
A One-Class Classification Approach for Protein

Sequences and Structures

András Bánhalmi1, Róbert Busa-Fekete1,2, and Balázs Kégl2

1 Research Group on Artificial Intelligence of the Hungarian Academy of Sciences
and University of Szeged, Aradi vértanúk tere 1., H-6720 Szeged, Hungary

{banhalmi,busarobi}@inf.u-szeged.hu
2 LAL, University of Paris-Sud, CNRS, 91898 Orsay, France

kegl@lal.in2p3.fr

Abstract. The One-Class Classification (OCC) approach is based on the
assumption that samples are available only from a target class in the train-
ing phase.OCC methods have been applied with success to problems where
the classes are very different in size. As class-imbalance problems are typi-
cal in protein classification tasks, we were interested in testing one-class
classification algorithms for the detection of distant similarities in pro-
tein sequences and structures. We found that the OCC approach brought
about a small improvement in classification performance compared to bi-
nary classifiers (SVM, ANN, Random Forest). More importantly, there is
a substantial (50 to 100 fold) improvement in the training time. OCCs may
provide an especially useful alternative for processing those protein groups
where discriminative classifiers cannot be easily trained.

Keywords: One-class classification, Protein classification, ROC analysis.

1 Introduction

The classification of proteins (domain types, structural classes, protein families)
is a key issue in genome annotation. The simplest methods of protein classifi-
cation are based on pairwise comparisons; more advanced approaches use gen-
erative models of the positive class like Hidden Markov Models (HMMs), while
more recent methods like Support Vector Machines (SVMs) are based on dis-
criminative models in which the positive and negative classes are both used in
the training phase. However, the known protein groups have some typical proper-
ties that make the application of classification algorithms difficult or impractical.
First, protein classes are very heterogeneous in most of their characteristics (such
as the number of known members, protein size, within-group similarities, sepa-
ration from other groups). Second, a large proportion of known protein groups
have only one or two known members. Third, the classes are imbalanced, there
being many more negative examples than positive ones. The training of support
vector machines is difficult on such data, and generative models like the popular
HMM need manually curated multiple alignments that require a substantial hu-
man overhead. These points also pose problems to the recent machine learning
approaches that use new input space representations or similarity measures.

I. Măndoiu, G. Narasimhan, and Y. Zhang (Eds.): ISBRA 2009, LNBI 5542, pp. 310–322, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A One-Class Classification Approach for Protein Sequences and Structures 311

One class classification (OCC) approaches have been successfully used in var-
ious fields where only positive examples are available for training. Application
examples include image retrieval [1], the fault detection of machinery [2], auto-
mated currency validation [3], bioacoustic monitoring [4], document classification
[5], and spam filtering [6]. While discriminative models try to establish a deci-
sion surface between the positive class and the other class(es), OCC methods
try to draw a closed decision surface around the positive class that surrounds
the majority of the positive training instances (see Figure 1). In this scenario,
the negative examples are outliers, and the relevant methods are referred to as
Outlier Detection or Novelty Detection in different fields. The area of OCC in-
cludes several algorithms like generative probability density estimation methods
(Gaussian Mixture Model (GMM) [7,8], Parzen estimator [9]), reconstruction
methods (k-means [8], Autoencoder Neural Networks [10]), and boundary esti-
mators (k-centers [11], SVDD [12,13,14], NNDD [15]).

Fig. 1. The difference between the discriminative and OC classification methods

The aim of this paper is to test the performance of OCC algorithms in pro-
tein classification tasks, using standardized datasets developed for benchmarking
machine learning algorithms. The classification tasks were selected in such a way
that the members of a new protein family (test set) had to be detected based on
other known members of a protein superfamily (training set), using measures of
sequence similarity (BLAST [16], Smith/Waterman [17]) or structure similarity
(DALI [18], PRIDE [19]). We carried out a ROC analysis for the characteri-
zation of classifier performance and found that OCC methods provide a slight
improvement with respect to discriminative methods (SVM [20], ANN [8], Ran-
dom Forest [21]). On the other hand they require 50 to 100 times less training
time, which makes them promising candidates for large scale applications.

2 Protein Classification Datasets

We used two different classification benchmark datasets taken from the Protein
Classification Benchmark Database [22].

312 A. Bánhalmi, R. Busa-Fekete, and B. Kégl

2.1 The COG Dataset

This dataset is a subset of the COG database of functionally annotated orthol-
ogous sequence clusters [23]. In the COG database, each COG cluster contains
functionally related orthologous sequences belonging to unicellular organisms,
including archaea, bacteria and unicellular eukaryotes. For a given COG group,
the positive test set included the sequences from three unicellular eukaryotic
genomes, while the positive training set was compiled from the rest of the se-
quences in the group. Of the over 5, 665 COGs we selected 117 that contained at
least 8 eukaryotic sequences (positive test group) and 16 additional prokaryotic
sequences (positive training group). This dataset contained 17, 973 sequences.
The negative training/test sets were obtained by randomly assigning sequences
from the remaining COGs to the two groups. In this way it reduced to 117
classification tasks, but we used only a subset of them, because we did not use
those which had a 1.0 Nearest Neighbor AUC performance. So we chose just 13
tasks from the 117. These COGs were used as positive elements in these learning
tasks, that is: COG0406, COG0526, COG0631, COG0695, COG0697, COG0699,
COG0814, COG0842, COG0847, COG1310, COG1752, COG2036, COG2801.

2.2 The SCOP40 Dataset

The evaluation of classification performance was tested on a sequence dataset
designed to test distant protein similarities [24]. This set consists of 4, 352 protein
domain sequences (whose lengths range from 20 to 994 amino acids) selected from
the SCOP database [25]. The sequences of this dataset belong to 55 superfamilies,
which were divided into training sets and test sets in such a way that the test
set consisted of members of a protein family that was not represented in the
training set, i.e. there was a low degree of sequence similarity and no guaranteed
evolutionary relationship between the two sets.

2.3 Sequence Comparison Algorithms

The protein comparison datasets were taken from the Protein Classification
Benchmark website [22]. In experiments a protein sequence comparison was per-
formed with BLAST version 2.2.4 of the BLAST program [16] using a cutoff score
of 50, or with the Smith-Waterman algorithm [17], as implemented in MATLAB.
The BLOSUM 62 matrix [26] was also used in each case. Afterwards, a protein
structure comparison was carried out with DaliLite [18] and with PRIDE2 [19]
using default parameters.

2.4 Data Representation

The machine learning algorithms can accept only fixed length, real-valued input
vectors such as a kernel representation [24] in which each protein X is repre-
sented by a feature vector FX = fx1 , fx2 , . . . fxn , where n is the total number
of proteins in the training set and fxi is a similarity/distance score, such as
the BLAST score, between X and the ith sequence in the training set. Here we

A One-Class Classification Approach for Protein Sequences and Structures 313

used a more compact representation, where each sequence was represented by
its average similarity score obtained from one of the superfamilies represented
in the training set [27,28]. After the aggregation step, the length of the training
vectors became be equal to the number of superfamilies. Thus in the case of the
SCOP40 dataset we had 24 dimensional vectors instead of 1357. In the case of
the COG dataset [23], we used the average similarity score on various COGs
as an aggregate similarity measure and this resulted in 117 dimensions instead
of the original 17, 947. We also found that this aggregation does not affect very
much the classification performance.

3 Methods

3.1 Data Description Methods

In the following we will give a brief description of the Data Description (or
One-Class Classification) methods used in our experiments. The methods which
estimate the probability density give a probability value for a test data sample
(p(x)), and this value can be used for ranking the test samples. Other methods
supply distance values (d(x)), and the negative values of the magnitudes of these
distances can be used for scoring.

Gaussian Data Description: The Gaussian Data Description [29] seeks to
directly approximate the class-conditional probability distribution corresponding
to a class with a multidimensional Gaussian density function (p(x)):

p(x) = 1

(2π)
D
2 |Σ| 12

e−
1
2 (x−μ)T Σ−1(x−μ)

Here D denotes the dimension of the vector-space, and μ and Σ represent
the mean and covariance, respectively. The parameters can be computed di-
rectly from the training data. The main computational effort is the inversion
of the covariance matrix. When the covariance matrix is singular the following
regularization step is necessary before the inversion

Σ = Σ + rI,

where r ∈ R
+ is a small regularization parameter and I is the D dimensional

identity matrix.

Parzen Data Description: This method [15] estimates the class-conditional
probability density of the training data via the sum of kernel functions centered
to the training examples. The most commonly employed kernel function is the
Gaussian function with a zero mean and a variance of one:

p(x) =
1
N

N∑

i=1

ϕ(x, xi, hI),

where I is the unit covariance matrix, the xi values represent the training data
samples, and N stands for the number of data samples. The parameter h is

314 A. Bánhalmi, R. Busa-Fekete, and B. Kégl

the bandwidth (a smoothing parameter), which can be fixed beforehand or an
optimal value can be found using a maximum likelihood method.

Nearest Neighbor Data Description: Here the score of a test vector is ex-
pressed by the distance between the test vector and its nearest neighbor in the
training set:

ε(x) = −‖x − NN(x)‖

K-means Data Description: This method belongs to the family of so-called
reconstruction methods, because it minimizes a reconstruction error on the train-
ing set. The score of the test data samples can also be expressed using this recon-
struction error function. For the k-means data description method, the following
reconstruction error is applied [15]:

ε(xi) = min
k

‖xi − μk‖2

ε =
N∑

i=1

ε(xi),

where xi represent the training data samples, N denotes the number of samples,
and μk is one of the mean values to be optimized.

After the training phase, the distance score for a test vector z is calculated
via the following formula:

d(z) = min
k

(z − μk)

K-centers Data Description: The only difference between this method and
the K-means Data Description is the objective function to be minimized [7]. Here
the objective function is the maximal radius of the hyperspheres embedding the
clusters.

ε(xi) = min
k

‖xi − μk‖2

ε = max
i

ε(xi),

After the training phase, the distance score for a test vector z is calculated
by using the formula:

d(z) = min
k

(z − μk)

Self-Organizing Map (SOM): This method is similar to the k-means pro-
cedure in the sense that reference vectors corresponding to a training set are
iteratively updated until convergence. Here denoting the k-th reference vector
by wk (it is similar to μk above) for each training data sample x, the closest ref-
erence vector wk is determined. After, this the closest reference vector is altered
so as to be closer to the actual x point. The difference here between this method
and other similar (so-called Learn Vector Quantisation) methods is that each
reference vector corresponds to a grid point in a low (1 − 3) dimensional space.

A One-Class Classification Approach for Protein Sequences and Structures 315

In the learning phase not only the closest wk reference vector to x is updated, but
also some of the vectors whose grid point is close to the grid point corresponding
to wk. In this way –after convergence– the reference vectors corresponding to
the grid points will be close to each other when they are close on the grid, so
the low dimensional grid tries to preserve the topological properties of the input
space [30].

The test mechanism is the same as that for previous methods; that is, the
distance score for a test vector z is calculated via the formula:

d(z) = min
k

(z − wk)

Support Vector Data Description: This novel approach finds the minimum
enclosing ball (hypersphere) for the positive training data, and by applying the
’kernel trick’ the minimum enclosing ball is found in the kernel-space. Various
kernel-functions can be used, but in our experiments the radial basis kernel was
applied. Though we do not give a detailed description of the SVDD method here,
the interested reader can peruse [13].

Counter-Example Generation-Based Data Description: Here the prob-
lem of one-class classification (or ranking) is transformed into a two-class
problem: a simple algorithm is applied that automatically generates artificial
counter-examples using just the positive data, in such a way that the generated
counter-examples lie outside the region of positives at a predefined distance from
them. Afterwards, traditional discriminative classification methods can be uti-
lized to separate the positive and the artificial negative examples [31]. For the
negative example generation, and for the two-class classification problem some
new methods were introduced in [32]. Here we will use the original counter-
example generation method, but for the purpose of separating the positive ex-
amples from the generated negative ones we will apply both the ν-SVM (Support
Vector Machine) and the RBN (Radial Basis Network) classifiers.

3.2 Reference Binary Classifiers

The implementation of Artificial Neural Network (ANN) and Random Forest
(RF) was done using WEKA, which is an open-source JAVA package for machine
learning [33]. The class-conditional probability estimation for the test elements
was performed in the same way as that implemented in WEKA. The data rep-
resentation employed by these models was the same as the one we used for the
OCCs. In addition, we used the SVMLight program [34], which is a Support Vec-
tor Machine implementation. The main advantage of the latter implementation
is that it can handle sparse data representations as well.

4 Performance Evaluation

The evaluation was carried out via standard receiver operating characteristic
(ROC) analysis [35,36], which provides a measure of both the sensitivity and the

316 A. Bánhalmi, R. Busa-Fekete, and B. Kégl

Table 1. Comparison of the AUC performance of different Classifiers on SCOP40
dataset. The comparison was carried out using the aggregate feature representation
described in the 3.1 section.

AUC
AUC50

BLAST SW DALI PRIDE

One-class
classifiers

NNDD
0.8980
0.7315

0.8831
0.6640

0.8845
0.6622

0.8109
0.4104

CE-OC(SVM)
0.9213
0.8043

0.9558
0.8227

0.9527
0.8457

0.8831
0.6071

CE-OC(RBN)
0.9147
0.7913

0.9185
0.7267

0.9398
0.8317

0.8965
0.6098

K-center
0.9184
0.7945

0.9197
0.7327

0.9834
0.8686

0.8704
0.5766

K-means
0.9206
0.7914

0.9301
0.7755

0.9857
0.9058

0.8849
0.6655

SVDD
0.9200
0.7709

0.9421
0.7840

0.9895
0.9402

0.9030
0.6581

Parzen
0.9048
0.7574

0.9384
0.7589

0.9825
0.8747

0.8947
0.5863

SOM
0.9184
0.7630

0.9362
0.7190

0.9827
0.8685

0.8963
0.6291

Gauss
0.9185
0.7962

0.9387
0.8036

0.9912
0.9526

0.8581
0.6585

Binary
classifiers

ANN
0.8907
0.7912

0.9383
0.8231

0.9932
0.9795

0.9222
0.7686

SVM
0.8857
0.7878

0.9441
0.8195

0.9108
0.8434

0.9171
0.7326

RForest
0.8082
0.6332

0.8884
0.6984

0.9948
0.9678

0.8988
0.6472

specificity of the classification based on a ranking of the objects to be classified
[37]. The ROC curve is a curve which plots the sensitivity against the specificity.
The integral of this curve is the ”area under curve” or AUC value which is is equal
to the probability that the score of a randomly chosen positive example is higher
than that of a randomly chosen negative one [38,39]. AUC = 1.0 corresponds
to perfect ranking, while a random ranking has an AUC = 0.5 value on average
[35]. In order to limit the effect of class imbalance and to have datasets of a
manageable size, it is customary to truncate the toplist so as to include only a
limited number of negative samples [37]. The resulting measures are the so-called
(e.g. ROC10, ROC50) values. In our experiments we used both the full AUC and
AUC50.

An other important question in classification tasks is how to choose the pa-
rameters of the different machine learning models. For the reference multi-class
methods (like SVM or ANN) their parameters were chosen according to the
references in the protein classification benchmark [22]. For One-Class models
which have one or more parameters influencing the performance of the ranking

A One-Class Classification Approach for Protein Sequences and Structures 317

Table 2. Comparison of the AUC performance of different Classifiers on SCOP40
dataset. The comparison was carried out without using any aggregated features. This
table is just for a comparison between the results of the applications of aggregated and
non-aggregated features.

AUC
AUC50

BLAST SW DALI PRIDE

One-class
classifiers

NNDD
0.7403
0.5076

0.7102
0.5076

0.7521
0.5494

0.8027
0.4330

CE-OC(SVM)
0.8393
0.5686

0.96
0.7911

0.9527
0.8457

0.9081
0.6826

CE-OC(RBN)
0.8283
0.4942

0.9673
0.8327

0.9398
0.8317

0.8988
0.6729

K-center
0.7943
0.5762

0.9299
0.6862

0.9469
0.7835

0.8710
0.6198

K-means
0.7758
0.4575

0.9547
0.7595

0.9443
0.8171

0.8877
0.6067

SVDD
0.8405
0.6015

0.9583
0.7828

0.9695
0.9028

0.8993
0.6571

Parzen
0.8949
0.6846

0.9405
0.7103

0.8386
0.6208

0.8361
0.6660

SOM
0.8014
0.5111

0.9511
0.7589

0.9440
0.7912

0.9019
0.6738

Gauss
0.8266
0.4789

0.9628
0.8134

0.9499
0.7200

0.8790
0.6524

Binary
classifiers

ANN
0.7054
0.5278

0.7896
0.5336

0.9543
0.7319

0.9253
0.7098

SVM
0.8854
0.7593

0.9437
0.8237

0.9886
0.9822

0.9389
0.8344

RForest
0.6521
0.6132

0.8599
0.7122

0.9944
0.98

0.8945
0.7561

(or classification) problem, in the most cases the default value of the parameters
proved to be the best ones, cross validation methods were not applied because of
the very few positive training data. Only two exceptions should be mentioned.
When Gauss DD was tested, the regularization matrix had a 0.05 multiplier,
and the with of the Parzen window was set to 0.5.

All the training datasets were normalized to the [−1, 1] interval.

5 Results and Discussion

Table 1 shows the performance of different classifiers on the SCOP40 database
using BLAST, Smith-Waterman, DALI and PRIDE similarities taken from the
Protein Classification Benchmark dataset (PCB) [22]. Here the AUC values were
determined for the 55 classification tasks specified in PCB, and the average of
the 55 AUC values is given in Table 1. The results show that OCCs can achieve

318 A. Bánhalmi, R. Busa-Fekete, and B. Kégl

Table 3. Comparison of the AUC performance of different classifiers on selected clas-
sification tasks taken from COG dataset. The comparison was carried out using the
aggregate feature representation described in the 3.1 section.

AUC
AUC50

BLAST SW

NNDD
0.9669
0.9423

0.8027
0.4330

CE-OC(SVM)
0.9801
0.7219

0.9739
0.8073

CE-OC(RBN)
0.9810
0.7326

0.9744
0.7476

K-center
0.9975
0.9512

0.9824
0.8136

K-means
0.9977
0.9493

0.9790
0.8195

SVDD
0.9817
0.9520

0.9715
0.7833

Parzen
0.9044
0.7637

0.8696
0.6877

SOM
0.9975
0.9483

0.9829
0.7778

Gauss
0.9978
0.9471

0.9742
0.9382

ANN
0.9763
0.7838

0.9627
0.8178

SVM
0.9885
0.9802

0.9752
0.9394

RForest
0.8558
0.7849

0.8173
0.9437

a modest but consistent improvement compared to the binary classifiers, both
in AUC and in AUC50.

The COG dataset consists of groups of orthologues which were generated
by a clustering method based on pairwise BLAST sequence comparison. The
resulting orthologue clusters (COGs) are compact and even a simple classifier
like 1NN can achieve an AUC of 1.00 on the majority of the groups. In order
to get a ”difficult” subset, we picked 13 COG groups (14, 939 sequences) with
a 1NN AUC score below 0.95. The results we got on this subset are shown in
Table 3. These results are consistent with the SCOP results, where we found
that OCCs outperform the binary classifiers. After, typical training times are
shown in Table 4. Here it is apparent that some OCCs have a 50 to 100 times
smaller training time than binary classifiers.

Looking at our results in more detail, our first observation could be what
is referred to as ’no free lunch theorem’ in machine learning [7]: there is no
classifier which is the best for all the problems. The OC methods as well as

A One-Class Classification Approach for Protein Sequences and Structures 319

Table 4. Typical training times (in seconds) for the classifiers used in this study

Task a.118.1. b.40.4. c.2.1.

+train 21 47 103
-train 664 642 604

OCC methods

CE-OC (SVM) 6.95 14.32 33.67

CE-OC (RBN) 7.17 16.45 71.15

K-center 0.26 0.29 0.35

K-means 0.12 0.18 0.23

SVDD 0.14 0.51 0.76

Parzen 0.14 0.21 0.31

SOM 16.12 34.64 79.87

Gauss 0.48 0.51 0.56

Binary methods

ANN > 15m > 15m > 15m

SVM 14.71 14.66 15.75

Random Forest 61.89 54.16 64.15

the discriminative methods have a high diversity in their performance, when
using different feature sets on different tasks. It is interesting to note that on the
DALI features, discriminative methods (ANN, RF) perform better than OCC
methods (CE, Gauss, SVDD, SOM), while on SW features, the situation is just
the reverse. It is also seen that the relative ranking of methods is different on the
SCOP40 and COG datasets, nevertheless the OCC methods perform better in
both cases. Among the binary classifiers tested, ANN apparently gave the most
robust results.

Next we should mention that the findings reported here were obtained using a
compact, aggregated feature representation. An analysis was also carried out on
the complete, non-aggregated feature set. The results given in Table 2 show the
same tendencies as those reported above (only the results on scop40 is reported
here, in the case of COG similar results were obtained). The results show a
very high improvement in the classification performance, when – a very effective
dimension-reduction ie. – aggregated features were used for our class-imbalanced
and high dimensional problems.

6 Conclusions

Based on the above comparisons, we may conclude that one-class classifiers can
provide a viable alternative to binary classifiers in protein classification tasks.
They do not require multiple alignment and can be easily incorporated into
multiple classifier systems. As they require short training times, they can be
especially useful for large-scale applications, and may provide a solution for the
protein groups that binary classifiers cannot handle.

320 A. Bánhalmi, R. Busa-Fekete, and B. Kégl

Acknowledgements

The authors thank Sándor Pongor for helpful suggestions. This research was sup-
ported by the French National Research Agency. This work was partly supported
in part by the NKTH grant of the National Technology Programme 2008 (project
codename AALAMSRK NTP OM-00192/2008) of the Hungarian government.

References

1. Chen, Y., Zhou, X.S., Huang, T.S.: One-class SVM for learning in image retrieval.
In: 2001 International Conference on Image Processing proc., vol. 1, pp. 34–37
(2001)

2. Shin, H.J., Eom, D.-H., Kim, S.-S.: One-class support vector machines: an ap-
plication in machine fault detection and classification. Comput. Ind. Eng. 48(2),
395–408 (2005)

3. He, C., Girolami, M., Ross, G.: Employing optimised combinations of one-class
classifiers for automated currency validation. Pattern Recognition 37, 1085–1096
(2004)

4. Sachs, A., Thiel, C., Schwenker, F.: One-class support-vector machines for the
classification of bioacoustic time series. ICGST International Journal on Artificial
Intelligence and Machine Learning (AIML) 6(4), 29–34 (2006)

5. Manevitz, L.M., Yousef, M.: One-class SVMs for document classification. Journal
of Machine Learning Research 2, 139–154 (2001)

6. Sahami, M., Dumais, S., Heckerman, D., Horvitz, E.: A Bayesian approach to
filtering junk E-mail. In: Learning for Text Categorization: Papers from the 1998
Workshop, Madison, Wisconsin, AAAI Technical Report WS-98-05 (1998)

7. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley and Son,
New York (2001)

8. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press,
Oxford (1995)

9. Parzen, E.: On the estimation of a probability density function and mode. Annals
of Mathematical Statistics 33, 1065–1076 (1962)

10. Japkowicz, N., Myers, C., Gluck, M.A.: A novelty detection approach to classifica-
tion. In: IJCAI, pp. 518–523 (1995)

11. Ypma, A., Duin, R.: Support objects for domain approximation (1998)
12. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Esti-

mating the support of a high-dimensional distribution. Neural Computation 13(7),
1443–1471 (2001)

13. Tax, D.M.J., Duin, R.P.W.: Support vector domain description. Pattern Recogn.
Lett. 20(11-13), 1191–1199 (1999)

14. Tax, D.M.J., Duin, R.P.W.: Support vector data description. Mach. Learn. 54(1),
45–66 (2004)

15. Tax, D.M.J.: One-class classification; Concept-learning in the absence of counter-
examples. Ph.D thesis, Delft University of Technology (2001)

16. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local align-
ment search tool. J. Mol. Biol. 215(3), 403–410 (1990)

A One-Class Classification Approach for Protein Sequences and Structures 321

17. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
Journal of Molecular Biology 147(1), 195–197 (1981)

18. Holm, L., Park, J.: Dalilite workbench for protein structure comparison. Bioinfor-
matics (16), 566–567 (2000)

19. Vlahovicek, K., Gaspari, Z., Pongor, S.: Efficient recognition of folds in protein 3d
structures by the improved pride algorithm. Bioinformatics (21), 3322–3323 (2005)

20. Vapnik, V.N.: Statistical Learning Theory. John Wiley and Son, Chichester (1998)
21. Breiman, L.: Random forests. Machine Learning V45(1), 5–32 (2001)
22. Sonego, P., Pacurar, M., Dhir, S., Kertész-Farkas, A., Kocsor, A., Gáspari, Z., Leu-

nissen, A.M., Pongor, S.: A protein classification benchmark collection for machine
learning. Nucleic Acids Research 35(suppl. 1), D232–D236 (2007)

23. Tatusov, R.L., Fedorova, N.D., Jackson, J.D., Jacobs, A.R., Kiryutin, B., Koonin,
E.V., Krylov, D.M., Mazumder, R., Mekhedov, S.L., Nikolskaya, A.N., Rao, B.S.,
Smirnov, S., Sverdlov, A.V., Vasudevan, S., Wolf, Y.I., Yin, J.J., Natale, D.A.:
The cog database: an updated version includes eukaryotes. BMC Bioinformatics 4
(September 2003)

24. Liao, L., Noble, W.S.: Combining pairwise sequence similarity and support vec-
tor machines for remote protein homology detection. In: RECOMB 2002: Pro-
ceedings of the sixth annual international conference on Computational biology,
pp. 225–232. ACM Press, New York (2002)

25. Andreeva, A., Howorth, D., Brenner, S.E., Hubbard, T.J., Chothia, C., Murzin,
A.G.: Scop database in 2004: refinements integrate structure and sequence family
data. Nucleic Acids Res. 32(Database issue) (January 2004)

26. Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks.
Proc. Natl. Acad. Sci. U S A 89(22), 10915–10919 (1992)

27. Vlahovicek, K., Kajan, L., Agoston, V., Pongor, S.: The sbase domain sequence
resource, release 12: prediction of protein domain-architecture using support vector
machines. Nucleic Acids Research 33(suppl. 1), 223 (2005)

28. Murvai, J., Vlahovicek, K., Szepesvári, C., Pongor, S.: Prediction of protein func-
tional domains from sequences using artificial neural networks. Genome Res. 11,
1410–1417 (2001)

29. Paalanen, P.: Bayesian classification using Gaussian mixture model and EM esti-
mation: Implementations and comparisons. Technical report, Department of Infor-
mation Technology, Lappeenranta University of Technology, Lappeenranta (2004)

30. Allinson, N.M., Yin, H.: Self-organising maps for pattern recognition. In: Oja, E.,
Kaski, S. (eds.) Kohonen Maps, pp. 111–120. Elsevier, Amsterdam (1999)

31. Bánhalmi, A., Kocsor, A., Busa-Fekete, R.: Counter-example generation-based
one-class classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R.,
Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701,
pp. 543–550. Springer, Heidelberg (2007)

32. Bánhalmi, A.: One-class classification methods via automatic counter-example gen-
eration. In: AIAP 2008: Proceedings of the 26th IASTED International Multi-
Conference, Anaheim, CA, USA. ACTA Press (2008)

33. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques, 2nd edn. Morgan Kaufmann Series in Data Management Systems. Morgan
Kaufmann, San Francisco (2005)

34. Joachims, T.: Making large-scale support vector machine learning practical. MIT
Press, Cambridge (1998)

322 A. Bánhalmi, R. Busa-Fekete, and B. Kégl

35. Egan, J.P.: Signal Detection theory and ROC Analysis. Academic Press, New York
(1975)

36. Sonego, P., Kocsor, A., Pongor, S.: Roc analysis: applications to the classification
of biological sequences and 3d structures. Brief Bioinform. (January 2008)

37. Gribskov, M., Robinson, N.: Use of receiver operating characteristic (roc) analysis
to evaluate sequence matching (1996)

38. Cortes, C., Mohri, M.: Auc optimization vs. error rate minimization (2004)
39. Ingleby, J.D.: Signal detection theory and psychophysics. Journal of Sound Vibra-

tion 5, 519–521 (1967)

	A One-Class Classification Approach for Protein Sequences and Structures
	Introduction
	Protein Classification Datasets
	The COG Dataset
	The SCOP40 Dataset
	Sequence Comparison Algorithms
	Data Representation

	Methods
	Data Description Methods
	Reference Binary Classifiers

	Performance Evaluation
	Results and Discussion
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

