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Novel mathematical models are developed for taking into account the pollution of  
processes in Process Network Synthesis (PNS). Initially the combinatorial mathematical 
model of PNS is extended to handle the pollutions of processes. The resultant model is 
called PCPNS (Pollution Constrained PNS). An algorithm is elaborated for solving this 
optimization problem. Finally a second mathematical model is introduced for defining 
PNS problems quantitatively.  
 

1. Introduction 

In a manufacturing system physical and/or chemical states of material are changed 
through various physical and/or chemical transformations to yield desired products. 
Functional units performing these transformations are called operating units. A 
manufacturing system can be considered as a network of operating units which is called 
process network. The need for minimizing the cost of process networks is obvious. 
 
On the other hand nowadays the cost minimization is not the only goal which must be 
considered. From environment protection point of view it is also an important goal to 
design systems resulting in minimal possible pollution. In many cases several laws and 
regulations force the industry to take the pollution into account in the design of process 
networks. In the present work mathematical models are developed to take into account 
pollution of the processes. First a combinatorial model is introduced where a pollution 
value is assign to each transformation. These values supposed to be constant parameters 
of the operating units modeling the transformations. A more general quantitative model 
is also presented where pollution functions are assigned to the materials to define the 
pollution of the system. 
 
The paper is organized as follows. In the next section the combinatorial mathematical 
model of PNS problem is extended to a more general one capable of handling the 
problem described. In Section 3 the pollution constrained model is detailed and an 
algorithm is presented for solving the model. Furthermore, it is sketched how to modify 
the algorithm to handle different models. In Section 4 the quantitative model is 
considered as a generalization of the quantitative model of the PNS. The paper is closed 
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by Section 5 summarizing the main results and listing the most important open 
questions related to the models developed in this paper. 
 

2. Combinatorial mathematical model  

Let M be a finite nonempty set, the set of the materials. The candidate transformations 
are presented as operating units, each of which is given by two sets of materials, i.e., the 
set of input materials to and the set of output materials from the operating unit. The set 
of all operating units is denoted by O. The process graph or P-graph in short is defined 
by pair (M, O). The set of vertices of this directed graph is M∪O, and the set of arcs 
contains i) the edges leading to an operating unit from its input materials and ii) the 
edges leading from an operating unit to its output materials. Then some subgraphs of the 
P--graph describes feasible processes which are able to produce the required materials 
from the raw materials. Friedler at al. (1992) show that a subgraph (m,o) belongs to a 
feasible process if and only if it satisfies the following properties. 
(A1) P is a subset of m.  
(A2) a material from m is a raw material if and only if no edge goes into it in the P-
graph (m, o).  
(A3) for every operating unit of o there exists a path in the P-graph (m,o) which goes 
from o into a desired product.  
(A4) all of the materials in m are either input or output material of some operating unit 
from set o. 
The subgraphs which satisfy the above properties are called feasible solutions. The set 
of the feasible solutions is denoted by S(M). This combinatorial approach of the 
processes is detailed in article Friedler et al. (1992).  
 
In the combinatorial model each operating unit has a cost (a nonnegative value), which 
gives the cost of the transformation modeled by the operating unit. The goal is to find 
such feasible solution where the total cost of the used operating units (contained in set 
o) is minimal. This is a combinatorial optimization problem. Blázsik and Imreh (1996) 
proved that the problem belongs to the class of NP-complete problems. This is the 
complexity class of the hard optimization problems in other words it is not expected to 
find effective, polynomial time algorithms to solve the problem. Some exponential time 
algorithms were developed for the solution of the problem (see Imreh and Magyar, 
1998), and heuristic algorithms were also developed (Blázsik et al. 1999), moreover 
some special problem classes that can be solved in polynomial time were also 
investigated (Imreh 2001). 
 
If we extend the combinatorial model to handle the pollution belonging to the possible 
transformation of the processes also, we can still use the P-graph representation. 
However in our case the operating units (the possible transformations) have an 
additional parameter which describes the environment pollution belonging to the 
operating unit. In the combinatorial model this parameter is presented by a pollution 
value which is a nonnegative number.  
 



In this generalized model different questions arise. One question is if a bound - which is 
called pollution bound and denoted by PB - is given on the maximal total amount of the 
possible pollution of the overall process how to find the cheapest process which does 
not violate this bound on the possible pollution. We call this model the pollution 
constrained PNS model (PCPNS in short). In the mathematical model this means that 
among the feasible solution whose total pollution value is not more than PB - we call 
these feasible solution PC-feasible solutions - we have to find the P-graph where the 
total cost is minimal. A similar question is if we have a bound on the total cost how to 
find the process which has the smallest total pollution value, this model is called cost 
constrained PNS problem and denoted by CCPNS in short. Another model is where  a 
mixed objective function is to be minimized, which is usually monotone and convex 
function of the total cost and the total pollution value. This model is called the mixed 
objective PNS model (MOPNS in short). 
 

3. Algorithm for the PCPNS problem 

In this section we present an algorithm based on the branch-and-bound technique which 
solves the PCPNS optimization problem. In the algorithm we use the concept of the 
decision mapping which was introduced by Friedler et al (1995). For an arbitrary 
material m denote by 

�
(m) the set of operating units which produce the material. Then 

we can define a mapping �  on the set of materials which assigns to each material m a set 
� (m) which is a subset of 

�
(m). The decision mapping defines for the material which 

operating units produce it in the process network considered. On the other hand some 
decision mappings are contradictory. For example, if such operating units whose output 
set contains a material X are selected to produce in a solution a material Y, then they 
must be also selected to produce X as well. To avoid this contradiction the consistent 
decision mappings are defined. A decision mapping is called consistent if for an 
arbitrary pair of materials X, Y it is valid that � (X) �  

�
(Y) is a subset of � (Y). Then for 

each feasible solution of the combinatorial PNS problem we can give a consistent 
decision mapping which describes for each material the set of the selected operating 
units producing it. Using the decision mapping we can build an algorithm for the 
solution of the PCPNS problem.  
 
The algorithm is based on the branch and bound technique (see Beale 1979 for detailed 
description). The technique can be used to solve combinatorial optimization problems 
where we are to find the minimum of a function z a finite discrete set L of the feasible 
solutions. The technique based on the following two functions. One of the functions is 
the branching function � . In the basic procedure it assigns a real partition to an arbitrary 
at least two-elements set of the feasible solutions. In a more advanced version we 
consider a larger set which contains the set of feasible solutions, and the branching 
function is defined on this larger set. The other function is g which gives a lower bound 
on the possible values of the objective function in the set of feasible solutions 
considered. It is required that in the case where the set contains only one feasible 
solution then g gives the objective function value for the set. If we can define such 
functions then the branch and bound technique solves the problem as follows.  
 



Branch and Bound procedure: 
Initialization: Let the root of the tree L and calculate g(L) as the label of root. Let r=1. 
Iteration Part (r-th iteration): 
Step 1. Choose among the levels of the tree a point which has the minimal label. Denote 
this set of feasible solutions by L'. 
Step 2. If L' contains only one feasible solution, then the procedure is finished this 
element is the optimal solution. 
Step 3. Consider the sets received by � (L'), delete the sets which do not contain feasible 
solutions and determine the function g for each remaining set. Assign this value as a 
label to them and extend the tree with these sets, they become the children of L'. 
Increase r by 1, and go to the next iteration. 
 
Now let us examine, how can we use this framework for the solution of the PCPNS 
problem. We can use the decision mapping to define the branching function. The sets 
which are contained in the tree will be characterized by two parameters, some materials 
called fixed materials will be given with their decision mapping value and in the 
meantime some other materials called desired materials will be given. Such feasible 
solutions are contained in the set where these materials are produced and the fixed 
materials are produced by the operating units described by the decision mapping. At the 
beginning in the root L contains all of the feasible solutions this set is characterized by 
the required products. The branching function chooses one material and divides the set 
of feasible solutions by considering all of the decision mapping values for the material 
which are consistent with the earlier decisions. For each decision mapping value the 
new set of feasible solutions is characterized as follows. The set of the fixed materials is 
extended with the considered material and the value of the decision mapping. 
Furthermore in the new set the input materials of the operating units selected by the 
decision mapping which are not contained in the fixed or desired set are placed into the 
set of desired materials. 
 
Now let us consider the bounding function. The simplest bound which can be used is 
the total cost of the operating units selected by the decision mapping values of the fixed 
materials. We can use a better bound if we determine the path in the P-graph which has 
the smallest cost (the cost of a path is the total cost of its operating units) among the 
paths connecting a raw material with a desired or a fixed material. We can increase the 
bound received by the decision mapping with the cost of that path. Other more 
complicated bounding functions are given by Imreh and Magyar (1998). 
 
Finally let us consider the role of the pollution constraint. This constraint can be used in 
Step 3. to eliminate some sets which do not contain feasible solution of the PCPNS 
problem. In the case where the total pollution of the operating units selected by the 
decision mapping for the fixed materials is more then the pollution constraint, then the 
set cannot contain feasible solutions. For a set let us determine the path in the P-graph 
which has the smallest pollution value (the pollution value of a path is the total pollution 
value of the operating units in it) among the paths connecting a raw material with a 
desired or a fixed material. If the sum of the pollution value of the selected operating 



units and the pollution value of that path violate the pollution constraint, then we can 
also eliminate this set in Step 3. 
 
Concerning the other combinatorial models defined in the previous section, we can 
build similar procedures. Since in our model the role of the cost and the pollution value 
is symmetric the above presented procedure can be easily modified to solve the CCPNS 
model. The same structure can be used to solve the MOPNS problem. However, in this 
case we cannot use the pollution constraint to exclude sets in Step 3. Furthermore we 
have to define other bounding functions depending on the function used in the model. 
 

4. Extension to the quantitative model 

In this section we examine the quantitative PNS model, which is a more complex model 
than the combinatorial one, and leads to a nonlinear optimization problem. This model 
was introduced by Friedler at al. (1998).  
 
In this model it is supposed that the cost of an operating unit not a constant it depends 
on the materials used and produced by it. We describe a process network by the 
following variables. We assign a decision variable yi to each operating unit which takes 
value 1, if the operating unit is selected in the solution, value 0, if it is not. For each 
edge aj in the P-graph we define a variable xj, which gives the quantity of the materials 
belonging to the edge (the input material, if the edge goes into an operating unit, the 
output material if the edge goes from an operating unit). For an arbitrary set E of edges 
denote by � (E) the set of the corresponding x variables.  Furthermore for an arbitrary 
operating unit oj  let us denote by in(oj ) the set of the incoming edges and by out(oj ) the 
set of outgoing edges. For each operating unit we have some  rules about the quantities 
of the incoming and outgoing materials, in most cases this rule can be described as a 
bound on a function (usually nonlinear) of the quantities. This means that in the 
mathematical model, for each operating unit oj there is a function gj and the bound on 
the quantities can be written in the form gj (� (in(oj )), � (out(oj )),yj) �  0. The cost of an 
operating unit can also depend on the materials used and produce by it, this cost is given 
by a function f j, and the cost of the operating unit is f j (� (in(oj )), � (out(oj )),yj). 
 
Concerning the materials we can denote by in(mj ) the set of the incoming edges into 
material mj and by out(mj ) the set of outgoing edges from material mj. Then the bound 
on the materials we must produce everything which is used can be described by a bound 
on some usually linear function g'j  as g'j (� (in(mj )), � (out(mj ))) �  0. It is worth noting 
that in a more general model a cost is assigned to the materials which is also a function 
of � (in(mj )) and  � (out(mj )). If we consider the optimization problem where the 
objective is to minimize � f j and the constraints are given by the gj and g'j functions 
furthermore we require that the selected (yj=1) operating units satisfy the properties A1, 
A2, A3, A4, then we obtain a quantitative model of the PNS problem which is a 
nonlinear optimization problem. 
 
Now let us investigate how can we modify the model to consider pollution. For each 
operating unit we can define a pollution value which may depend on the quantities of 



the input and produced materials, this can be given by a function pj, and the pollution 
value of the operating unit is pj (� (in(oj )), � (out(oj )), yj). Moreover we can assign 
independently a pollution value to the materials which may depend on the produced and 
the used amount, thus we can describe it by a function p'j  as p'j (� (in(mj )), � (out(mj ))). 
In this case the total pollution value of the process network is � pj + � p'j. After the 
definition of the pollution value of a process network we can define the models PCPNS, 
CCPNS, MOPNS in the same way as in the combinatorial case. 
 

5. Summary and further questions  

A novel mathematical model has been presented which makes it possible to take into 
account the environment pollution of the processes during the synthesis of process 
networks. A precise mathematical description of this model has been introduces 
extending the combinatorial PNS model based on the P-graph representation. An 
algorithm has been elaborated for solving the optimization problem resulted from 
pollution constrained model of PNS.  An extension of the model has been given for a 
more general quantitative PNS model. 
 
There are many further questions to be solved. Concerning the combinatorial models it 
is an interesting question to develop more sophisticated branch and bound algorithm by 
using more refined bounding functions and test these procedures. Since the problem is 
NP-hard from the complexity theory point of view it is an interesting problem to 
develop and analyze heuristic algorithms for the solution of the problem.  
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