we have provided arc and node
declarations that correspond to familiar descriptions of network-flow variables and balance-
of-flow constraints, respectively. For the convex piecewise linear terms that often appear
in the objective of an otherwise linear program, we have developed a syntax that permits
specification of successive slopes and breakpoints.

We can also easily extend the language to more general kinds of mathematical programs.
To accommodate nonlinear programs, virtually no change in the AMPL syntax has been
necessary; only a moderate increase in the translator’s complexity has been required, to
provide for processing of nonlinear expressions and for production of an output that can
be read by nonlinear optimizers. We expect no greater difficulty in accommodating certain
common constructs of discrete optimization, such as integrality constraints and fixed costs,
that have natural representations within an algebraic model.

Acknowledgements

We are grateful to Gary Cramer, Stan Hendryx, Adrian Kester, Doug McIlroy, and
Hai-Ping Wu, who have provided us with valuable suggestions and test problems.

37

Appendix A. DIST, a product distribution model

This model determines a production and distribution plan to meet given demands for
a set of goods. The formulation is motivated by the experiences of a large producer in the
United States. The data are for a set of three products.

SHIPPING SETS AND PARAMETERS

set whse 'warehouses'; # Locations from which demand is satisfied

set dctr 'distribution centers' within whse;

Locations from which product may be shipped

param sc 'shipping cost' {dctr,whse} >= 0;

Shipping costs, to whse from dctr, in $ / 100 lb

param huge 'largest shipping cost' > 0;

Largest cost allowed for a usable shipping route

param msr 'minimum size restriction' {dctr,whse} logical;

True indicates a minimum-size restriction on
direct shipments using this dctr --> whse route

param dsr 'direct shipment requirement' {dctr} >= 0;

Minimum total demand, in pallets, needed to
allow shipment on routes subject to the
minimum size restriction

PLANT SETS AND PARAMETERS

set fact 'factories' within dctr;

Locations where product is manufactured

param rtmin 'regular-time total minimum' >= 0;

Lower limit on (average) total regular-time
crews employed at all factories

param rtmax 'regular-time total maximum' >= rtmin;

Upper limit on (average) total regular-time
crews employed at all factories

param otmin 'overtime total minimum' >= 0;

Lower limit on total overtime hours at all factories

param otmax 'overtime total maximum' >= otmin;

Upper limit on total overtime hours at all factories

param rmin 'regular-time minimums' {fact} >= 0;

Lower limits on (average) regular-time crews

param rmax 'regular-time maximums' {f in fact} >= rmin[f];

Upper limits on (average) regular-time crews

param omin 'overtime minimums' {fact} >= 0;

Lower limits on overtime hours

param omax 'overtime maximums' {f in fact} >= omin[f];

Upper limits on overtime hours

param hd 'hours per day' {fact} >= 0;

Regular-time hours per working day

param dp 'days in period' {fact} > 0;

Working days in the current planning period

38

PRODUCT SETS AND PARAMETERS

set prd 'products'; # Elements of the product group

param wt 'weight' {prd} > 0;

Weight in 100 lb / 1000 cases

param cpp 'cases per pallet' {prd} > 0;

Cases of product per shipping pallet

param tc 'transshipment cost' {prd} >= 0;

Transshipment cost in $ / 1000 cases

param pt 'production time' {prd,fact} >= 0;

Crew-hours to produce 1000 cases

param rpc 'regular-time production cost' {prd,fact} >= 0;

Cost of production on regular time,
in $ / 1000 cases

param opc 'overtime production cost' {prd,fact} >= 0;

Cost of production on overtime, in $ / 1000 cases

DEMAND SETS AND PARAMETERS

param dt 'total demand' {prd} >= 0;

Total demands for products, in 1000s

param ds 'demand shares' {prd,whse} >= 0.0, <= 1.0;

Historical demand data, from which each
warehouse's share of total demand is deduced

param dstot {p in prd} := sum {w in whse} ds[p,w];

Total of demand shares; should be 1, but often isn't

param dem 'demand' {p in prd, w in whse} := dt[p] * ds[p,w] / dstot[p];

Projected demands to be satisfied, in 1000s

set rt 'shipping routes available' :=

{d in dctr, w in whse:
d <> w and sc[d,w] < huge and
(w in dctr or sum {p in prd} dem[p,w] > 0) and
not (msr[d,w] and sum {p in prd} 1000*dem[p,w]/cpp[p] < dsr[d]) };

List of ordered pairs that represent routes
on which shipments are allowed

VARIABLES

var Rprd 'regular-time production' {prd,fact} >= 0;

Regular-time production of each product
at each factory, in 1000s of cases

var Oprd 'overtime production' {prd,fact} >= 0;

Overtime production of each product
at each factory, in 1000s of cases

var Ship 'shipments' {prd,rt} >= 0;

Shipments of each product on each allowed route,
in 1000s of cases

var Trans 'transshipments' {prd,dctr} >= 0;

Transshipments of each product at each
distribution center, in 1000s of cases

39

OBJECTIVE

minimize cost: sum {p in prd, f in fact} rpc[p,f] * Rprd[p,f] +
sum {p in prd, f in fact} opc[p,f] * Oprd[p,f] +
sum {p in prd, (d,w) in rt} sc[d,w] * wt[p] * Ship[p,d,w] +
sum {p in prd, d in dctr} tc[p] * Trans[p,d];

Total cost: regular production, overtime
production, shipping, and transshipment

CONSTRAINTS

rtlim 'regular-time total limits':

rtmin <= sum {p in prd, f in fact}
(pt[p,f] * Rprd[p,f]) / (dp[f] * hd[f]) <= rtmax;

Total crews must lie between limits

otlim 'overtime total limits':

otmin <= sum {p in prd, f in fact} pt[p,f] * Oprd[p,f] <= otmax;

Total overtime must lie between limits

rlim 'regular-time limits' {f in fact}:

rmin[f] <= sum {p in prd}
(pt[p,f] * Rprd[p,f]) / (dp[f] * hd[f]) <= rmax[f];

Crews at each factory must lie between limits

olim 'overtime limits' {f in fact}:

omin[f] <= sum {p in prd} pt[p,f] * Oprd[p,f] <= omax[f];

Overtime at each factory must lie between limits

noRprd 'no regular production' {p in prd, f in fact: rpc[p,f] = 0}:

Rprd[p,f] = 0;

noOprd 'no overtime production' {p in prd, f in fact: opc[p,f] = 0}:

Oprd[p,f] = 0; # Do not produce where specified cost is zero

bal 'material balance' {p in prd, w in whse}:

sum {(v,w) in rt}
Ship [p,v,w] + (if w in fact then Rprd[p,w] + Oprd[p,w]) =

dem[p,w] + (if w in dctr then sum {(w,v) in rt} Ship[p,w,v]);

Demand is satisfied by shipment into warehouse
plus production (if it is a factory)
minus shipment out (if it is a distn. center)

trdef 'transshipment definition' {p in prd, d in dctr}:

Trans[p,d] >= sum {(d,w) in rt} Ship [p,d,w] -
(if d in fact then Rprd[p,d] + Oprd[p,d]);

Transshipment at a distribution center is
shipments out less production (if any)

DATA -- 3 PRODUCTS

data;

set prd := 18REG 24REG 24PRO ;

set whse := w01 w02 w03 w04 w05 w06 w08 w09 w12 w14 w15 w17
w18 w19 w20 w21 w24 w25 w26 w27 w28 w29 w30 w31
w32 w33 w34 w35 w36 w37 w38 w39 w40 w41 w42 w43
w44 w45 w46 w47 w48 w49 w50 w51 w53 w54 w55 w56
w57 w59 w60 w61 w62 w63 w64 w65 w66 w68 w69 w71
w72 w73 w74 w75 w76 w77 w78 w79 w80 w81 w82 w83
w84 w85 w86 w87 w89 w90 w91 w92 w93 w94 w95 w96
w98 x22 x23 ;

set dctr := w01 w02 w03 w04 w05 w62 w76 w96 ;

40

set fact := w01 w05 w96 ;

param huge := 99. ;

param rtmin := 0.0 ;
param rtmax := 8.0 ;

param otmin := 0.0 ;
param otmax := 96.0 ;

param rmin := w01 0.00 w05 0.00 w96 0.00 ;
param rmax := w01 3.00 w05 2.00 w96 3.00 ;

param omin := w01 0.0 w05 0.0 w96 0.0 ;
param omax := w01 48.0 w05 0.0 w96 48.0 ;

param hd := w01 8.0 w05 8.0 w96 8.0 ;

param dp := w01 19.0 w05 19.0 w96 19.0 ;

param wt := 18REG 47.3 24REG 63.0 24PRO 63.0 ;

param tc := 18REG 40.00 24REG 45.00 24PRO 45.00 ;

param dt := 18REG 376.0 24REG 172.4 24PRO 316.3 ;

param cpp := 18REG 102. 24REG 91. 24PRO 91. ;

param dsr := w01 96. w02 96. w03 96. w04 96. w05 96.
w62 96. w76 96. w96 96. ;

param pt (tr) :

18REG 24REG 24PRO :=

w01 1.194 1.429 1.429
w05 1.194 1.509 1.509
w96 0.000 1.600 1.600 ;

param rpc (tr) :

18REG 24REG 24PRO :=

w01 2119. 2653. 2617.
w05 2489. 3182. 3176.
w96 0. 2925. 2918. ;

param opc (tr) :

18REG 24REG 24PRO :=

w01 2903. 3585. 3579.
w05 0. 0. 0.
w96 0. 3629. 3622. ;

param sc default 99.99 (tr) :

w01 w02 w03 w04 w05 w62 w76 w96 :=

w01 . 2.97 1.14 2.08 2.37 1.26 2.42 1.43
w02 4.74 . 4.17 6.12 7.41 3.78 7.04 5.21
w03 2.45 4.74 . 3.67 2.84 0.90 2.41 2.55
w04 1.74 5.03 2.43 . 3.19 2.45 2.69 0.58
w05 2.70 5.16 2.84 2.85 . 3.26 3.34 2.71
w06 1.99 4.17 2.13 2.19 2.52 2.06 2.00 1.51
w08 0.21 2.92 1.24 2.07 2.29 1.25 2.32 1.55
w09 0.66 3.76 1.41 2.47 1.82 1.66 . 1.87
w12 1.38 3.83 1.68 2.53 2.39 . 1.96 1.94
w14 2.47 1.58 2.40 3.59 3.85 2.25 . 3.05
w15 1.06 4.95 2.48 1.39 3.41 1.96 . 1.02
w17 0.88 3.39 1.46 2.00 2.67 1.45 . 1.46
w18 7.90 6.57 7.79 9.59 10.81 . . 6.70
w19 1.42 4.12 1.96 1.99 3.52 1.88 . 1.26
w20 3.03 1.59 2.34 4.76 3.98 1.88 . 3.73
w24 1.58 2.80 2.27 2.87 3.19 1.31 . 2.05
w25 1.51 5.05 2.74 0.57 2.98 . 2.95 0.27
w26 1.75 3.61 2.70 1.54 4.07 3.52 . 1.03

41

w27 2.48 6.87 3.17 1.59 2.08 3.45 . 0.99
w28 2.05 6.83 2.97 1.13 2.91 . . 1.26
w29 4.03 3.68 4.46 3.20 5.50 . . 3.20
w30 2.48 5.78 2.99 2.24 1.79 3.10 . 1.39
w31 2.34 5.41 2.87 1.67 1.66 . . 1.39
w32 14.36
w33 3.87 4.27 5.11 3.48 5.66 4.03 . 3.05
w34 3.26 4.80 3.21 2.70 4.14 . . 1.77
w35 2.34 2.84 2.89 3.35 3.78 2.68 . 2.52
w36 2.43 5.69 2.96 2.95 1.02 2.61 1.07 2.54
w37 2.23 4.64 2.41 1.99 4.30 2.61 . 1.44
w38 4.66 4.36 5.23 3.04 4.46 . . 3.82
w39 1.11 3.51 1.10 2.53 3.07 1.12 . 2.23
w40 2.99 4.78 4.23 1.57 3.92 . . 1.80
w41 4.93 4.00 5.43 4.45 6.31 . . 3.81
w42 3.86 6.55 5.03 2.11 4.41 . . 2.63
w43 4.61 4.45 3.77 1.22 4.31 . . 2.35
w44 2.05 4.48 1.06 3.70 3.46 1.10 . 3.21
w45 0.92 3.42 1.58 3.04 1.82 1.94 . 2.52
w46 1.36 2.44 0.95 3.08 2.78 0.39 2.16 2.37
w47 1.30 3.39 1.60 2.49 4.29 2.04 . 1.68
w48 1.65 3.78 1.03 2.97 2.21 1.31 . 2.74
w49 1.96 3.00 1.50 3.24 3.68 1.00 . 2.99
w50 0.90 4.14 1.60 1.95 3.61 1.61 . 1.52
w51 1.59 3.95 0.25 2.96 2.58 1.00 2.41 2.71
w53 1.59 3.79 1.28 3.12 3.10 0.89 . 2.98
w54 1.72 4.36 1.61 2.92 2.34 1.91 1.97 3.05
w55 2.45 2.73 2.21 4.47 4.30 2.57 . 4.48
w56 1.10 3.73 1.59 2.74 2.33 1.45 . 2.44
w57 0.95 3.39 1.37 2.30 2.47 1.15 . 1.95
w59 3.29 5.35 3.32 3.81 1.52 3.38 1.34 4.08
w60 2.41 6.12 2.46 3.65 2.35 . 1.37 4.06
w61 3.32 5.50 3.41 3.38 1.23 . 0.99 4.28
w62 1.12 3.00 0.82 3.22 2.95 . 3.33 2.53
w63 3.59 6.36 3.25 4.12 1.84 3.59 1.46 4.03
w64 1.85 4.45 2.17 3.43 2.13 2.03 . 4.02
w65 2.78 4.79 2.81 2.94 1.54 2.90 1.07 2.94
w66 3.90 5.79 3.05 3.65 1.36 3.39 1.22 3.57
w68 2.61 5.20 2.90 2.34 1.68 3.19 1.48 2.31
w69 2.94 5.21 2.78 3.43 0.21 3.26 0.68 2.54
w71 2.06 4.98 2.38 2.44 1.59 2.97 1.05 2.55
w72 2.61 5.50 2.83 3.12 1.35 3.23 0.88 2.99
w73 8.52 6.16 8.03 8.83 10.44 7.38 10.26 .
w74 6.11 5.46 9.07 9.38 10.80 . . 8.25
w75 2.66 4.94 2.87 3.69 1.52 3.15 1.24 4.00
w76 1.99 5.26 2.23 3.36 0.58 3.17 . 2.50
w77 4.32 3.07 5.05 3.88 6.04 . . 4.15
w78 5.60 2.59 5.78 5.56 7.10 . . 5.60
w79 4.25 2.32 4.93 4.57 6.04 . . 4.58
w80 5.94 4.00 5.60 7.02 9.46 . . 7.51
w81 5.39 2.21 5.10 6.22 6.46 . . 6.58
w82 8.80 5.69 9.29 9.88 11.69 8.63 11.52 .
w83 4.40 . 5.24 5.21 5.81 3.91 7.04 5.33
w84 5.87 5.43 6.17 5.70 7.63 . . 5.70
w85 3.90 3.65 3.38 4.57 5.64 3.05 . 5.04
w86 5.48 2.10 5.70 6.37 7.33 . . 6.19
w87 8.88 5.54 9.50 9.71 11.64 8.85 11.68 .
w89 4.62 4.01 4.03 6.30 6.30 3.81 . 7.77
w90 4.35 2.72 4.61 4.01 5.60 . . 3.20
w91 7.61 4.42 7.83 6.85 8.79 . . 7.66
w92 7.15 2.69 6.91 7.20 . . . 7.06
w93 3.17 3.95 4.37 3.74 5.05 . . 2.40
w94 1.21 3.07 0.90 2.74 3.17 . 2.63 2.39

42

w95 5.82 3.29 6.55 7.06 11.47 . . 7.83
w96 1.77 5.20 2.72 0.59 3.47 2.48 . .
w98 3.04 1.92 3.64 3.70 4.90 3.05 . 3.88
x22 4.08 6.25 4.15 4.30 1.77 . 1.77 .
x23 3.39 5.74 3.55 4.08 1.69 . 1.47 . ;

param msr (tr) :

w01 w02 w03 w04 w05 w62 w76 w96 :=

w01 0 0 0 0 0 0 1 0
w02 0 0 0 0 0 0 1 0
w03 0 0 0 0 0 0 1 0
w04 0 0 0 0 0 0 1 0
w05 0 0 0 0 0 0 0 0
w06 0 1 1 1 1 1 1 1
w08 0 1 1 1 1 1 1 1
w09 0 1 1 1 1 1 0 1
w12 0 1 1 1 1 0 1 1
w14 1 1 1 1 1 0 0 1
w15 0 1 1 1 1 1 0 1
w17 0 1 1 1 1 1 0 1
w18 0 1 1 1 1 0 0 1
w19 0 1 1 1 1 0 0 1
w20 1 1 1 1 1 0 0 1
w24 0 1 1 1 1 0 0 1
w25 0 1 1 1 1 0 1 0
w26 1 1 1 0 1 1 0 1
w27 1 1 1 0 1 1 0 1
w28 1 1 1 0 1 0 0 1
w29 0 1 1 1 1 0 0 1
w30 1 1 1 0 1 1 0 1
w31 1 1 1 0 1 0 0 1
w32 0 0 0 0 0 0 0 0
w33 1 0 1 1 1 1 0 1
w34 1 1 1 0 1 0 0 1
w35 1 1 1 1 1 0 0 1
w36 0 1 1 1 0 1 1 1
w37 1 1 1 0 1 1 0 1
w38 1 1 1 0 1 0 0 1
w39 0 1 1 1 1 1 0 1
w40 1 1 1 0 1 0 0 1
w41 1 0 1 1 1 0 0 1
w42 1 1 1 0 1 0 0 1
w43 1 1 1 0 1 0 0 1
w44 1 1 1 1 1 0 0 1
w45 0 1 1 1 1 1 0 1
w46 0 1 1 1 1 0 1 1
w47 0 1 1 1 1 1 0 1
w48 0 1 1 1 1 0 0 1
w49 1 1 1 1 1 0 0 1
w50 0 1 1 1 1 1 0 1
w51 0 1 1 1 1 0 1 1
w53 1 1 1 1 1 0 0 1
w54 0 1 1 1 1 1 1 1
w55 0 1 1 1 1 0 0 1
w56 0 1 1 1 1 1 0 1
w57 0 1 1 1 1 1 0 1
w59 0 1 1 1 0 1 1 1
w60 0 1 1 1 1 0 1 1
w61 0 1 1 1 0 0 1 1
w62 0 0 0 0 0 0 1 0
w63 0 1 1 1 0 1 1 1
w64 0 1 1 1 1 1 0 1
w65 0 1 1 1 0 1 1 1

43

w66 0 1 1 1 0 1 1 1
w68 0 1 1 1 0 1 1 1
w69 0 1 1 1 0 1 1 1
w71 0 1 1 1 0 1 1 1
w72 0 1 1 1 0 1 1 1
w73 0 1 1 1 0 1 1 0
w74 0 1 1 1 0 0 0 1
w75 0 1 1 1 0 1 1 1
w76 0 0 0 0 0 0 0 0
w77 1 0 1 1 1 0 0 1
w78 1 0 1 1 1 0 0 1
w79 1 0 1 1 1 0 0 1
w80 1 0 1 1 1 0 0 1
w81 1 0 1 1 1 0 0 1
w82 1 0 1 1 1 1 1 0
w83 1 0 1 1 1 0 1 1
w84 1 0 1 1 1 0 0 1
w85 1 1 1 1 1 0 0 1
w86 1 0 1 1 1 0 0 1
w87 1 0 1 1 1 1 1 0
w89 1 0 1 1 1 1 0 1
w90 0 1 1 1 1 0 0 1
w91 1 0 1 1 1 0 0 1
w92 1 0 1 1 1 0 0 1
w93 1 1 1 0 1 0 0 1
w94 0 0 1 1 1 0 1 1
w95 1 0 1 1 1 0 0 1
w96 0 0 0 0 0 0 0 0
w98 1 0 1 1 1 1 0 1
x22 1 1 1 1 0 0 1 0
x23 1 1 1 1 0 0 1 0 ;

param ds default 0.000 (tr) :

18REG 24REG 24PRO :=

w01 0.000 0.000 0.008
w02 0.004 0.000 0.000
w03 0.000 0.000 0.000
w04 0.010 0.002 0.000
w05 0.000 0.000 0.000
w06 0.010 0.008 0.008
w08 0.030 0.024 0.024
w09 0.014 0.018 0.020
w12 0.014 0.012 0.010
w14 0.007 0.007 0.012
w15 0.010 0.019 0.018
w17 0.013 0.010 0.011
w19 0.015 0.012 0.009
w20 0.012 0.021 0.022
w21 0.000 0.000 0.000
w24 0.012 0.022 0.018
w25 0.019 0.025 0.020
w26 0.006 0.015 0.021
w27 0.008 0.010 0.015
w28 0.011 0.016 0.019
w29 0.008 0.020 0.013
w30 0.011 0.013 0.015
w31 0.011 0.013 0.017
w32 0.006 0.000 0.000
w33 0.000 0.015 0.014
w34 0.008 0.007 0.005
w35 0.002 0.006 0.014
w36 0.015 0.013 0.005
w37 0.017 0.016 0.015

44

w38 0.015 0.009 0.012
w39 0.007 0.017 0.022
w40 0.009 0.014 0.020
w41 0.003 0.014 0.011
w42 0.017 0.011 0.012
w43 0.009 0.013 0.011
w44 0.002 0.012 0.012
w45 0.016 0.025 0.028
w46 0.038 0.062 0.040
w47 0.007 0.010 0.010
w48 0.003 0.015 0.016
w49 0.005 0.016 0.017
w50 0.011 0.008 0.007
w51 0.010 0.022 0.021
w53 0.004 0.026 0.020
w54 0.020 0.017 0.025
w55 0.004 0.019 0.028
w56 0.004 0.010 0.008
w57 0.014 0.020 0.018
w59 0.012 0.006 0.007
w60 0.019 0.010 0.009
w61 0.028 0.010 0.012
w62 0.000 0.000 0.000
w63 0.070 0.027 0.037
w64 0.009 0.004 0.005
w65 0.022 0.015 0.016
w66 0.046 0.017 0.020
w68 0.005 0.012 0.016
w69 0.085 0.036 0.039
w71 0.011 0.013 0.010
w72 0.089 0.031 0.034
w75 0.026 0.012 0.010
w77 0.001 0.004 0.002
w78 0.002 0.004 0.002
w79 0.001 0.004 0.002
w80 0.001 0.001 0.002
w81 0.001 0.003 0.002
w83 0.009 0.010 0.008
w84 0.001 0.002 0.002
w85 0.001 0.004 0.005
w86 0.001 0.002 0.002
w87 0.002 0.003 0.000
w89 0.001 0.001 0.002
w90 0.006 0.017 0.013
w91 0.002 0.010 0.013
w92 0.000 0.003 0.002
w93 0.002 0.006 0.007
w95 0.001 0.007 0.007
w96 0.000 0.000 0.000
w98 0.006 0.005 0.002 ;

end;

45

Appendix B. EGYPT, a static model of fertilizer production

This static production model, originally stated in the GAMS language (Bisschop and
Meeraus 1982), is based on a World Bank study of the Egyptian fertilizer industry (Choksi,
Meeraus and Stoutjesdijk 1980).

SETS

set center; # Locations from which final product may be shipped
set port within center; # Locations at which imports can be received
set plant within center; # Locations of plants

set region; # Demand regions

set unit; # Productive units
set proc; # Processes

set nutr; # Nutrients

set c_final; # Final products (fertilizers)
set c_inter; # Intermediate products
set c_ship within c_inter; # Intermediates for shipment
set c_raw; # Domestic raw materials and miscellaneous inputs

set commod := c_final union c_inter union c_raw;

All commodities

PARAMETERS

param cf75 {region,c_final} >= 0;

Consumption of fertilizer 1974-75 (1000 tpy)

param fn {c_final,nutr} >= 0;

Nutrient content of fertilizers

param cn75 {r in region, n in nutr} := sum {c in c_final} cf75[r,c] * fn[c,n];

Consumption of nutrients 1974-75 (1000 tpy)

param road {region,center} >= 0;

Road distances

param rail_half {plant,plant} >= 0;
param rail {p1 in plant, p2 in plant} :=

if rail_half[p1,p2] > 0 then rail_half[p1,p2] else rail_half[p2,p1];

Interplant rail distances (kms)

param impd_barg {plant} >= 0;
param impd_road {plant} >= 0;

Import distances (kms) by barge and road

param tran_final {pl in plant, r in region} :=
if road[r,pl] > 0 then .5 + .0144 * road[r,pl] else 0;

param tran_import {r in region, po in port} :=
if road[r,po] > 0 then .5 + .0144 * road[r,po] else 0;

param tran_inter {p1 in plant, p2 in plant} :=
if rail[p1,p2] > 0 then 3.5 + .03 * rail[p1,p2] else 0;

param tran_raw {pl in plant} :=
(if impd_barg[pl] > 0 then 1.0 + .0030 * impd_barg[pl] else 0)

+ (if impd_road[pl] > 0 then 0.5 + .0144 * impd_road[pl] else 0);

Transport cost (le per ton) for:
final products, imported final products,
interplant shipment, imported raw materials

param io {commod,proc}; # Input-output coefficients

param util {unit,proc} >= 0;
Capacity utilization coefficients

46

param p_imp {commod} >= 0; # Import Price (cif US$ per ton 1975)

param p_r {c_raw} >= 0;
param p_pr {plant,c_raw} >= 0;

param p_dom {pl in plant, c in c_raw} :=
if p_r[c] > 0 then p_r[c] else p_pr[pl,c];

Domestic raw material prices

param dcap {plant,unit} >= 0;

Design capacity of plants (t/day)

param icap {u in unit, pl in plant} := 0.33 * dcap[pl,u];

Initial capacity of plants (t/day)

param exch := 0.4; # Exchange rate

param util_pct := 0.85; # Utilization percent for initial capacity

DERIVED SETS OF "POSSIBILITIES"

set m_pos {pl in plant} := {u in unit: icap[u,pl] > 0};

At each plant, set of units for which there is
initial capacity

set p_cap {pl in plant} :=
{pr in proc: forall {u in unit: util[u,pr] > 0} u in m_pos[pl] };

At each plant, set of processes for which
all necessary units have some initial capacity

set p_except {plant} within proc;

At each plant, list of processes that are
arbitrarily ruled out

set p_pos {pl in plant} := p_cap[pl] diff p_except[pl];

At each plant, set of possible processes

set cp_pos {c in commod} := {pl in plant: sum {pr in p_pos[pl]} io[c,pr] > 0};

set cc_pos {c in commod} := {pl in plant: sum {pr in p_pos[pl]} io[c,pr] < 0};

set c_pos {c in commod} := cp_pos[c] union cc_pos[c];

For each commodity, set of plants that can
produce it (cp_pos) or consume it (cc_pos),
and their union (c_pos)

VARIABLES

var Z {pl in plant, p_pos[pl]} >= 0;

Z[pl,pr] is level of process pr at plant pl

var Xf {c in c_final, cp_pos[c], region} >= 0;

Xf[c,pl,r] is amount of final product c
shipped from plant pl to region r

var Xi {c in c_ship, cp_pos[c], cc_pos[c]} >= 0;

Xi[c,p1,p2] is amount of intermediate c
shipped from plant p1 to plant p2

var Vf {c_final,region,port} >= 0;

Vf[c,r,po] is amount of final product c
imported by region r from port po

var Vr {c in c_raw, cc_pos[c]} >= 0;

Vr[c,pl] is amount of raw material c
imported for use at plant pl

47

var U {c in c_raw, cc_pos[c]} >= 0;

U[c,pl] is amount of raw material c
purchased domestically for use at plant pl

var Psip; # Domestic recurrent cost
var Psil; # Transport cost
var Psii; # Import cost

OBJECTIVE

minimize Psi: Psip + Psil + Psii;

CONSTRAINTS

subject to mbd {n in nutr, r in region}:

sum {c in c_final} fn[c,n] *
(sum {po in port} Vf[c,r,po] +
sum {pl in cp_pos[c]} Xf[c,pl,r]) >= cn75[r,n];

Total nutrients supplied to a region by all
final products (sum of imports plus internal
shipments from plants) must meet requirements

subject to mbdb {c in c_final, r in region: cf75[r,c] > 0}:

sum {po in port} Vf[c,r,po] +
sum {pl in cp_pos[c]} Xf[c,pl,r] >= cf75[r,c];

Total of each final product supplied to each
region (as in previous constraint) must meet
requirements

subject to mb {c in commod, pl in plant}:

sum {pr in p_pos[pl]} io[c,pr] * Z[pl,pr]

+ (if c in c_ship then
(if pl in cp_pos[c] then sum {p2 in cc_pos[c]} Xi[c,pl,p2])

+ (if pl in cc_pos[c] then sum {p2 in cp_pos[c]} Xi[c,p2,pl]))

+ (if (c in c_raw and pl in cc_pos[c]) then
((if p_imp[c] > 0 then Vr[c,pl])

+ (if p_dom[pl,c] > 0 then U[c,pl])))

>= if (c in c_final and pl in cp_pos[c]) then sum {r in region} Xf[c,pl,r];

For each commodity at each plant: sum of
(1) production or consumption at plant,
(2) inter-plant shipments in or out,
(3) import and domestic purchases (raw only)
is >= 0 for raw materials and intermediates;
is >= the total shipped for final products

subject to cc {pl in plant, u in m_pos[pl]}:

sum {pr in p_pos[pl]} util[u,pr] * Z[pl,pr] <= util_pct * icap[u,pl];

For each productive unit at each plant,
total utilization by all processes
may not exceed the unit's capacity

subject to ap:

Psip = sum {c in c_raw, pl in cc_pos[c]} p_dom[pl,c] * U[c,pl];

Psip is the cost of domestic raw materials,
summed over all plants that consume them

48

subject to al:

Psil = sum {c in c_final} (

sum {pl in cp_pos[c], r in region}
tran_final[pl,r] * Xf[c,pl,r]

+ sum {po in port, r in region} tran_import[r,po] * Vf[c,r,po])

+ sum {c in c_ship, p1 in cp_pos[c], p2 in cc_pos[c]}
tran_inter[p1,p2] * Xi[c,p1,p2]

+ sum {c in c_raw, pl in cc_pos[c]: p_imp[c] > 0}
tran_raw[pl] * Vr[c,pl];

Total transport cost is sum of shipping costs for
(1) all final products from all plants,
(2) all imports of final products,
(3) all intermediates shipped between plants,
(4) all imports of raw materials

subject to ai:

Psii / exch = sum {c in c_final, r in region, po in port}
p_imp[c] * Vf[c,r,po]

+ sum {c in c_raw, pl in cc_pos[c]} p_imp[c] * Vr[c,pl];

Total import cost -- at exchange rate --
is sum of import costs for final products
in each region and raw materials at each plant

DATA

data;

set center := ASWAN HELWAN ASSIOUT KAFR_EL_ZT ABU_ZAABAL ABU_KIR TALKHA SUEZ ;

set port := ABU_KIR ;

set plant := ASWAN HELWAN ASSIOUT KAFR_EL_ZT ABU_ZAABAL ;

set region := ALEXANDRIA BEHERA GHARBIA KAFR_EL_SH DAKAHLIA DAMIETTA
SHARKIA ISMAILIA SUEZ MENOUFIA KALUBIA GIZA BENI_SUEF FAYOUM
MINIA ASSIOUT NEW_VALLEY SOHAG QUENA ASWAN ;

set unit := SULF_A_S SULF_A_P NITR_ACID AMM_ELEC AMM_C_GAS C_AMM_NITR
AMM_SULF SSP ;

set proc := SULF_A_S SULF_A_P NITR_ACID AMM_ELEC AMM_C_GAS CAN_310 CAN_335
AMM_SULF SSP_155 ;

set nutr := N P205 ;

set c_final := UREA CAN_260 CAN_310 CAN_335 AMM_SULF DAP SSP_155 C_250_55
C_300_100 ;

set c_inter := AMMONIA NITR_ACID SULF_ACID ;

set c_ship := AMMONIA SULF_ACID ;

set c_raw := EL_ASWAN COKE_GAS PHOS_ROCK LIMESTONE EL_SULFUR PYRITES
ELECTRIC BF_GAS WATER STEAM BAGS ;

set p_except[ASWAN] := CAN_335 ;
set p_except[HELWAN] := CAN_310 ;
set p_except[ASSIOUT] := ;
set p_except[KAFR_EL_ZT] := ;
set p_except[ABU_ZAABAL] := ;

49

param cf75 default 0.0 :

CAN_260 CAN_310 CAN_335 AMM_SULF UREA :=

ALEXANDRIA . . 5.0 3.0 1.0
ASSIOUT 1.0 20.0 26.0 1.0 27.0
ASWAN . 40.0 . . .
BEHERA 1.0 . 25.0 90.0 35.0
BENI_SUEF 1.0 . 15.0 1.0 20.0
DAKAHLIA 1.0 . 26.0 60.0 20.0
DAMIETTA . . 2.0 15.0 8.0
FAYOUM 1.0 . 20.0 6.0 20.0
GHARBIA . . 17.0 60.0 28.0
GIZA . . 40.0 6.0 2.0
ISMAILIA . . 4.0 6.0 2.0
KAFR_EL_SH 1.0 . 10.0 45.0 22.0
KALUBIA . . 25.0 16.0 7.0
MENOUFIA 1.0 . 24.0 21.0 30.0
MINIA 2.0 15.0 35.0 1.0 41.0
NEW_VALLEY 1.0
QUENA . 95.0 2.0 . 3.0
SHARKIA 1.0 . 31.0 50.0 28.0
SOHAG . 65.0 3.0 . 7.0
SUEZ . . 1.0 . .

: SSP_155 C_250_55 C_300_100 DAP :=

ALEXANDRIA 8.0 . . .
ASSIOUT 35.0 5.0 .1 .
ASWAN 8.0 . . .
BEHERA 64.0 1.0 .1 .1
BENI_SUEF 13.0 3.0 . .
DAKAHLIA 52.0 1.0 . .
DAMIETTA 5.0 . . .
FAYOUM 17.0 1.0 . .
GHARBIA 57.0 1.0 .2 .1
GIZA 14.0 1.0 .1 .
ISMAILIA 4.0 . . .
KAFR_EL_SH 25.0 2.0 .1 .
KALUBIA 22.0 1.0 . .1
MENOUFIA 33.0 2.0 .1 .1
MINIA 50.0 3.0 .2 .1
NEW_VALLEY 1.0 . . .
QUENA 8.0 . . .
SHARKIA 43.0 1.0 .1 .
SOHAG 20.0 1.0 . .
SUEZ 1.0 . . . ;

param fn default 0.0 : N P205 :=

AMM_SULF .206 .
CAN_260 .26 .
CAN_310 .31 .
CAN_335 .335 .
C_250_55 .25 .055
C_300_100 .30 .10
DAP .18 .46
SSP_155 . .15
UREA .46 . ;

50

param road default 0.0 :

ABU_KIR ABU_ZAABAL ASSIOUT ASWAN HELWAN KAFR_EL_ZT SUEZ TALKHA :=

ALEXANDRIA 16 210 607 1135 244 119 362 187
ASSIOUT 616 420 . 518 362 504 527 518
ASWAN 1134 938 518 . 880 1022 1045 1036
BEHERA 76 50 547 1065 184 42 288 120
BENI_SUEF 359 163 257 775 105 248 270 261
DAKAHLIA 208 138 515 1033 152 58 219 3
DAMIETTA 267 216 596 1114 233 131 286 66
FAYOUM 341 145 308 826 88 230 252 243
GHARBIA 150 65 485 1003 122 20 226 55
GIZA 287 48 372 890 .9 133 169 146
ISMAILIA 365 142 536 1054 173 241 89 146
KAFR_EL_SH 145 105 525 1043 162 20 266 35
KALUBIA 190 97 439 957 76 66 180 81
MENOUFIA 157 154 472 990 109 33 213 90
MINIA 384 288 132 650 230 372 394 386
NEW_VALLEY 815 619 199 519 561 703 726 717
QUENA 858 662 242 276 604 746 769 760
SHARKIA 240 60 473 991 110 78 214 58
SOHAG 715 519 99 419 461 603 626 617
SUEZ 370 224 541 1059 178 246 . 298 ;

param rail_half default 0 :

KAFR_EL_ZT ABU_ZAABAL HELWAN ASSIOUT :=

ABU_ZAABAL 85 . . .
HELWAN 142 57 . .
ASSIOUT 504 420 362 .
ASWAN 1022 938 880 518 ;

param : impd_barg impd_road :=

ABU_ZAABAL 210 .1
ASSIOUT 583 0
ASWAN 1087 10
HELWAN 183 0
KAFR_EL_ZT 104 6 ;

param io default 0.0 :=

[*,AMM_C_GAS] AMMONIA 1.0
BF_GAS -609.
COKE_GAS -2.0
ELECTRIC -1960.
STEAM -4.
WATER -700.

[*,AMM_ELEC] AMMONIA 1.0
EL_ASWAN -12.0

[*,AMM_SULF] AMMONIA -.26
AMM_SULF 1.0
BAGS -22.
ELECTRIC -19.
SULF_ACID -.76
WATER -17.

[*,CAN_310] AMMONIA -.20
BAGS -23.
CAN_310 1.0
LIMESTONE -.12
NITR_ACID -.71
STEAM -.4
WATER -49.

51

[*,CAN_335] AMMONIA -.21
BAGS -23.
CAN_335 1.0
LIMESTONE -.04
NITR_ACID -.76
STEAM -.4
WATER -49.

[*,NITR_ACID] AMMONIA -.292
ELECTRIC -231.
NITR_ACID 1.0
WATER -.6

[*,SSP_155] BAGS -22.
ELECTRIC -14.
PHOS_ROCK -.62
SSP_155 1.0
SULF_ACID -.41
WATER -6.

[*,SULF_A_P] ELECTRIC -75.
PYRITES -.826
SULF_ACID 1.0
WATER -60.

[*,SULF_A_S] ELECTRIC -50.
EL_SULFUR -.334
SULF_ACID 1.0
WATER -20. ;

param util default 0 :=

[*,*] SULF_A_S SULF_A_S 1 SULF_A_P SULF_A_P 1
NITR_ACID NITR_ACID 1 AMM_ELEC AMM_ELEC 1
AMM_C_GAS AMM_C_GAS 1 SSP SSP_155 1
C_AMM_NITR CAN_310 1 C_AMM_NITR CAN_335 1
AMM_SULF AMM_SULF 1 ;

param p_imp default 0.0 :=

PYRITES 17.5 AMM_SULF 75.
EL_SULFUR 55. DAP 175.
UREA 150. SSP_155 80.
CAN_260 75. C_250_55 100.
CAN_310 90. C_300_100 130.
CAN_335 100. ;

param p_r default 0.0 :=

ELECTRIC .007
BF_GAS .007
WATER .031
STEAM 1.25
BAGS .28 ;

param p_pr default 0.0 :=

[HELWAN,COKE_GAS] 16.0
[ASWAN,EL_ASWAN] 1.0

[*,LIMESTONE] ASWAN 1.2
HELWAN 1.2

[*,PHOS_ROCK] ABU_ZAABAL 4.0
ASSIOUT 3.5
KAFR_EL_ZT 5.0 ;

52

param dcap default 0.0 :=

[ABU_ZAABAL,*] SSP 600
SULF_A_P 227
SULF_A_S 242

[ASSIOUT,*] SSP 600
SULF_A_S 250

[ASWAN,*] AMM_ELEC 450
C_AMM_NITR 1100
NITR_ACID 800

[HELWAN,*] AMM_C_GAS 172
AMM_SULF 24
C_AMM_NITR 364
NITR_ACID 282

[KAFR_EL_ZT,*] SSP 600
SULF_A_P 50
SULF_A_S 200 ;

end;

53

Appendix C. PROD, a multiperiod production model

This model determines a series of workforce levels that will most economically meet
demands and inventory requirements over time. The formulation is motivated by the expe-
riences of a large producer in the United States. The data are for three products and 13
periods.

PRODUCTION SETS AND PARAMETERS

set prd 'products'; # Members of the product group

param pt 'production time' {prd} > 0;

Crew-hours to produce 1000 units

param pc 'production cost' {prd} > 0;

Nominal production cost per 1000, used
to compute inventory and shortage costs

TIME PERIOD SETS AND PARAMETERS

param first > 0 integer;
Index of first production period to be modeled

param last > first integer;

Index of last production period to be modeled

set time 'planning horizon' := first..last;

EMPLOYMENT PARAMETERS

param cs 'crew size' > 0 integer;

Workers per crew

param sl 'shift length' > 0;

Regular-time hours per shift

param rtr 'regular time rate' > 0;

Wage per hour for regular-time labor

param otr 'overtime rate' > rtr;

Wage per hour for overtime labor

param iw 'initial workforce' >= 0 integer;

Crews employed at start of first period

param dpp 'days per period' {time} > 0;

Regular working days in a production period

param ol 'overtime limit' {time} >= 0;

Maximum crew-hours of overtime in a period

param cmin 'crew minimum' {time} >= 0;

Lower limit on average employment in a period

param cmax 'crew maximum' {t in time} >= cmin[t];

Upper limit on average employment in a period

param hc 'hiring cost' {time} >= 0;

Penalty cost of hiring a crew

param lc 'layoff cost' {time} >= 0;

Penalty cost of laying off a crew

54

DEMAND PARAMETERS

param dem 'demand' {prd,first..last+1} >= 0;

Requirements (in 1000s)
to be met from current production and inventory

param pro 'promoted' {prd,first..last+1} logical;

true if product will be the subject
of a special promotion in the period

INVENTORY AND SHORTAGE PARAMETERS

param rir 'regular inventory ratio' >= 0;

Proportion of non-promoted demand
that must be in inventory the previous period

param pir 'promotional inventory ratio' >= 0;

Proportion of promoted demand
that must be in inventory the previous period

param life 'inventory lifetime' > 0 integer;

Upper limit on number of periods that
any product may sit in inventory

param cri 'inventory cost ratio' {prd} > 0;

Inventory cost per 1000 units is
cri times nominal production cost

param crs 'shortage cost ratio' {prd} > 0;

Shortage cost per 1000 units is
crs times nominal production cost

param iinv 'initial inventory' {prd} >= 0;

Inventory at start of first period; age unknown

param iil 'initial inventory left' {p in prd, t in time}
:= iinv[p] less sum {v in first..t} dem[p,v];

Initial inventory still available for allocation
at end of period t

param minv 'minimum inventory' {p in prd, t in time}
:= dem[p,t+1] * (if pro[p,t+1] then pir else rir);

Lower limit on inventory at end of period t

VARIABLES

var Crews{first-1..last} >= 0;

Average number of crews employed in each period

var Hire{time} >= 0; # Crews hired from previous to current period

var Layoff{time} >= 0; # Crews laid off from previous to current period

var Rprd 'regular production' {prd,time} >= 0;

Production using regular-time labor, in 1000s

var Oprd 'overtime production' {prd,time} >= 0;

Production using overtime labor, in 1000s

var Inv 'inventory' {prd,time,1..life} >= 0;

Inv[p,t,a] is the amount of product p that is
a periods old -- produced in period (t+1)-a --
and still in storage at the end of period t

var Short 'shortage' {prd,time} >= 0;

Accumulated unsatisfied demand at the end of period t

55

OBJECTIVE

minimize cost:

sum {t in time} rtr * sl * dpp[t] * cs * Crews[t] +
sum {t in time} hc[t] * Hire[t] +
sum {t in time} lc[t] * Layoff[t] +
sum {t in time, p in prd} otr * cs * pt[p] * Oprd[p,t] +
sum {t in time, p in prd, a in 1..life} cri[p] * pc[p] * Inv[p,t,a] +
sum {t in time, p in prd} crs[p] * pc[p] * Short[p,t];

Full regular wages for all crews employed, plus
penalties for hiring and layoffs, plus
wages for any overtime worked, plus
inventory and shortage costs

(All other production costs are assumed
to depend on initial inventory and on demands,
and so are not included explicitly.)

CONSTRAINTS

rlim 'regular-time limit' {t in time}:

sum {p in prd} pt[p] * Rprd[p,t] <= sl * dpp[t] * Crews[t];

Hours needed to accomplish all regular-time
production in a period must not exceed
hours available on all shifts

olim 'overtime limit' {t in time}:

sum {p in prd} pt[p] * Oprd[p,t] <= ol[t];

Hours needed to accomplish all overtime
production in a period must not exceed
the specified overtime limit

empl0 'initial crew level': Crews[first-1] = iw;

Use given initial workforce

empl 'crew levels' {t in time}: Crews[t] = Crews[t-1] + Hire[t] - Layoff[t];

Workforce changes by hiring or layoffs

emplbnd 'crew limits' {t in time}: cmin[t] <= Crews[t] <= cmax[t];

Workforce must remain within specified bounds

dreq1 'first demand requirement' {p in prd}:

Rprd[p,first] + Oprd[p,first] + Short[p,first]
- Inv[p,first,1] = dem[p,first] less iinv[p];

dreq 'demand requirements' {p in prd, t in first+1..last}:

Rprd[p,t] + Oprd[p,t] + Short[p,t] - Short[p,t-1]
+ sum {a in 1..life} (Inv[p,t-1,a] - Inv[p,t,a])

= dem[p,t] less iil[p,t-1];

Production plus increase in shortage plus
decrease in inventory must equal demand

ireq 'inventory requirements' {p in prd, t in time}:

sum {a in 1..life} Inv[p,t,a] + iil[p,t] >= minv[p,t];

Inventory in storage at end of period t
must meet specified minimum

izero 'impossible inventories' {p in prd, v in 1..life-1, a in v+1..life}:

Inv[p,first+v-1,a] = 0;

In the vth period (starting from first)
no inventory may be more than v periods old
(initial inventories are handled separately)

56

ilim1 'new-inventory limits' {p in prd, t in time}:

Inv[p,t,1] <= Rprd[p,t] + Oprd[p,t];

New inventory cannot exceed
production in the most recent period

ilim 'inventory limits' {p in prd, t in first+1..last, a in 2..life}:

Inv[p,t,a] <= Inv[p,t-1,a-1];

Inventory left from period (t+1)-p
can only decrease as time goes on

DATA

data;

set prd := 18REG 24REG 24PRO ;

param first := 1 ;
param last := 13 ;
param life := 2 ;

param cs := 18 ;
param sl := 8 ;
param iw := 8 ;

param rtr := 16.00 ;
param otr := 43.85 ;
param rir := 0.75 ;
param pir := 0.80 ;

param : pt pc cri crs iinv :=

18REG 1.194 2304. 0.015 1.100 82.0
24REG 1.509 2920. 0.015 1.100 792.2
24PRO 1.509 2910. 0.015 1.100 0.0 ;

param : dpp ol cmin cmax hc lc :=

1 19.5 96.0 0.0 8.0 7500 7500
2 19.0 96.0 0.0 8.0 7500 7500
3 20.0 96.0 0.0 8.0 7500 7500
4 19.0 96.0 0.0 8.0 7500 7500
5 19.5 96.0 0.0 8.0 15000 15000
6 19.0 96.0 0.0 8.0 15000 15000
7 19.0 96.0 0.0 8.0 15000 15000
8 20.0 96.0 0.0 8.0 15000 15000
9 19.0 96.0 0.0 8.0 15000 15000

10 20.0 96.0 0.0 8.0 15000 15000
11 20.0 96.0 0.0 8.0 7500 7500
12 18.0 96.0 0.0 8.0 7500 7500
13 18.0 96.0 0.0 8.0 7500 7500 ;

param dem (tr) :

18REG 24REG 24PRO :=

1 63.8 1212.0 0.0
2 76.0 306.2 0.0
3 88.4 319.0 0.0
4 913.8 208.4 0.0
5 115.0 298.0 0.0
6 133.8 328.2 0.0
7 79.6 959.6 0.0
8 111.0 257.6 0.0
9 121.6 335.6 0.0

10 470.0 118.0 1102.0
11 78.4 284.8 0.0
12 99.4 970.0 0.0
13 140.4 343.8 0.0
14 63.8 1212.0 0.0 ;

57

param pro (tr) :

18REG 24REG 24PRO :=

1 0 1 0
2 0 0 0
3 0 0 0
4 1 0 0
5 0 0 0
6 0 0 0
7 0 1 0
8 0 0 0
9 0 0 0

10 1 0 1
11 0 0 0
12 0 0 0
13 0 1 0
14 0 1 0 ;

end;

58

Appendix D. TRAIN, a model of railroad passenger car allocation

Given a day’s schedule, this model allocates passenger cars to trains so as to minimize
either the number of cars required or the number of car-miles run (Fourer, Gertler and
Simkowitz 1977, 1978). The data represent a hypothetical schedule and demands for service
between Washington, Philadelphia, New York and Boston.

SCHEDULE SETS AND PARAMETERS

set cities;

set links within {c1 in cities, c2 in cities: c1 <> c2};

Set of cities, and set of intercity links

param last > 0 integer; # Number of time intervals in a day

set times := 1..last; # Set of time intervals in a day

set schedule within
{c1 in cities, t1 in times,
c2 in cities, t2 in times: (c1,c2) in links};

Member (c1,t1,c2,t2) of this set represents
a train that leaves city c1 at time t1
and arrives in city c2 at time t2

DEMAND PARAMETERS

param section > 0 integer;

Maximum number of cars in one section of a train

param demand {schedule} > 0;

For each scheduled train:
the smallest number of cars that
can meet demand for the train

param low {(c1,t1,c2,t2) in schedule} := ceil(demand[c1,t1,c2,t2]);

Minimum number of cars needed to meet demand

param high {(c1,t1,c2,t2) in schedule}

:= max (2, min (ceil(2*demand[c1,t1,c2,t2]),
section*ceil(demand[c1,t1,c2,t2]/section)));

Maximum number of cars allowed on a train:
2 if demand is for less than one car;
otherwise, lesser of
number of cars needed to hold twice the demand, and
number of cars in minimum number of sections needed

DISTANCE PARAMETERS

param dist_table {links} >= 0 default 0.0;

param distance {(c1,c2) in links} > 0
:= if dist_table[c1,c2] > 0 then dist_table[c1,c2] else dist_table[c2,c1];

Inter-city distances: distance[c1,c2] is miles
between city c1 and city c2

VARIABLES

var U 'cars stored' {cities,times} >= 0;

u[c,t] is the number of unused cars stored
at city c in the interval beginning at time t

var X 'cars in train' {schedule} >= 0;

x[c1,t1,c2,t2] is the number of cars assigned to
the scheduled train that leaves c1 at t1 and
arrives in c2 at t2

59

OBJECTIVES

minimize cars:
sum {c in cities} U[c,last] +
sum {(c1,t1,c2,t2) in schedule: t2 < t1} X[c1,t1,c2,t2];

Number of cars in the system:
sum of unused cars and cars in trains during
the last time interval of the day

minimize miles:
sum {(c1,t1,c2,t2) in schedule} distance[c1,c2] * X[c1,t1,c2,t2];

Total car-miles run by all scheduled trains in a day

CONSTRAINTS

account {c in cities, t in times}:

U[c,t] = U[c, if t > 1 then t-1 else last] +

sum {(c1,t1,c,t) in schedule} X[c1,t1,c,t] -
sum {(c,t,c2,t2) in schedule} X[c,t,c2,t2];

For every city and time:
unused cars in the present interval must equal
unused cars in the previous interval,
plus cars just arriving in trains,
minus cars just leaving in trains

satisfy {(c1,t1,c2,t2) in schedule}:

low[c1,t1,c2,t2] <= X[c1,t1,c2,t2] <= high[c1,t1,c2,t2];

For each scheduled train:
number of cars must meet demand,
but must not be so great that unnecessary
sections are run

DATA

data;

set cities := BO NY PH WA ;

set links := (BO,NY) (NY,PH) (PH,WA)
(NY,BO) (PH,NY) (WA,PH) ;

param dist_table := [*,*] BO NY 232
NY PH 90
PH WA 135 ;

param last := 48 ;

param section := 14 ;

set schedule :=

(WA,*,PH,*) 2 5 6 9 8 11 10 13
12 15 13 16 14 17 15 18
16 19 17 20 18 21 19 22
20 23 21 24 22 25 23 26
24 27 25 28 26 29 27 30
28 31 29 32 30 33 31 34
32 35 33 36 34 37 35 38
36 39 37 40 38 41 39 42
40 43 41 44 42 45 44 47
46 1

(PH,*,NY,*) 1 3 5 7 9 11 11 13
13 15 14 16 15 17 16 18
17 19 18 20 19 21 20 22
21 23 22 24 23 25 24 26
25 27 26 28 27 29 28 30
29 31 30 32 31 33 32 34
33 35 34 36 35 37 36 38

60

37 39 38 40 39 41 40 42
41 43 42 44 43 45 44 46
45 47 47 1

(NY,*,BO,*) 10 16 12 18 14 20 15 21
16 22 17 23 18 24 19 25
20 26 21 27 22 28 23 29
24 30 25 31 26 32 27 33
28 34 29 35 30 36 31 37
32 38 33 39 34 40 35 41
36 42 37 43 38 44 39 45
40 46 41 47 42 48 43 1
44 2 45 3 46 4 48 6

(BO,*,NY,*) 7 13 9 15 11 17 12 18
13 19 14 20 15 21 16 22
17 23 18 24 19 25 20 26
21 27 22 28 23 29 24 30
25 31 26 32 27 33 28 34
29 35 30 36 31 37 32 38
33 39 34 40 35 41 36 42
37 43 38 44 39 45 40 46
41 47 43 1 45 3 47 5

(NY,*,PH,*) 1 3 12 14 13 15 14 16
15 17 16 18 17 19 18 20
19 21 20 22 21 23 22 24
23 25 24 26 25 27 26 28
27 29 28 30 29 31 30 32
31 33 32 34 33 35 34 36
35 37 36 38 37 39 38 40
39 41 40 42 41 43 42 44
43 45 44 46 45 47 46 48
47 1

(PH,*,WA,*) 1 4 14 17 15 18 16 19
17 20 18 21 19 22 20 23
21 24 22 25 23 26 24 27
25 28 26 29 27 30 28 31
29 32 30 33 31 34 32 35
33 36 34 37 35 38 36 39
37 40 38 41 39 42 40 43
41 44 42 45 43 46 44 47
45 48 46 1 47 2 ;

param demand :=

[WA,*,PH,*] 2 5 .55 6 9 .01 8 11 .01
10 13 .13 12 15 1.59 13 16 1.69
14 17 5.19 15 18 3.55 16 19 6.29
17 20 4.00 18 21 5.80 19 22 3.40
20 23 4.88 21 24 2.92 22 25 4.37
23 26 2.80 24 27 4.23 25 28 2.88
26 29 4.33 27 30 3.11 28 31 4.64
29 32 3.44 30 33 4.95 31 34 3.73
32 35 5.27 33 36 3.77 34 37 4.80
35 38 3.31 36 39 3.89 37 40 2.65
38 41 3.01 39 42 2.04 40 43 2.31
41 44 1.52 42 45 1.75 44 47 1.88
46 1 1.05

[PH,*,NY,*] 1 3 1.05 5 7 .43 9 11 .20
11 13 .21 13 15 .40 14 16 6.49
15 17 16.40 16 18 9.48 17 19 17.15
18 20 9.31 19 21 15.20 20 22 8.21
21 23 13.32 22 24 7.35 23 25 11.83
24 26 6.61 25 27 10.61 26 28 6.05
27 29 9.65 28 30 5.61 29 31 9.25

61

30 32 5.40 31 33 8.24 32 34 4.84
33 35 7.44 34 36 4.44 35 37 6.80
36 38 4.11 37 39 6.25 38 40 3.69
39 41 5.55 40 42 3.29 41 43 4.77
42 44 2.91 43 45 4.19 44 46 2.53
45 47 4.00 47 1 1.65

[NY,*,BO,*] 10 16 1.23 12 18 3.84 14 20 4.08
15 21 1.47 16 22 2.96 17 23 1.60
18 24 2.95 19 25 1.71 20 26 2.81
21 27 1.77 22 28 2.87 23 29 1.84
24 30 2.95 25 31 1.91 26 32 3.12
27 33 1.93 28 34 3.31 29 35 2.00
30 36 3.40 31 37 2.08 32 38 3.41
33 39 2.69 34 40 4.45 35 41 2.32
36 42 3.40 37 43 1.80 38 44 2.63
39 45 1.52 40 46 2.23 41 47 1.25
42 48 1.79 43 1 .97 44 2 1.28
45 3 .48 46 4 .68 48 6 .08

[BO,*,NY,*] 7 13 .03 9 15 1.29 11 17 4.59
12 18 2.56 13 19 3.92 14 20 2.37
15 21 3.81 16 22 2.24 17 23 3.51
18 24 2.13 19 25 3.28 20 26 2.05
21 27 3.15 22 28 1.99 23 29 3.09
24 30 1.93 25 31 3.19 26 32 1.91
27 33 3.21 28 34 1.85 29 35 3.21
30 36 1.71 31 37 3.04 32 38 2.08
33 39 3.13 34 40 1.96 35 41 2.53
36 42 1.43 37 43 2.04 38 44 1.12
39 45 1.71 40 46 .91 41 47 1.32
43 1 1.80 45 3 1.13 47 5 .23

[NY,*,PH,*] 1 3 .04 12 14 4.68 13 15 5.61
14 16 3.56 15 17 5.81 16 18 3.81
17 19 6.31 18 20 4.07 19 21 7.33
20 22 4.55 21 23 7.37 22 24 4.73
23 25 7.61 24 26 4.92 25 27 7.91
26 28 5.19 27 29 8.40 28 30 5.53
29 31 9.32 30 32 5.51 31 33 10.33
32 34 9.21 33 35 18.95 34 36 11.23
35 37 16.85 36 38 7.29 37 39 10.89
38 40 5.41 39 41 8.21 40 42 4.52
41 43 6.99 42 44 3.92 43 45 6.21
44 46 3.44 45 47 5.17 46 48 2.55
47 1 1.24

[PH,*,WA,*] 1 4 .20 14 17 4.49 15 18 3.53
16 19 2.67 17 20 3.83 18 21 3.01
19 22 4.12 20 23 3.15 21 24 4.67
22 25 3.20 23 26 4.23 24 27 2.87
25 28 3.84 26 29 2.60 27 30 3.80
28 31 2.77 29 32 4.31 30 33 3.16
31 34 4.88 32 35 3.45 33 36 5.55
34 37 3.52 35 38 6.11 36 39 3.32
37 40 5.53 38 41 3.03 39 42 4.51
40 43 2.53 41 44 3.39 42 45 1.93
43 46 2.52 44 47 1.20 45 48 1.75
46 1 .88 47 2 .87 ;

end;

62

References

Baker, T.W. and D.J. Biddle. 1986. A Hierarchical/Relational Approach to Modeling.
Chesapeake Decision Sciences, Inc.; presented at the ORSA/TIMS Joint National Meeting,
Miami Beach.

Beale, E.M.L. 1970. Matrix Generators and Output Analyzers. In H.W. Kuhn (ed.), Pro-
ceedings of the Princeton Symposium on Mathematical Programming, Princeton University
Press, Princeton, NJ, pp. 25–36.

Bisschop, J. and A. Meeraus. 1982. On the Development of a General Algebraic
Modeling System in a Strategic Planning Environment. Mathematical Programming Study
20, 1–29.

Brooke, A., D. Kendrick and A. Meeraus. 1988. GAMS: A User’s Guide. Scientific
Press, Redwood City, CA.

Choksi, A.M., A. Meeraus and A.J. Stoutjesdijk. 1980. The Planning of Investment
Programs in the Fertilizer Industry. Johns Hopkins University Press, Baltimore.

Creegan, J.B. 1985. DATAFORM, a Model Management System. Ketron, Inc., Arling-
ton, VA.

Dolk, D.R. 1986. A Generalized Model Management System for Mathematical Program-
ming. ACM Transactions on Mathematical Software 12, 92–126.

Fourer, R. 1983. Modeling Languages versus Matrix Generators for Linear Programming.
ACM Transactions on Mathematical Software 9, 143–183.

Fourer, R., J.B. Gertler and H.J. Simkowitz. 1977. Models of Railroad Passenger-
Car Requirements in the Northeast Corridor. Annals of Economic and Social Measurement
6, 367–398.

Fourer, R., J.B. Gertler and H.J. Simkowitz. 1978. Optimal Fleet Sizing and
Allocation for Improved Rail Service in the Northeast Corridor. Transportation Research
Record 656, 40–45.

General Optimization, Inc. 1986. What’s Best! Holden-Day, Oakland, CA.

Geoffrion, A.M. 1988. SML: A Model Definition Language for Structured Modeling.
Working Paper No. 360, Western Management Science Institute, University of California,
Los Angeles.

Haverly Systems, Inc. 1977. MaGen. Denville, NJ.

Kendrick, D., A. Meeraus and J.S. Suh. 1981. Oil Refinery Modeling with the GAMS
Language. Research Report No. 14, Center for Energy Studies, University of Texas, Austin.

Kernighan, B.W. and R. Pike. 1984. The UNIX Programming Environment. Prentice-
Hall, Englewood Cliffs, NJ.

Ketron, Inc. 1986. PAM: a Practitioner’s Approach to Modeling. Arlington, VA.

Management Science Systems. 1970. DATAFORM Mathematical Programming Data
Management System: User Manual. Ketron, Inc., Arlington, VA.

Murtagh, B.A. 1981. Advanced Linear Programming: Computation and Practice.
McGraw-Hill, New York.

Murtagh, B.A. and M.A. Saunders. 1987. MINOS 5.1 User’s Guide. Technical Re-
port SOL 83–20R, Systems Optimization Laboratory, Department of Operations Research,
Stanford University.

63

Roy, A., L.S. Lasdon and J. Lordeman. 1986. Extending Planning Languages to
Include Optimization Capabilities. Management Science 32, 360–373.

Schrage, L. 1989. User’s Manual for Linear, Integer and Quadratic Programming with
LINDO, fourth edition. Scientific Press, Redwood City, CA.

Schrage, L. and K. Cunningham. 1988. Demo LINGO/PC: Language for INteractive
General Optimization, version 1.04a. LINDO Systems Inc., Chicago.

Simons, R.V. 1987. Mathematical Programming Modeling Using MGG. IMA Journal of
Mathematics in Management 1, 267–276.

Stroustrup, B. 1986. The C++ Programming Language. Addison-Wesley, Reading, MA.

64

