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1. Korlátozás és szétválasztás módszere

A ćımben szereplő módszer egy általános kereteljárásként interpretálha-
tó, melynek különböző konkrét alkalmazásai igen hatékony eszközt szolgál-
tatnak a kombinatorikus optimalizálási feladatok megoldásában.

A módszer alapgondolata A. H. Land és A. G. Doig [?] munkájában lel-
hető fel első ı́zben. A szerzők a vegyes egészértékű lineáris programozási fela-
dat megoldására adtak meg egy olyan eljárást, amely alapvetően erre a tech-
nikára épült. Maga az igen találó angol ”Branch-and-Bound” elnevezés J.
D. C. Little és társai [?] dolgozatában szerepelt először, amelyben ezen tech-
nika felhasználásával egy, az utazó ügynök probléma megoldására szolgáló
eljárás került publikálásra. A korábbi speciális eseteket szintetizálva, P.
Bertier és B. Roy [?] dolgozta ki a módszer első általános változatát. Azóta
a korlátozás és szétválasztás módszere számos formában, az általánosság
különböző szintjein nyert publikálást és alkalmazásával igen sok speciális
problémához hatékony megoldási eljárások készültek.

A továbbiakban mi is több változaton keresztül fogjuk feléṕıteni az
eljárást, az egyes változatokat speciális problémamegoldásokkal fogjuk de-
monstrálni.

Alapeljárás

A módszer tárgyalásához tekintsük az alábbi optimalizálási problémát:

(7.1) min{z(x) : x ∈ L}
ahol L azonos dimenziójú, egész koordinátájú, nemnegat́ıv vektorok véges
és nemüres halmaza.

Az adott feltételek mellett a (7.1) alatti feladatnak nyilvánvalóan létezik
optimális megoldása, ugyanis véges sok célfüggvényérték minimumát keres-
sük. Legegyszerűbb megoldási módszernek első közeĺıtésben az tűnhetne,
hogy L elemeit végigvizsgáljuk, és vesszük egy olyan elemét, amelyen z(x)
a legkisebb értéket veszi fel. Ezzel egy optimális megoldáshoz jutunk. Az
ilyen t́ıpusú eljárást szokásos leszámlálási eljárásnak nevezni. A különböző
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gyakorlati problémáknál L elemszáma igen nagy lehet. Például n × n-es
költségmátrixú hozzárendelési feladat esetén |L| = n!. Így célszerű lehetőség
szerint a teljes leszámlálást elkerülni, és minél kevesebb lehetséges megoldást
megvizsgálni. Ez utóbbi célokat igyekszik realizálni a korlátozás és szétvá-
lasztás módszere.

Az eljáráshoz szükséges két függvény. Ezek egyike az úgynevezett szétvá-
lasztási függvény, amely az L halmaz tetszőleges |L′| > 1 részhalmazához
hozzárendeli L′ egy valódi osztályozását. A másik függvény, az úgynevezett
korlátozó függvény, amely L tetszőleges L′ �= ∅ részhalmazához hozzárendeli
a z(x̄) (x̄ ∈ L′) függvényértékek egy alsó korlátját. Speciálisan, L′ = {x̃}
esetén a z(x̃) függvényértéket. Most tegyük fel, hogy rendelkezésünkre
állnak ilyen függvények, és jelölje a szétválasztási függvényt ϕ, a korlátozó
függvényt pedig g.

Az eljárás során egy úgynevezett leszámlálási fát vagy Branch-and-Bound
fát (a továbbiakban B&B fa) éṕıtünk fel a következők szerint.

Eljárás

Előkésźıtő rész. A fa gyökere legyen L. Határozzuk meg g(L)-t és rendel-
jük ćımkeként az L szögponthoz. Legyen r = 1.

Iterációs rész (r-edik iteráció)

• 1. lépés. Az aktuális fa levelein határozzuk meg a ćımkék minimumát
és válasszunk ki egy minimális ćımkéjű L′ levelet.

• 2. lépés. Ha L′ = {x̄}, akkor vége az eljárásnak; x̄ optimális megoldás.
Ellenkező esetben a 3. lépés következik.

• 3. lépés. Bőv́ıtsük az aktuális fát ϕ(L′) elemeivel, mint L′ leszármazot-
taival, majd az új szögpontokhoz rendre számı́tsuk ki a korlátokat és
rendeljük az illető szögpontokhoz ćımkeként. Ezek után növeljük r
értékét 1-gyel, majd térjünk rá a következő iterációs lépésre.

Az eljárás két iterációs lépésében felépülő B&B fát szemlélteti a 7.1.
ábra, ahol

ϕ(L) = {L11, L12, L13}, g(L11) ≤ g(L1j), (j = 2, 3),
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ϕ(L11) = {L21, L22}.

L 11 L12 L13

L22L21

L

7.1. ábra. B&B fa két iterációs lépés után.

Az eljárás helyessége

Végesség. Vegyük észre, hogy ϕ defińıciója alapján minden szögpontnak
legfeljebb |L| leszármazottja van, továbbá minden iterációs lépésben az aktu-
ális fa leveleihez tartozó halmazok L-nek egy osztályozását alkotják. Szintén
ϕ defińıciója alapján az egymást követő osztályozások egymás valódi fi-
nomı́tásai, ı́gy a feléṕıthető fa mélysége legfeljebb |L|. De akkor a feléṕıthető
fa véges, amivel adódik az eljárás végessége.

Helyesség. Tegyük fel, hogy valamely iterációs lépésben L′-höz tar-
tozik a minimális korlát és L′ = {x̄}. Jelölje R a leveleknek megfelelő
halmazok halmazát. Akkor z(x̄) = g(L′) ≤ g(S) bármely S ∈ R-re. De
g(S) ≤ min{z(x) : x ∈ S}, azaz g(S) ≤ z(x) minden x ∈ S-re. Így
z(x̄) ≤ z(x) bármely x ∈ S-re és bármely S ∈ R-re. De akkor mivel R
osztályozása L-nek, ezért z(x̄) ≤ z(x) bármely x ∈ L-re, amivel igazoltuk,
hogy x̄ optimális megoldás. Az eljárás demonstrálására tekintsük az alábbi
0-1 értékű programozási feladatot:

7.1. példa.
5x1 + 2x2 + 2x3 + 2x4 ≤ 5
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xi ∈ {0, 1} (i = 1, . . . , 4)
———————————————-
−3x1 − x2 − x3 − x4 = z(x1, . . . , x4) → min

Ekkor

L = {(1, 0, 0, 0, ), (0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1), (0, 1, 0, 0), (0, 0, 1, 0),

(0, 0, 0, 1), (0, 0, 0, 0)}.
L-hez alsó korlátként hozzárendelhetjük a célfüggvényegyütthatók összegét,
azaz tegyük fel, hogy g(L) = −6. Tegyük fel továbbá, hogy a ϕ szétválasztá-
si függvény két részhalmazra bontja L-t, L1-be kerülnek azok a lehetséges
megoldások, amelyeknek első koordinátája 1, L2-be kerülnek azok a lehet-
séges megoldások, amelyeknek első koordinátája 0. Akkor

L1 = {(1, 0, 0, 0, )} és g(L1) = −3,

L2 = {(0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1, ), (0, 1, 0, 0), (0, 0, 1, 0),

(0, 0, 0, 1), (0, 0, 0, 0)}.
L2-nek csak olyan lehetséges megoldások elemei, amelyekben x1 = 0 és az
x2, x3, x4 változók közül legfeljebb kettő vehet fel 0-tól különböző értéket,
ugyanis ellenkező esetben nem teljesülne az 5x1+2x2+2x3+2x4 ≤ 5 feltétel.
Ezért z(x) ≥ −2 teljesül bármely x ∈ L2 vektorra.

Tegyük fel, hogy g(L2) = −2. Akkor az alábbi B&B fához jutunk.

L 1 L 2

L

-6

-3 -2

7.2. ábra. A 7.1. példához tartozó B&B fa.

Mivel L1 minimális ćımkéjű, és L1 = {(1, 0, 0, 0)}, ezért vége az eljárás-
nak; x̄ = (1, 0, 0, 0) optimális megoldása a tekintett feladatnak.
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Az eljárás ismertetett változatának alkalmazása nehézkes. A megoldandó
problémák többségénél L-ről kevés információ áll rendelkezésre és nagyon
nehéz az elő́ırt tulajdonságokkal rendelkező szétválasztási függvényt találni.
Például, ha az előzőekben megoldott feladatot úgy változtatjuk meg, hogy
a feltételrendszerben x1 együtthatója 6, akkor az alkalmazott szétválasztási
függvényünk már nem lesz jó, L1 = ∅ és L2 = L felbontást eredményez.

A probléma egy lehetséges kiküszöbölése az, hogy L-hez keresünk egy
olyan véges Ω halmazt, amely egyrészt tartalmazza L-t, másrészt viszonylag
könnyű Ω-hoz szétválasztási függvényt meghatározni. Így a B&B fák levelei
Ω osztályozásainak egy finomodó sorozatát alkotják, és mivel L ⊆ Ω, egyide-
jűleg implicit módon adódik L osztályozásainak is egy tágabb értelemben
vett finomodó sorozata. Nyilvánvaló ahhoz, hogy az eljárás a ḱıvánt módon
működjön, a korlátozó függvényre vonatkozó elő́ırásokat alkalmasan meg kell
változtatni.

A vizsgált példában Ω = {(u1, . . . , u4) : ui ∈ {0, 1}, i = 1, . . . , 4} tartal-
mazza L-et, és Ω bármely legalább kételemű részhalmaza szétbontható két
nemüres részhalmazra az x1, . . . , x4 változók valamelyikének értékei szerint.

Sok esetben heurisztikus eljárásokkal elő lehet álĺıtani viszonylag jó cél-
függvényértékkel rendelkező lehetséges megoldásokat. Bizonyos feladatok-
nál a módszer végrehajtása során részeredményként is előállnak lehetséges
megoldások. A rendelkezésre álló lehetséges megoldások felhasználásával e-
setenként hatékonyabbá tehető az eljárás a következők szerint. Jelölje X̄ a
rendelkezésre álló lehetséges megoldások halmazát. Legyen z̄ = min{z(x) :
x ∈ X̄} és jelölje x∗ az X̄ halmaz egy olyan elemét, amelyre z(x∗) = z̄
teljesül. Mivel X̄ ⊆ L, ezért z̄ az optimum értékének egy felső korlátja. Most
jelölje L′ az aktuális B&B fa valamely leveléhez tartozó halmazt. Ekkor
g(L′) az L′ halmazban levő lehetséges megoldásokon felvett célfüggvényér-
tékek alsó korlátja. Ha g(L′) ≥ z̄, akkor az L′ halmazba eső bármely x̃
lehetséges megoldásra z(x̃) ≥ g(L′) ≥ z̄ teljesül. Ez pontosan azt jelenti,
hogy a tekintett levélhez tartozó lehetséges megoldások között nincs jobb,
mint x∗. Viszont ez esetben az aktuális B&B fa ezen levelének további
vizsgálata az optimum meghatározását illetően felesleges, az eljárás folyta-
tása során az illető levéltől el lehet tekinteni. Ilyen esetben szokásos szóhasz-
nálat, hogy a B&B fa megfelelő ágát lezárjuk. Ezt a továbbiakban az illető
szögpont aláhúzásával jelöljük. Az aktuális fa azon leveleit amelyek nin-
csenek lezárva élő leveleknek nevezzük.

A B&B fa feléṕıtése igen szemléletessé teszi az eljárást, ezért a továbbiak-
ban mi ezt az ábrázolástechnikát fogjuk használni. Számı́tástechnikai szem-
pontból viszont nem ḱıvánatos a felesleges információk (lezárt ágak) tárolása.
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Ez úgy küszöbölhető ki, hogy minden iterációs lépésben csak az aktuális
B&B fa élő leveleit és a hozzájuk tartozó információkat tároljuk.

Az eljárás különböző alkalmazásai során kiderült, hogy az aktuális B&B
fa azon levelének a kiválasztási stratégiája, amelyből a fát továbbéṕıtjük
igen jelentős. Az ismertetett változatban alkalmazott módszer – egy mini-
mális korláttal rendelkező levél kiválasztása – nem minden esetben célszerű.
Bizonyos problémacsoportoknál más stratégiák növelik az eljárás hatékony-
ságát. Így a különböző alkalmazásoknál más és más kiválasztási szabály
alapján történhet a B&B fa kiéṕıtése.

A fentiekben vázolt bőv́ıtéseket ötvözi magába a (7.1) probléma megol-
dására szolgáló, az alábbiakban feléṕıtésre kerülő eljárás.

Tegyük fel, hogy adott egy olyan Ω véges halmaz, amelyre L ⊆ Ω.
Továbbá adott egy olyan ϕ szétválasztási függvény, amely Ω tetszőleges
legalább kételemű Ω′ részhalmazához hozzárendeli Ω′ egy valódi osztályozá-
sát. Végül adott egy olyan g korlátozó függvény, hogy Ω tetszőleges nemüres
Ω′ részhalmazára az alábbiak teljesülnek:

g(Ω′) ≤ min{z(x) : x ∈ Ω′ ∩ L},ha |Ω′| > 1 és Ω′ ∩ L �= ∅,
g(Ω′) tetszőleges, ha |Ω′| > 1 és Ω′ ∩ L = ∅,

g(Ω′) =
{

z(x̄), ha |Ω′| = 1 & Ω′ ∩ L = {x̄},
W, ha |Ω′| = 1 & Ω′ ∩ L = ∅,

ahol W alkalmasan nagy számot jelöl, például számı́tógépes implementáci-
óban a gépben ábrázolható legnagyobb számot. Esetenként W -hez hozzá-
adunk vagy levonunk konstansokat. Ezen műveletek eredményét úgy defini-
áljuk, hogy az ismét W . A g függvénnyel kapcsolatban feltételezzük, hogy az
Ω′ halmazok (esetleg implicit) léırása olyan, hogy az |Ω′| = 1 , Ω′ ∩L = {x̄}
eset felismerhető, és x̄ explicit módon előálĺıtható.

Tegyük fel továbbá, hogy ismertek olyan eljárások, amelyekkel a g(Ω′)
függvényértékek meghatározhatók bármely ∅ �= Ω′ ⊆ Ω esetén és a ϕ(Ω′)
függvényértékek meghatározhatók bármely Ω′ ⊆ Ω és |Ω′| > 1 részhalmazra.
Ekkor a (7.1) feladatot megoldhatjuk az alábbi eljárással.

B&B eljárás

Előkésźıtő rész. Valamilyen heurisztikus módszerrel határozzunk meg
egy lehetséges megoldást, jelölje ezt x0. Legyen a z̄ változó értéke z(x0)
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és az x∗ vektorváltozó értéke x0. Ha lehetséges megoldás meghatározására
nincsen lehetőség, akkor legyen z̄ = W , és x∗ = (−1, . . . ,−1).

Határozzuk meg a g(Ω) korlátot. Ha a g(Ω) korlát meghatározása során
előáll egy x̄ lehetséges megoldás, akkor definiáljuk újra z̄-t és x∗-ot a követ-
kezők szerint. Ha z(x̄) ≥ z̄, akkor z̄ és x∗ nem változnak, mı́g z(x̄) < z̄
esetében z̄-nak adjuk a z(x̄) értéket és x∗-ot változtassuk x̄-ra. Legyen
r = 0 és

F0 =
{ {Ω}, ha g(Ω) < z̄,
∅ különben.

Ezt követően folytassuk az eljárást az iterációs eljárásrésszel.

Iterációs rész (r-edik iteráció)

• 1. lépés. Ha Fr = ∅, akkor vége az eljárásnak; x∗ a feladat optimális
megoldása, z̄ az optimum értéke. Különben folytassuk a 2. lépéssel az
eljárást.

• 2. lépés. Ha Fr �= ∅, akkor valamilyen rögźıtett stratégia szerint vá-
lasszunk ki egy elemet Fr elemei közül, jelölje ezt Ω′. Alkalmazzuk a
ϕ szétválasztási függvényt Ω′-re. Legyen

ϕ(Ω′) = {Ω(r)
1 , . . . ,Ω(r)

kr
}.

Határozzuk meg rendre az Ω(r)
1 , . . . ,Ω(r)

kr
halmazokra a g(Ω(r)

1 ), . . . , g(Ω(r)
kr

)
korlátokat. Jelölje Xr a korlátok meghatározása során előálló lehetséges
megoldások halmazát, feltéve, hogy ilyen létezik. Legyen zr = min{z(x) :
x ∈ Xr} és jelölje x(r) az Xr halmaz egy olyan elemét, amelyre
zr = z(x(r)) teljesül. Definiáljuk újra z̄-t és x∗-ot a következők szerint.
Ha zr ≥ z̄, akkor z̄ és x∗ nem változik, mı́g zr < z̄ esetén z̄-nak adjuk
a zr értéket és x∗-ot változtassuk x(r)-re. (Xr = ∅ esetén z̄ és x∗ nem
változnak.). Ezek után legyen

Fr+1 = {Ωi : Ωi ∈ (Fr \ {Ω′}) ∪ ϕ(Ω′) & g(Ωi) < z̄}.

Növeljük r értékét 1-gyel és folytassuk az eljárást a következő iterációs
lépéssel.

Az eljárás helyességének igazolása
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Vegyük észre, hogy az eljárás során implicit módon fák egy olyan soroza-
tát álĺıtjuk elő, hogy minden egyes fa leveleihez Ω egy osztályozása tar-
tozik, és az osztályozásokat minden iterációs lépésben finomı́tjuk. Az Fr

halmazok praktikussági okokból csak mindig az aktuális fa élő leveleihez
tartozó halmazokat tartalmazzák. Ezek a halmazok legalább kételeműek,
ugyanis |Ω′| = 1 esetén g(Ω′) = W vagy g(Ω′) = z(x̄) teljesül valamely
x̄ ∈ L lehetséges megoldásra. Az első esetben az Ω′-höz tartozó levél
lezárásra kerül, a második esetben pedig a g-re vonatkozó feltételezésünk
szerint x̄ rendelkezésünkre áll, de akkor x̄ ∈ Xr és ı́gy Fr+1 kialaḱıtásakor
g(Ω′) = z(x̄) ≥ z̄. Viszont ı́gy az Ω′-höz tartozó levél ismét lezárásra kerül.

A fenti észrevételeket felhasználva, az eljárás helyessége hasonlóan bizo-
nýıtható, mint a megelőző verzióé.

Vegyük még észre, hogy a ϕ szétválasztási és a g korlátozó függvényekre
szükségtelenül erős az a kikötés, amely szerint ϕ tetszőleges Ω′ ⊆ Ω és
|Ω′| > 1 részhalmazra, g tetszőleges ∅ �= Ω′ ⊆ Ω részhalmazra értelmezve
van. Ez sok esetben nagyon körülményes, vagy egyáltalán nem biztośıtható.
Lényegében elegendő, ha a ϕ szétválasztási függvény értelmezve van az
eljárás során előálló B&B fák élő levelein. A g korlátozó függvényről pedig
elegendő azt kikötni, hogy értelmezett az Ω halmazon és az eljárás során
előálló B&B fák bármely Ω′ élő levelére ϕ(Ω′) elemein.

A ϕ és g függvényekre vonatkozó fenti kikötések is formalizálhatók.
Mivel az általános eset formalizmusa eléggé bonyolult, ezért ettől eltekintünk.
Az egyes modelleknél rendre megadjuk a konkrét ϕ és g függvényeket és tu-
lajdonságaikat.

A következőkben a fenti eljárást fogjuk alkalmazni konkrét problémacso-
portok megoldására. Egy konkrét alkalmazás esetén meg kell adni

(a) az Ω halmazt,
(b) a ϕ szétválasztási és a g korlátozó függvényt, és igazolni kell, hogy

ezek rendelkeznek a ḱıvánt tulajdonságokkal,
(c) azt a stratégiát, amely alapján az aktuális B&B fa levelét kiválasztjuk

további faéṕıtés céljából.

A felsoroltak megadásával egy konkrét eljárást kapunk az illető problé-
macsoport megoldására, amelynek helyessége következik az általános eljárás
helyességéből.

Az eljárással kapcsolatban megjegyezzük még, hogy nyilvánvaló módon
maximum feladatok megoldására is alkalmas. Ez esetben W helyett minden-
hol −W szerepel, minimumok helyett maximumokkal kell dolgozni, és a
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célfüggvényértékekre, valamint a korlátokra vonatkozó egyenlőtlenségekben
”≤” helyett ”≥” relációt, ”<” helyett ”>” relációt kell venni, végül a g
korlátozó függvénynek az egyes halmazokhoz felső korlátokat kell rendelnie.
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2. Utazó ügynök probléma

A modellhez számos gyakorlati probléma kapcsolható. Ezek közül a
legismertebb a ćımben szereplő alábbi feladat.

Az utazó ügynök problémája

Adott n számú város és a városokat összekötő utak, amelyeknek ismert a
hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden
várost végig kell látogatnia úgy, hogy minden várost pontosan egyszer érint,
és az út befejeztével visszatér a kiindulási városba. Határozzuk meg az
ügynök legrövidebb útját.

Vezessük be a következő jelöléseket.

Jelölje 1, 2, . . . , n a városokat és cij az i-edik és j-edik városokat összekötő
út hosszát. Ha a két várost nem köti össze út, akkor legyen cij = W , ahol
W már az előzőekben is alkalmazott megfelelően nagy szám.

Legyen

xij =
{

1, ha az ügynök az i-edik városból a j-edik városba megy,
0 különben.

Végül jelölje tetszőleges Q ⊆ {1, . . . , n} halmazra Q̄ az {1, . . . , n} \ Q hal-
mazt. Akkor a fenti feladat az alábbi, utazó ügynök probléma néven ismert
optimumszámı́tási modellel ı́rható le.

n∑
t=1

xit = 1 (i = 1, . . . , n)

(10.1)
n∑

t=1

xtj = 1 (j = 1, . . . , n)

∑
i∈Q

∑
j∈Q̄

xij ≥ 1 (∅ �= Q ⊂ {1, . . . , n})

xij ∈ {0, 1}, (i = 1, . . . , n; j = 1, . . . , n)
——————————————————

n∑
i=1

n∑
j=1

cijxij = z → min
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Az első feltételcsoport garantálja, hogy az ügynök minden városból távo-
zik. A második feltételcsoport biztośıtja, hogy az ügynök eljut minden
városba. Sajnálatos módon a két feltételcsoport megengedi diszjunkt rész-
körutak kialakulását. Ezt küszöböli ki a harmadik feltételcsoport, amely-
ben elő́ırjuk, hogy a városok tetszőleges ∅ �= Q ⊂ {1, . . . , n} részhalmazára
az ügynök valamely Q-beli városból egy nem Q-beli városba látogat. Ez
valóban kizárja a részkörutat, ugyanis a részkörútban szereplő városok hal-
mazát tekintve Q-nak, a harmadik feltételcsoport megfelelő feltétele nem
teljesül.

Megjegyezzük, hogy az utazó ügynök problémája a korábbi fejezetek ter-
minológiájával összhangban úgy interpretálható, hogy egy minimális hosszú-
ságú, minden csúcspontot tartalmazó iránýıtott körutat kell meghatározni
egy adott hálózatban.

Az utazó ügynök problémáján ḱıvül számos olyan gyakorlati feladat van,
amely a (10.1) modellre vezethető vissza. A továbbiakban két ilyen gyakor-
lati alkalmazást ismertetünk.

Műszaki tervezés

Adott egy automata gépsor és abban egy szegecselő gép. A szegecselő
gép karjának a szalagon jövő termék meghatározott pontjaiba szegecseket
kell elhelyeznie. Határozzuk meg a szegecsek elhelyezésének azt a sorrendjét,
amely esetén legkisebb a szegecselő gép karjának teljes mozgása.

Sorrendi ütemezés

Adott egy üzem, amely n féle különböző terméket gyárt. Az egyes
termékféleségek gyártása időben elkülönül egymástól, és a termékváltásnál
a gépeket át kell álĺıtani. Ismeretes tetszőleges termékpárra a gépek átálĺıtá-
sának a költsége. Határozzuk meg a termékek termelésének egy olyan sor-
rendjét, amely mellett a gépek átálĺıtásának teljes költsége minimális.

A (10.1) modellel kapcsolatban vegyük észre, hogy a harmadik feltételcso-
portban a feltételek száma 2n − 2, ami már viszonylag kicsi n mellett is
nagyon sok egyenlőtlenséget eredményez. A feltételek számának csökkenté-
sére a problémának több ekvivalens formalizálása is kidolgozásra került. A
következő (10.2) változatot A. Tucker [?] dolgozta ki 1960-ban.
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n∑
t=1

xit = 1 (i = 1, . . . , n)

(10.2)
n∑

t=1

xtj = 1 (j = 1, . . . , n)

ui − uj + (n − 1)xij ≤ n − 2 (2 ≤ i �= j ≤ n)

xii = 0, xij ∈ {0, 1}, (i = 1, . . . , n; j = 1, . . . , n)

ui ≥ 0 & egész (i = 2, . . . , n)
————————————————————

n∑
i=1

n∑
j=1

cijxij = z → min

Az ekvivalencia igazolásához egyrészt azt kell megmutatnunk, hogy disz-
junkt részkörutak egyeśıtése nem eléǵıti ki a (10.2) feladat feltételrendszerét.
Ezt indirekt bizonýıtjuk. Tegyük fel, hogy a feladat valamely (X̄, ū) lehet-
séges megoldására

x̄i1i2 = x̄i2i3 = . . . x̄iki1 = 1

teljesül valamely 1 < k < n egészre. Az általánosság megszoŕıtása nélkül
feltehetjük, hogy 1 /∈ {i1, . . . , ik}. Mivel (X̄, ū) lehetséges megoldás, ezért

ūi1 − ūi2 + (n − 1)x̄i1i2 ≤ n − 2

ūi2 − ūi3 + (n − 1)x̄i2i3 ≤ n − 2

...

ūik − ūi1 + (n − 1)x̄iki1 ≤ n − 2

teljesül. Összeadva rendre az egyenlőtlenségek bal- és jobboldalait, az alábbi
egyenlőtlenségnek kell fennállnia

k(n − 1) ≤ k(n − 2) ,
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ami 1 < k < n esetén ellentmondás.

Másrészt igazolnunk kell, hogy bármely körúthoz létezik a (10.2) feladat-
nak egy olyan (X̄, ū) lehetséges megoldása, hogy az X̄ által meghatározott
élek pontosan a tekintett körutat szolgáltatják. Ehhez tekintsünk egy tet-
szőleges, az (1, i2), (i2, i3), . . . , (in, 1) éleket tartalmazó körutat. Definiáljuk
X̄-t és ū-t a következők szerint:

x̄1i2 = x̄i2i3 = . . . x̄in1 = 1 ,

x̄ij = 0 a többi indexpárra,

ūit = t (t = 2, . . . , n) .

Megmutatjuk, hogy (X̄, ū) kieléǵıti (10.2) feltételrendszerét. A feltételek
teljesülése a harmadik feltételcsoporttól eltekintve nyilvánvaló. Legyen ezek
után 2 ≤ i �= j ≤ n tetszőleges indexpár. Az ū vektor defińıciójából
következik, hogy ūi − ūj ≤ n − 2. Másrészt x̄ij = 1 akkor és csak akkor
teljesül, ha i = ir és j = ir+1 valamely 2 ≤ r ≤ n indexre. De ebben az
esetben

ūi − ūj + (n − 1)x̄ij = r − (r + 1) + (n − 1) ≤ n − 2 ,

azaz a harmadik feltételcsoport feltételei rendre teljesülnek, ı́gy (X̄, ū) lehet-
séges megoldása (10.2)-nek.

A vizsgált modellel kapcsolatban fontos megjegyezni, hogy C-re vonat-
kozóan semmiféle kikötést nem tartalmaz. Ez a legáltalánosabb modellje az
utazó ügynök problémának, és a jelen fejezetben ennek vizsgálatára szoŕıtko-
zunk. A következő fejezetben speciális változatokkal is megismerkedünk.
Például vizsgáljuk azt a modellt, amelyben cij = cji (1 ≤ i ≤ n; 1 ≤ j ≤ n)
tejesül, azaz a költségmátrix szimmetrikus. A szimmetria bizonyos alkal-
mazásokban teljesül. A fentiekben megadott alkalmazásokban, az ügynök
mozgásánál, a szegecselő gép karjának mozgásánál feltételezhető a szimmet-
ria, mı́g a sorrendi ütemezésnél már nem feltétlenül érvényes. (Az utóbbi
alkalmazásnál ez azt jelentené, hogy az i-edik termékről a j-edik termék
gyártására történő átállás ugyanannyi költséggel jár, mint a j-edik termékről
az i-edik termék gyártására történő átállás, ami általában nem igaz.)

Sajnos az utazó ügynök probléma különböző formalizálásai nem eredmé-
nyeztek előrelépést a probléma megoldásában. 1976-ban bizonýıtást nyert
a [?] dolgozatban, hogy az általános utazó ügynök probléma az NP-teljes
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feladatok osztályához tartozik, ı́gy P �= NP esetén nem létezik hatékony (az
n polinomjával korlátozható időigényű) eljárás a feladat megoldására. Ezért
különböző branch-and-bound eljárások kerültek kidolgozásra az optimális
körút meghatározására, és számos heurisztikus algoritmust késźıtettek köze-
ĺıtő optimumértéket biztośıtó lehetséges megoldások meghatározására. Az
ilyen megoldásokat szokásos szuboptimális megoldásnak is nevezni.

A továbbiakban mi is feléṕıtünk egy Branch-and-Bound eljárást, majd
ezt követően néhány heurisztikus eljárást ismertetünk a következő fejezetben.
Mindezekhez szükségesek bizonyos előkészületek.

Vizsgáljuk ezek után a (10.1) feladatot. Az általánosság megszoŕıtása
nélkül feltehetjük, hogy az ügynök az 1-gyel jelzett városból indul. Ekkor
n − 1 számú városba mehet, majd n − 2-be, és ı́gy tovább. Ebből az
következik, hogy a lehetséges megoldások száma (n−1)!. Viszont ı́gy rögtön
adódik, hogy a (10.1) feladatnak mindig létezik optimális megoldása. Ezzel
kapcsolatban célszerű megjegyezni, hogy amennyiben az i-edik városból nem
vezetett út a j-edik városba, akkor ezt a modellben egy W hosszúságú fikt́ıv
úttal helyetteśıtettük. Így, ha optimumértékként W adódik, akkor ez azt
jelenti, hogy a városok közötti úthálózat olyan, amely nem teszi lehetővé a
körbejárást, azaz a gyakorlati problémának nincs lehetséges megoldása.

Vegyük észre, hogy a (10.1) feladat feltételrendszere csak n-től függ.
Így a Cn×n költségmátrix egyértelműen meghatározza a feladatot. Ennek
alapján a (10.1) feladatra a TSP (C) jelöléssel fogunk hivatkozni. Itt az an-
gol Traveling Salesman Problem név rövid́ıtését használjuk, mely a témakör
irodalmában igen széles körben elterjedt.

A továbbiakban az egyszerűbb tárgyalás érdekében az X̄ mátrixot körút-
nak nevezzük, ha minden x̄ij = 1-re véve az (i, j) élet, az ı́gy képezett élek
az n-szögpontú teljes gráfban iránýıtott kört alkotnak.

Most ismételten használjuk a 3.2. fejezetben bevezetett mátrixok ekvi-
valenciáját.

A tekintett reláció és a TSP kapcsolatát adja meg a következő álĺıtás.

10.1. segédtétel. Ha Cn×n ∼ Dn×n, akkor a TSP (C) és TSP (D)
feladatok optimális megoldásai megegyeznek.

Bizonýıtás. Mivel mindkét feladatnak létezik optimális megoldása, ezért
az álĺıtás korrekt. Másrészt a tekintett két feladat feltételrendszere azonos,
ezért a lehetséges megoldások halmaza közös, amelyet jelöljön L. Továbbá



17

jelölje a TSP (C) és TSP (D) feladatok célfüggvényét rendre zC és zD. Meg-
mutatjuk, hogy van olyan γ konstans, amelyre zC(X̄) = zD(X̄) + γ teljesül
tetszőleges X̄ lehetséges megoldásra. Valóban, mivel C ∼ D, ezért vannak
olyan α1, . . . , αn; β1, . . . , βn konstansok, hogy cij = dij + αi + βj teljesül
bármely 1 ≤ i ≤ n, 1 ≤ j ≤ n indexpárra. De akkor

zC(X̄) =
n∑

i=1

n∑
j=1

cij x̄ij =
n∑

i=1

n∑
j=1

(dij + αi + βj)x̄ij =

n∑
i=1

n∑
j=1

dij x̄ij +
n∑

i=1

αi

n∑
j=1

x̄ij +
n∑

j=1

βj

n∑
i=1

x̄ij .

Mivel X̄ lehetséges megoldás, ezért
∑n

j=1 x̄ij = 1 és
∑n

i=1 x̄ij = 1. De akkor

zC(X̄) = zD(X̄) +
n∑

i=1

αi +
n∑

j=1

βj .

Most legyen γ =
∑n

i=1 αi +
∑n

j=1 βj . Akkor a zC(X̄) = zD(X̄) + γ
egyenlethez jutunk, amely teljesül bármely X̄ lehetséges megoldásra. Ez
pontosan azt jelenti, hogy a lehetséges megoldások halmazán a két célfügg-
vény csak egy addit́ıv konstansban tér el egymástól, amiből nyilvánvalóan
következik az álĺıtás.

10.1. következmény. Az optimális megoldás meghatározását illetően
elegendő olyan TSP (C) feladatok vizsgálatára szoŕıtkoznunk, amelyekre C ≥
0 teljesül.

A fenti következmény alapján a továbbiakban minden hivatkozás nélkül
feltételezzük, hogy a vizsgált feladatok célfüggvényegyütthatói rendre nem-
negat́ıvak.

A (10.1) feladattal kapcsolatosan azt is észrevehetjük, hogy amennyiben
a harmadik feltételcsoporttól eltekintünk, úgy a 3.2. fejezetben megismert
hozzárendelési feladathoz jutunk. Ebből viszont következik, hogy (10.1)
tetszőleges X̄ lehetséges megoldása egyben lehetséges megoldása a C költség-
mátrixú A(C) hozzárendelési feladatnak is. Jelölje (10.1) lehetséges megol-
dásainak halmazát L, A(C) lehetséges megoldásainak halmazát S. Akkor
L ⊆ S, és ı́gy

min{z(X) : X ∈ S} ≤ min{z(X) : X ∈ L} .

A kapott egyenlőtlenségből nyilvánvalóan adódnak a következők:



18

(i) ha X̄ optimális megoldása A(C)-nek és X̄ körút, akkor X̄ egyben op-
timális megoldása TSP (C)-nek is,

(ii) ha X̄ optimális megoldása A(C)-nek, akkor z(X̄) alsó korlátja a TSP (C)
feladat optimumértékének.

A továbbiakban olyan speciális hozzárendelési feladatok használunk, me-
lyekre kikötjük, hogy bizonyos változóknak 0 értéket, a változók egy másik
csoportjának 1 értéket kell felvennie. Ismét I és J jelöli azon változók in-
dexeinek a halmazát, amelyekről kikötjük, hogy értékük 1 illetve 0. Ezen
speciális hozzárendelési feladatok jelölésére az (A(C), I, J) jelölést fogjuk
használni.

A TSP (C) és A(C) feladatok kapcsolatának demonstrálására tekintsük
a következő feladatokat.

10.1. példa

Vizsgáljuk az alábbi költségmátrixú 6 városos TSP (C) feladatot, ahol
az i → i t́ıpusú utak kizárására a cii együtthatókat rendre W -nek választot-
tuk. (W -ként például használhatjuk az 1 + n · max{cij : 1 ≤ i ≤ n; 1 ≤ j ≤
n, i �= j} értéket is.)

1 2 3 4 5 6

1 W 6 11 6 16 19
2 5 W 16 13 21 9
3 8 12 W 22 18 11
4 20 18 27 W 22 15
5 10 22 11 25 W 18
6 16 10 17 30 10 W

Oldjuk meg a megfelelő A(C) hozzárendelési feladatot a 3.2. fejezetben
megismert magyar módszerrel.
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A magyar módszer által szolgáltatott utolsó mátrix a következő:

W 0 8 0∗ 10 16
0∗ W 10 4 12 3
0 0∗ W 10 6 2
6 0 12 W 4 0∗

0 8 0∗ 11 W 7
10 0 10 20 0∗ W

Így az A(C) hozzárendelési feladat optimális megoldása az alábbi módon
definiált X̄ mátrix:

x̄14 = 1, x̄21 = 1, x̄32 = 1, x̄46 = 1, x̄53 = 1, x̄65 = 1 és x̄ij = 0 a többi
indexpárra.

A megfelelő élek az alábbi körutat eredményezik:

5

3

1

4

6

2

10.1. ábra. A 10.1. példa optimális megoldása.

Következésképp, X̄ a TSP (C) feladatnak is optimális megoldása. Az opti-
mum értéke:
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z(X̄) = c14 + c21 + c32 + c46 + c53 + c65 = 59 .

Sajnos a megfelelő hozzárendelési feladat optimális megoldása nem min-
den esetben eredményez körutat. Ez a helyzet az alábbi E. Balastól származó,
a [?] munkában demonstrációs célokra használt feladat esetén is.

10.2. példa

Tekintsük a következő költségmátrixú 8 városos TSP feladatot.



W 2 11 10 8 7 6 5
6 W 1 8 8 4 6 7
5 12 W 11 8 12 3 11
11 9 10 W 1 9 8 10
11 11 9 4 W 2 10 9
12 8 5 2 11 W 11 9
10 11 12 10 9 12 W 3
7 10 10 10 6 3 1 W




Rendre kivonva a 2, 1, 3, 1, 2, 2, 3, 1 sorminimumokat, majd az előálló
C̄ mátrix első oszlopára a 2 oszlopminimumot, a kapott C(0) mátrixban
oszlopfolytonosan kijelölve a független 0-rendszert, a következő mátrixhoz
jutunk:




W 0∗ 9 8 6 5 4 3
3 W 0∗ 7 7 3 5 6
0∗ 9 W 8 5 9 0 8
8 8 9 W 0∗ 8 7 9
7 9 7 2 W 0∗ 8 7
8 6 3 0∗ 9 W 9 7
5 8 9 7 6 9 W 0∗

4 9 9 9 5 2 0∗ W




A kapott független 0-rendszer n-elemű, és ı́gy a hozzárendelési faladatra
a következő optimális megoldást kapjuk: x̄12 = x̄23 = x̄31 = x̄45 = x̄56 =
x̄64 = x̄78 = x̄87 = 1 és x̄ij = 0 a többi indexpárra.

z(X̄) = c12 + c23 + c31 + c45 + c56 + c64 + c78 + c87 = 17

A megfelelő élek a 10.2. ábrán megadott részkörutakat eredményezik.
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2 5 7

8

1 3 64

10.2. ábra. A hozzárendelési feladat megoldásával adódó részkörutak.

Annak ellenére, hogy a hozzárendelési feladat optimális megoldása nem
eredményezett körutat, bizonyos információkat nyerhetünk A(C) optimumá-
ból. Nevezetesen, (ii) alapján z(X̄) = 17 alsó korlátja az optimumértéknek.

Ezen korlát élességét illetően igen érdekes E. Balas és P. Toth [?] számı́tó-
gépes ḱısérlete. Az emĺıtett kutatók 400 problémát generáltak a vizsgálathoz.
Minden feladatnál egyenletes eloszlás mellett véletlenszerűen választottak
feladatméretet az 50 ≤ n ≤ 250 tartományból, valamint célfüggvényegyütt-
hatókat az 1 és 100 vagy az 1 és 1000 közé eső egészekből. Az ilyen módon
előálĺıtott feladatokra rendre meghatározták az optimális körút költségét és
a megfelelő hozzárendelési feladat optimumát. A kapott értékekre képezve
az átlagokat, azt kapták, hogy a hozzárendelési feladatok optimumainak
az átlaga 99.2%-a az utazó ügynök problémák optimumai átlagának. A
vizsgálati adatok egy olyan tendenciát is mutattak, hogy n növelésével egyre
élesebbé válik a korlát.

A következőkben egy B&B eljárást éṕıtünk fel az utazó ügynök probléma
megoldására, amelyben a korlátozó függvény definiálására a fentiekben vázolt,
az A(C) és TSP (C) feladatok közti kapcsolatot fogjuk kihasználni. Az
eljárás feléṕıtését a 7. fejezetnek megfelelően végezzük. Feltételezzük, hogy
a C mátrixban cii = W , (i = 1, . . . , n) teljesül.

I. Az Ω halmaz megadása

Legyen Ω a {0, 1} feletti n × n mátrixok halmaza. Nyilvánvaló, hogy
L ⊆ Ω, továbbá |Ω| = 2n2

, ı́gy Ω rendelkezik a ḱıvánt tulajdonságokkal.

II. A ϕ szétválasztási és a g korlátozó függvények megadása

Elsőként a függvényeket az Ω halmazon definiáljuk. Legyen g(Ω) az
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A(C) hozzárendelési feladat optimumértéke. A ϕ(Ω) definiálásához pedig
különböztessük meg az alábbi két esetet.

(a) Ha A(C) optimális megoldása körút, akkor ez optimális megoldása
a TSP (C) feladatnak is. Így z̄ felveszi az optimumértéket és Ω nem lesz
élő levél, azaz Ω /∈ F0. De akkor nem kell a ϕ függvényt az Ω halmazon
definiálni.

(b) Ha az A(C) feladat X̄ optimális megoldása nem körút, akkor X̄ disz-
junkt részkörökből áll. Legyen ezek közül az (i1, i2), . . . , (ik−1, ik), (ik, i1)
éleket tartalmazó részkörút minimális elemszámú, és tekintsük a következő
halmazokat:

Ω(0) = {X : X ∈ Ω & xi1i2 = . . . = xiki1 = 1},
Ω(1) = {X : X ∈ Ω & xi1i2 = 0},
Ω(2) = {X : X ∈ Ω & xi2i3 = 0 & xi1i2 = 1},

...
Ω(k) = {X : X ∈ Ω & xiki1 = 0 & xi1i2 = . . . = xik−1ik = 1}.

Egyszerűen beláthatók a következők:

(1) az Ω(0),Ω(1), . . . ,Ω(k) halmazok a felbontandó halmaznak (jelenleg
Ω) egy valódi osztályozását alkotják,

(2) bármely 1 ≤ i ≤ k indexre az Ω(i) defińıciójában 1 értékkel szereplő
változóknak megfelelő élekből álló gráf nem tartalmaz részkörutat,

(3) Ω(0) ∩ L = ∅.
Definiáljuk ϕ(Ω)-t a következők szerint. Legyen

ϕ(Ω) = {Ω(0),Ω(1), . . . ,Ω(k)} .

A ϕ függvény defińıcióját úgy fogjuk kiterjeszteni, hogy az (1),(2),(3)
tulajdonságok érvényben maradjanak. A továbbiakban az osztályozások
osztályainak léırására azt a technikát fogjuk használni, hogy az I, J halma-
zokban megadjuk azon változók indexeit, amelyek értéke rögźıtett. Például
Ω(2) = ΩI,J , ahol I = {(i1, i2)}, J = {(i2, i3)}. A rögźıtett értékű változókat
kötött változóknak, a többi változót pedig szabad változóknak fogjuk nevezni
ΩI,J -re vonatkozóan. Végül speciálisan azokat az osztályokat, amelyekről
tudjuk, hogy nem tartalmaznak körutat (Ω felbontásánál Ω(0)), lássuk el
∗-gal.

Ezek után kiterjesztjük a ϕ és g függvények értelmezését.

A g korlátozó függvény definiálásához tekintsük a B&B-fában valamely
élő levél leszármazottját. Ha a tekintett osztály ∗-gal lett ellátva, akkor g
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rendelje ehhez a részhalmazhoz a W korlátot. Ellenkező esetben jelölje a tek-
intett osztályt ΩI,J . Ekkor az (A(C), I, J) hozzárendelési feladat bármely
lehetséges megoldása eleme ΩI,J -nek, továbbá bármely olyan körút, amely-
ben az I-ben szereplő indexekre a változók értéke 1, valamint a J-ben sz-
ereplő indexekre a változók értéke 0, lehetséges megoldása (A(C), I, J)-nek.
Viszont ı́gy az (A(C), I, J) feladat z̃ optimumértékére

z̃ ≤ min{z(X) : X ∈ L ∩ ΩI,J}
teljesül, amennyiben L ∩ ΩI,J �= ∅. Ennek alapján definiáljuk g(ΩI,J)-t a
következők szerint:

g(ΩI,J) =




(A(C), I, J) optimuma, ha |ΩI,J | > 1,
z(X̄), ha ΩI,J = {X̄} és X̄ körút,
W különben.

A ϕ függvény defińıciójának kiterjesztéséhez tekintsük a B&B-fa egy élő
ΩI,J levelét. Mivel ΩI,J élő levél, ezért |I|+ |J | < n2 − n, (A(C), I, J) opti-
muma kisebb, mint W , továbbá (A(C), I, J) optimális megoldása nem körút.
(Ellenkező esetben a levél lezárásra kerülne.) De akkor (A(C), I, J) optimá-
lis megoldása diszjunkt részkörutak uniója. Válasszunk ezen részkörutak
közül egy minimális elemszámút. Jelölje K a választott részkörúthoz tar-
tozó változók indexeinek a halmazát. Akkor K nemüres halmaz, K ∩J = ∅,
és a (2) tulajdonság miatt K �⊆ I. Legyen K \ I = {(i1, j1), . . . , (ir, jr)}.
Mivel (K\I)∩J = ∅ és (K\I)∩I = ∅, ezért bármely xisjs (1 ≤ s ≤ r) változó
szabad változó lesz ΩI,J -re vonatkozóan. Képezzük ezek után a következő
halmazokat:

ΩI0,J0 = {X : X ∈ ΩI,J & xi1j1 = . . . = xirjr = 1},
ΩI1,J1 = {X : X ∈ ΩI,J & xi1j1 = 0},
ΩI2,J2 = {X : X ∈ ΩI,J & xi2j2 = 0 & xi1j1 = 1},

...

ΩIr,Jr = {X : X ∈ ΩI,J & xirjr = 0 & xi1j1 = . . . = xirjr = 1}.
Mivel xitjt (1 ≤ t ≤ r) szabad változók ΩI,J -re vonatkozóan, ezért a

fenti halmazok az ΩI,J halmaznak egy valódi osztályozását alkotják. Nyil-
vánvaló, hogy ΩI0,J0 ∩ L = ∅, ugyanis ΩI0,J0 minden eleme tartalmazza a
kiválasztott minimális elemszámú részkörutat, mint részgráfot. Most legyen
0 ≤ t ≤ r tetszőleges egész. Jelölje Gt = (N,Et) azt a gráfot, amelyre
(i, j) ∈ Et akkor és csak akkor teljesül, ha (i, j) ∈ It, ahol N = {1, . . . , n}.
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Ekkor G0 tartalmazza a kiválasztott minimális elemszámú részkörutat és
más részkörutat nem tartalmaz. Másrészt bármely 1 ≤ t ≤ r indexre Gt

előálĺıtható G0-ból úgy, hogy G0 egyetlen részkörútjából elhagyunk egy vagy
több élet. De akkor Gt nem tartalmaz részkörutat. Ez pontosan azt je-
lenti, hogy az ΩIt,Jt-ben 1 értékkel rögźıtett változóknak megfelelő élek nem
alkotnak részkörutat bármely 1 ≤ t ≤ r indexre. Következésképp, a definiált
halmazok rendelkeznek az (1),(2),(3) tulajdonságokkal. Legyen ezek után

ϕ(ΩI,J) = {ΩI0,J0,ΩI1,J1, . . . ,ΩIr ,Jr}.

A ϕ és g függvények defińıciójából következik, hogy rendelkeznek a ḱıvánt
tulajdonságokkal.

III. Faéṕıtési stratégia

Azt a korábban már megismert stratégiát fogjuk alkalmazni, miszerint
egy minimális korláttal rendelkező levelet választunk a faéṕıtés során.

A B&B eljárás demonstrálására tekintsük az előzőekben vizsgált felada-
tot. Késźıtsünk egy lehetséges megoldást az x

(0)
12 = 1, x(0)

23 = 1, . . . , x(0)
n1 = 1

értékadásokkal. A megoldáshoz tartozó célfüggvényérték 38. Így tudunk
kezdeti értéket adni X∗ -nak és z̄-nak.

A g(Ω) korlát meghatározásához a megfelelő hozzárendelési feladatot kell
megoldanunk. Ezt már megtettük. Azt kaptuk, hogy az optimális megol-
dás három részkörút uniója, melyek az (1, 2), (2, 3), (3, 1), (4, 5), (5, 6), (6, 4),
(7, 8), (8, 7) éleket tartalmazzák, és az optimum értéke 17. Így F0 = {Ω} és
g(Ω) = 17. Alkalmazzuk Ω-ra a ϕ szétválasztási függvényt:

ΩI0,J0 = {X : X ∈ Ω & x78 = x87 = 1},
ΩI1,J1 = {X : X ∈ Ω & x78 = 0},
ΩI2,J2 = {X : X ∈ Ω & x87 = 0 & x78 = 1}.

Mivel a (7, 8), (8, 7) élekből álló részkörutat ΩI0,J0 minden eleme tartal-
mazza, ezért ΩI0,J0 ∩ L = ∅. Lássuk el az ΩI0,J0 halmazt ∗-gal. Ábrázolva
az eddig létrejött B&B-fát, a következő fát kapjuk.
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17

I0J0

*

I1J1 I2J2

10.3. ábra. Az eddig meghatározott B&B fa.

Ezek után a korlátok meghatározásával folytatódik az algoritmus. Defińıció
szerint g(ΩI0,J0) = W . A g(ΩI1,J1) korlát meghatározásához az (A(C), I1, J1)
hozzárendelési feladatot kell megoldanunk. Mivel C ∼ C(0), ezért szoŕıtkoz-
hatunk az (A(C(0)), I1, J1) feladat megoldására. Ez azért praktikus, mert
C(0) -ban ki van jelölve egy n-elemű független 0-rendszer, amelyből n − 1
darab független 0-t fel tudunk használni (A(C(0)), I1, J1) megoldása során,
mint induló független 0-rendszert. Ennek következtében a magyar módszer
egyetlen láncképzéssel véget ér. Mivel I1 = ∅ és J1 = {(7, 8)}, ezért C(0)-ban
a c

(0)
78 együtthatót kell csak W -re változtatnunk. Az előálló új költségmátrix

a megőrzött független 0 elemekkel, valamint a magyar módszer befejeztével
kapott mátrix a következő:




W 0∗ 9 8 6 5 4 3
3 W 0∗ 7 7 3 5 6
0∗ 9 W 8 5 9 0 8
8 8 9 W 0∗ 8 7 9
7 9 7 2 W 0∗ 8 7
8 6 3 0∗ 9 W 9 7
5 8 9 7 6 9 W W
4 9 9 9 5 2 0∗ W







W 0 12 11 9 8 7 0∗

3 W 0∗ 7 7 3 5 0
0∗ 6 W 8 5 9 0 2
8 5 9 W 0∗ 8 7 3
7 6 7 2 W 0∗ 8 1
8 3 3 0∗ 9 W 9 1
0 0∗ 4 2 1 4 W W
4 6 9 9 5 2 0∗ W




A tekintett (A(C(0)), I1, J1) hozzárendelési feladat optimális megoldása:

x
(1)
18 = x

(1)
23 = x

(1)
31 = x

(1)
45 = x

(1)
56 = x

(1)
64 = x

(1)
72 = x

(1)
87 = 1 és x

(1)
ij = 0 a

többi indexekre.
Az optimum értéke z(X(1)) = 28, ı́gy g(ΩI1,J1) = 28. Az optimális

megoldás nem körút, hanem az (1, 8), (8, 7), (7, 2), (2, 3), (3, 1) és a (4, 5),
(5, 6), (6, 4) éleket tartalmazó részkörutak uniója.
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A g(ΩI2,J2) korlát meghatározásához az (A(C(0)), I2, J2) feladatot fogjuk
megoldani. Mivel I2 = {(7, 8)} és J2 = {(8, 7)}, ezért c

(0)
87 és c

(0)
7t (t =

1, . . . , 7), c
(0)
s8 (s = 1, . . . , 8; s �= 7) együtthatókat W -re változtatjuk. Az

előálló feladat költségmátrixa a megőrzött független 0-rendszerrel, valamint
a magyar módszer végén kapott mátrix a következő:




W 0∗ 9 8 6 5 4 W
3 W 0∗ 7 7 3 5 W
0∗ 9 W 8 5 9 0 W
8 8 9 W 0∗ 8 7 W
7 9 7 2 W 0∗ 8 W
8 6 3 0∗ 9 W 9 W
W W W W W W W 0∗

4 9 9 9 5 2 W W







W 0∗ 9 8 6 5 2 W
1 W 0∗ 7 7 3 3 W
0 11 W 10 7 11 0∗ W
6 8 9 W 0∗ 8 5 W
5 9 7 2 W 0∗ 6 W
6 6 3 0∗ 9 W 7 W
W W W W W W W 0∗

0∗ 7 7 7 3 0 W W




A tekintett (A(C(0)), I2, J2) feladat optimális megoldása:

x
(2)
12 = x

(2)
23 = x

(2)
37 = x

(2)
45 = x

(2)
56 = x

(2)
64 = x

(2)
78 = x

(2)
81 = 1 és x

(2)
ij = 0 a

többi változóra.
Az optimum értéke z(X(2)) = 21, ı́gy g(ΩI2,J2) = 21. Az optimális

megoldás nem körút, hanem az (1, 2), (2, 3), (3, 7), (7, 8), (8, 1), valamint a
(4, 5), (5, 6), (6, 4) élekből álló részkörutak uniója.

Az iterációs lépés végén előálló B&B fa a következő:

I1J1
28

I2J2
21

17

I0J0

*

10.4. ábra. Az iterációs lépés végén kapott B&B fa.

Az élő leveleket tartalmazó halmaz: F1 = {ΩI1,J1,ΩI2,J2}. A két osztály
közül ΩI2,J2-höz tartozik minimális korlát. (A(C(0)), I2, J2) optimális megol-
dása nem körút, hanem két részkörútból áll. Ezek közül a (4, 5), (5, 6), (6, 4)



27

éleket tartalmazó részkörút a minimális elemszámú. Alkalmazva ΩI2,J2-re a
ϕ szétválasztási függvényt, az alábbi osztályokhoz jutunk:

ΩI3,J3 = {X : X ∈ ΩI2,J2 & x45 = x56 = x64 = 1},
ΩI4,J4 = {X : X ∈ ΩI2,J2 & x45 = 0},
ΩI5,J5 = {X : X ∈ ΩI2,J2 & x56 = 0 & x45 = 1},
ΩI6,J6 = {X : X ∈ ΩI2,J2 & x64 = 0 & x45 = x56 = 1}.

Mivel ΩI3,J3∩L = ∅, ezért g(ΩI3,J3) = W . A g(ΩI4,J4) korlát meghatározásához
tekintsük az (A(C(0)), I4, J4) hozzárendelési feladatot. Most I4 = {(7, 8)}
és J4 = {(8, 7), (4, 5)}. Képezve C(0)-ból a tekintett feladatnak megfelelő
költségmátrixot, majd végrehajtva a magyar módszert, az induló és befe-
jező mátrixok a következők lesznek.




W 0∗ 9 8 6 5 4 W
3 W 0∗ 7 7 3 5 W
0∗ 9 W 8 5 9 0 W
8 8 9 W W 8 7 W
7 9 7 2 W 0∗ 8 W
8 6 3 0∗ 9 W 9 W
W W W W W W W 0∗

4 9 9 9 5 2 W W







W 0∗ 9 8 3 5 4 W
3 W 0∗ 7 4 3 5 W
0∗ 9 W 8 2 9 0 W
1 1 2 W W 1 0∗ W
7 9 7 2 W 0∗ 8 W
8 6 3 0∗ 6 W 9 W
W W W W W W W 0∗

2 7 7 7 0∗ 0 W W




Az optimális megoldás: x
(4)
12 = x

(4)
23 = x

(4)
31 = x

(4)
47 = x

(4)
56 = x

(4)
64 = x

(4)
78 =

x
(4)
85 = 1 és x

(4)
ij = 0 a többi indexekre. Az optimális megoldás nem körút.

Az optimum értéke z(X(4)) = 29.

g(ΩI5,J5) meghatározásához tekintsük az (A(C(0)), I5, J5) hozzárendelési
feladatot. Ekkor I5 = {(7, 8), (4, 5)}, J5 = {(8, 7), (5, 6)}, és a fentieknek
megfelelő mátrixok a következők:




W 0∗ 9 8 W 5 4 W
3 W 0∗ 7 W 3 5 W
0∗ 9 W 8 W 9 0 W
W W W W 0∗ W W W
7 9 7 2 W W 8 W
8 6 3 0∗ W W 9 W
W W W W W W W 0∗

4 9 9 9 W 2 W W







W 0∗ 8 9 W 3 0 W
0 W 0∗ 9 W 2 2 W
0 13 W 13 W 11 0∗ W
W W W W 0∗ W W W
0∗ 6 3 0 W W 1 W
3 5 1 0∗ W W 4 W
W W W W W W W 0∗

0 9 8 10 W 0∗ W W




Az optimális megoldás: x
(5)
12 = x

(5)
23 = x

(5)
37 = x

(5)
45 = x

(5)
51 = x

(5)
64 = x

(5)
78 =

x
(5)
86 = 1 és x

(5)
ij = 0 a többi indexekre. Ez a megoldás körút. Az optimum

értéke z(X(5)) = 26.
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Végül határozzuk meg a g(ΩI6,J6) korlátot. Most I6 = {(7, 8), (4, 5), (5, 6)}
és
J6 = {(8, 7), (6, 4)}. Akkor az előzőeknek megfelelően az induló és befejező
mátrixok a következők:




W 0∗ 9 8 W W 4 W
3 W 0∗ 7 W W 5 W
0∗ 9 W 8 W W 0 W
W W W W 0∗ W W W
W W W W W 0∗ W W
8 6 3 W W W 9 W
W W W W W W W 0∗

4 9 9 9 W W W W







W 0∗ 9 1 W W 2 W
1 W 0 0∗ W W 3 W
0 11 W 3 W W 0∗ W
W W W W 0∗ W W W
W W W W W 0∗ W W
3 3 0∗ W W W 4 W
W W W W W W W 0∗

0∗ 7 7 0 W W W W




Így a tekintett feladat optimális megoldása:

x
(6)
12 = x

(6)
24 = x

(6)
37 = x

(6)
45 = x

(6)
56 = x

(6)
63 = x

(6)
78 = x

(6)
81 = 1 és x

(6)
ij = 0 a

többi indexekre. A megoldás körút, az optimum értéke z(X(6)) = 31.

A korlátok meghatározása során két körutat is kaptunk, az X(5) és X(6)

körutakat rendre 26 és 31 célfüggvényértékekkel. Így X∗ és z̄ értékeit aktu-
alizálva, X∗ új értéke X(5) és z̄ új értéke 26. Ekkor a megfelelő B&B fa a
következő:

I0J0

*

I1J1
28

I2J2
21

I5J5I4J4I3J3 I6J6

*

312629

17

10.5. ábra. Az előálĺıtott B&B fa.
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Mivel z̄ = 26 nem nagyobb egyik alsó korlátnál sem, ezért a fa valamennyi
levele lezárásra kerül, azaz F2 = ∅. Így a tekintett utazó ügynök probléma
optimális megoldása X(5), az optimum értéke pedig 26.

Az utazó ügynök probléma megoldására igen sok B&B eljárás kidolgo-
zásra került. Ezek alapvetően a korlátozó függvényben, a szétválasztási
függvényben, valamint a felbontandó levél kiválasztásának stratégiájában
különböznek egymástól.

A hozzárendelési feladat felhasználását a korlát meghatározására számos
szerző alkalmazta, többek között a [?], [?], [?], [?], [?], [?] dolgozatok tar-
talmaznak olyan eljárásokat, amelyekben a korlátozó függvény definiálása a
tárgyaltakhoz hasonlóan történik. A szétválasztási függvényt illetően azonos
technikát alkalmaztak a [?], [?], [?] munkákban közölt eljárásoknál. Ennek
a módszernek egy olyan módośıtása került bevezetésre a [?] dolgozatban,
amelynél nem egy minimális elemszámú részkörutat választunk, hanem a
részkörutak közül azt, amely minimális számú szabad változót fog eredmé-
nyezni. (Ezzel csökken az aktuális B&B-fában az adott szögponthoz tartozó
leszármazottak száma.)

Más elven működő B&B eljárások is kidolgozásra kerültek, melyeket itt
nem érintünk. A különböző technikák egy igen jó, összefoglaló tárgyalása
megtalálható a [?] könyvben.


