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1. Utvonal tervezés és nehézségei

1.1. Az tutvonal tervezési alapfeladat

Klasszikus példa az utvonal tervezési problémara, amikor adott egy utazoiig-
ynok és varosok egy diszkrét halmaza, amiket meg kell latogatnia pontosan
egyszer tetsz6leges sorrendben gy, hogy a megtett 0sszes it minimalis legyen
és végiil a kiindulasi varosba térjen vissza. Fzt a feladatot hivjaik utazo iigy-
nok problémanak mas néven TSP-nek (Traveling Salesman Problem). A fe-
ladat reprezentélhaté egy teljes, silyozott (iranyitott és szimmetrikus) graf-
fal (G). A graf cstucsai a varosok (V), az élei pedig a varosokat Osszekotd
utak varos kozotti Gt hosszat jeldlik. Feladat: az elgbbi grafban minimalis

Hamilton-kor keresése.

Hamilton-it: Egy P ut Hamilton-ut G grafban, ha a G minden csticsat pon-
tosan egyszer érinti.
Hamilton-kér: Olyan Hamilton-tut, amelynek a kezdd és végpontja mege-

gyezik.

Szamos gyakorlati feladat vezethets vissza TSP-re vagy annak valamely val-
tozatara, ilyenek példaul a szallitmanyozasi és jarattervezési feladatok, repiil616k
és azok személyzetének utiterve, vagy ha egy adott munkadarabon (pl.: chip)
tobb (millio) lyukat kell farni (égetni), akkor a lyukak kozti uitvonalat célsz-

erd optimalizalni. |4] [8]

1.2. Komplexitas

A Hamilton-kor megtalalasa egy grafban NP-nehéz feladat, igy a TSP és
valamennyi valtozata is szintén NP-nehéz, tehat nem létezik olyan poli-
nomialis idejii algoritmus, amely hasznalatdval meghatarozhaté lenne az op-
timalis megoldéas, ha P # NP. (A tovabbiakban implicit feltessziik, hogy
P # NP.) Egy masik megkozelités a komplexitas mérésének az, hogy
heurisztikus kozelité algoritmusokkal milyen "jo" megoldast lehet elérni. En-
nek egy mérGszama az aszimptotikus hanyados, ami azt fejezi ki lényegében,

hogy egy heurisztikus algoritmus megoldasa mennyivel tér el a feladat tényleges



optimum értékétdl.

C-approximacios heurisztikus algoritmus megoldasanak célfiiggvény értéke
legfeljebb C-szerese a feladat optimalis megoldasanak.

Tetsz6leges polinomkorlatos TSP heurisztikdhoz nem adhatoé meg aszimp-
totikus hanyados.(S. Sahni és T. Gonzalez 1976)

Altalanos esetben a TSP bonyolult feladat kiszamithatésagi szempontbol;
azonban léteznek olyan specidlis osztalyai amelyekre heurisztikus, s6t ap-
proximacios algoritmusokkal igen jo kozelité megoldést lehet adni és jo hir,
hogy a legtobb gyakorlatban is megjelend probléma ezekbe az osztalyokba
vezethetGek vissza.

Egyel6re nem foglalkozunk a feladatok kiszdmithatosagaval, mivel még nem
ismerjiik az egyes feladat tipusok mogott allo matematikai modelleket. A
kovetkezs fejezetben keriil bemutatéasra a TSP feladat és fontosabb valtozatainak

matematikai modelljei. [4] [8]

2. TSP feladat és invariansai

2.1. TSP

Legyen 1 és j G két cstcsa, ekkor az alabbi egész értéki linearis programozasi
(ILP) feladat adhat6 meg: [8]

1 ha van (kozvetlen) 1t i és j kozott
Tii =
! 0 eqyébként

Jelolje c;; az ¢ és j altal kifeszitett él silyat, jelen esetben a két varos tavol-
sagat.
A TSP feladat egy altalanos célfiiggvénye:

n n

Z Z CijTij —» min

i=1j=1

feltéve, hogy:



minden ¢ csiicsot elhagyunk pontosan egyszer:

n
Z LL’ij = 1
j=1

minden j csicsba bemegyiink pontosan egyszer:

n
Z Ty = 1
1=1

0sszes részkor kisziirése:

> > w1

ieS jeV—S

Vell...n]

2.2. CVRP

CVRP (Capacity Vehicle Route Planning), masnéven kapacitasos gépjarmi
utvonal tervezési probléma. Adott: [8]

e G(V, FE) stlyozott graf

vo kezdépont (tovabbiakban: depo)

k db jarmt

c kapacitas korlat minden jarmtire

d, jelolje a p pontban szallitandé mennyisé
Keressiink k£ db V-t tartalmazé kérutat hogy:
e Vi —re : v; pontosan egy kordton van

o Ve —re:d . d, < C



Cél: A korutak 6sszhossza minimalis legyen.
A CVRP az alabbi ILP feladattal irhato fel:

1 ha van (kozvetlen) 1t i és j kozott
i =
! 0 eqyébként

Célfiiggvény:

n n
Z Z xijDij — min

i=0 j=0

minden ¢ csiicsot elhagyunk pontosan egyszer:

n
> @i =1
j=1

minden j csicsba bemegyiink pontosan egyszer:

n
Z Tij = 1
=1

k €l megy be és k ¢l jon ki a dopobol:

n n
>_woj =Y wio =k
7=0 i=0

D, wi >1(S)

ieS je[V -S|

,ahol r(S): minimalis jarmiszam, ami az S-beli kérések elszallitasahoz sziik-

séges.

Ez az ILP feladat feliras szinte egyértelmtien kovetkezik a megoldandé

problémébol, azonban némi atalakitassal konnyebben kiszdmolhaté forméra

hozhato feladat. Cseréljiik ki, a *-gal megjelolt feltételt az alabbival:

u; — uj — cry; > d; — ¢ ,ahol u;: az ¢ pont utdn a jarmd Altal széllitott

mennyiség. [§]



3. TSP megold6 algoritmusok

3.1. Alkalmazasuk

A TSP feladat NP-nehéz, ezért a feladat teljes megoldéasterének bejarasa al-
talaban nem célravezets stratégia. A '70-es évek 6ta szamos hatékony algo-
ritmus latott napvilagot; klasszikus megoldasnak szdmitanak a moho algorit-
musok és a B&B, amelyek targyalasa a fejezet kés6bbi részében kdvetkeznek.
Ezen a kutatési teriileten jellemz6, hogy a mar meglévé algoritmusokra szé-
mos gyorsitast talalnak ki, példaul mas tipusi megold6 eljarasokkal 6tvozik
a kiindulasit vagy meghataroznak egy sziikebb feladat osztalyt és annak
specidlis tulajdonsagait felhasznalva érnek el javulast.

A késébbiekben bumetatott algoritmusok csoportositésa:
o Leszamlalésos

— "Brute force"

— (Fibonacci)

— (Newton)
e Véletlen valasztasos

— Evoluciés — genetikus algoritmus
— Hangyakolonias keresés
— Tabu keresés

— Szimulalt hités

o Korut épité

Legkdzelebbi varos hozzaadéasa

Legkdzelebbi varos beszirasa

Legolcsobb varos beszuréasa

Legtavolabbi varos hozzaadasa

— Branch & Bound



A "nyers er6" modszere csak kis szama ( 13 db) véros esetén talal op-
timalis megoldast elfogadhat6 idén beliil. Példaul 13 varosra kb.: 1 nap
alatt szamolhato ki az optimélis uthossz. 14 varosra mar nem érdemes

probalkozni.|1]

A kiilonb6z6 algoritmus tipusok Gsszahasonlitdsanak nincs sok értelme,
mert feladat szerkezet, de leginkdbb implementéaci6 fliggs, hogy milyen ered-

ményt érnek el.

3.2. Hozzarendelési feladat

Ha megnézziik a TSP matematikai modelljét gy, hogy elhagyjuk a harmadik
feltételt, akkor a hozzarendelési feladatot kapjuk. Ha a hozzérendelési fela-
dat lehetséges megoldasainak halmaza S, a TSP-é pedig L, akkor L C S.
Kézenfekvs a gondolat, hogy jarjuk be az S halmazt és vizsgaljuk meg, hogy
hol vesz fel a célfiiggvény érték minimumot, ezt nevezziik teljes leszamolasi
eljarasnak, azonban ez nem célravezetd megoldas, mert altalaban az S hal-
maz til nagy.

A hozzarendelési feladat optimum értéke a hozza tartozd TSP optimuménak
99, 2%-a(!), ezért a késébbiekben megismerkediink t6bb olyan algoritmussal
is, amelyek egy hozzarendelési feladatbol indulnak ki és annak eredményét

jarjak be valamilyen heurisztikaval vagy iterativan javitjak azt.

3.3. Legkozelebbi varos hozzaadasa (Nearest addition)

Itt egy egyszerti moho algoritmusrol van sz6, tgy miikodik, hogy mindig az
utoljara megtalalt pontboél megkeresi és hozzaftizi a hozza legkdzelebbi véirost.

Ha maér nincs tobb véros, akkor az utols6 pontot 6sszekoti az elsével.

Futasi idg: Naiv modszerrel On? a lépés szam, de a tavolsagok tarolasa-

val O(n?) -re lehet csokkenteni.

A megoldas a legrosszabb esetben £ |logy(n)] + 3 -e az optimalisnak.[8]
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3.4. Legkozelebbi varos beszurasa (Nearest insertion)

Ez az el6z6nél annyival intelligensebb moédszer, hogy itt nem az utoljara vett
varoshoz képest veszi a legkozelebb esGt, hanem az Osszes eddig megtalalt
varoshoz képest keresi a legkozebbi olyat, amelyik még nincs a részkoriatban
és azt szurja be a legolcsobb helyre, tehat ha a ¢;; volt a minimalis, akkor az

¢ utan i, majd a j varos kovetkezik.
Futasi ids: O(n?)

A heurisztika eredménye legfeljebb kétszer rosszabb eredményt ad, mint
az optimalis.|8]
3.5. Legolcs6bb varos beszurasa (Cheapest insertion)

Azt a pontot szurja be a részkoritba, amely hatasara a legkevésbé né a
részkorat osszkoltsége. Az eljaras mitiveletigénye o(n®) és asszimptotikus

hanyadosa 2.
Futasi id6: O(n?logy(n))

A heurisztika eredménye legfeljebb kétszer rosszabb eredményt ad, mint

az optimalis, hasonloan a legkézelebbi varos beszirasa algoritmushoz.|8]

3.6. Legtavolabbi varos hozzaadasa (Farthest addition)

A korattol legtavolabbi pontot szirja be minimalis koltséggel. Altalaban
jobb megoldast ad az algoritmus mint az el6z6ek (Teszteltem, valoban igy
van).

Futasi id6: O(n?)

Legrosszabb esetben a heurisztika megoldasa 21In(n) + 0.16 -szorosa az

optimalisnak

11



3.7. Korlatozas és szétvalasztias (B&B)

Az egyik leggyakrabban hasznalt eljaras a kombinatorikus optimalizalasi fe-
ladatok megoldasara. Az alapoétlet, hogy irjuk fel a kiinduladsi TSP-hez tar-
toz6 hozzérendelési feladatot, ekkor a lehetséges megoldasok terét fa adatsz-
erkezettel dbrazoljuk és a fa azon agait nem értékeljiik ki, amelyek val6szinii-
leg nem tartalmaznak optimalis megoldast.

Ennek eléréséhez definialni kell az L lehetséges megoldasok terén két fiig-

gvényt:

A szétvalaszto fiiggvény felelGs azért, hogy a lehetséges megoldasok barmely

|L'| > 1 részhalmazahoz hozzéarendeli L' egy valodi osztélyozasat.

A korlatozo fiiggvény barmely z(T)(Tel')-re meghataroz egy also (maxi-

malizélas esetén felsG) korlatot.

Ha a kiszamitott alsé korlatnal mar van jobb megoldas, akkor az adott részfat
nem kell tovabb kiértékelni.

Legyen ¢ a szétvalaszto, g pedig a korlatozo fiiggvény, ekkor a leszamolasi
(B&B) fat a kovetkezs eljarassal épitjiik fel:

1. lépés gyokér := L, r:=0
2. 1épés Hatarozzuk meg g(L)-t és rendeljiik cimkeként az L szégponthoz
iterativan:
3. lépés Az aktualis fa levelein hatarozzuk meg a cimkék minimumét és
valasszunk ki egy minimalis?cimkéji levelet.
4. lépés Ha L' = {7}, akkor return =
egyébként kévetkezs 1épés
5. lépés Bavitsiik ki az aktualis fat ¢(L') elemeivel, mint L’ leszarmazot-
taival, majd az 4j szogpontokhoz rendre szamitsuk ki a korlatokat és ren-
deljiik az illet§ szogpontokhoz cimkeként.
44
JOjjon a 3. lépés!

Az eljaras helyes és véges id6ben befejezédik. A futasi id6t tulajdonkép-

pen a két fiiggvény mindsége hatarozza meg. [8] [6]
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3.8. Korlatozas és vagas (B&C)

Ha egész értékd TSP-rél van sz, tehat xe0, 1, ekkor ha a B&B fa egy csticsa
altal reprezentélt relaxalt részfeladat megoldéasakor sériil az egészértékiiségi
feltétel, akkor vagassal pontosithatdo az optimum alsé korlatjanak értéke.
Az alapdétlet az, hogy a lehetséges megoldésok halmazabol metszd sikokkal
vagjuk le azokat a darabokat, amelyek nem tartalmaznak egész értéki (ko-
ordinataju) megoldasokat.

A Gomory-féle metszés (1958) volt az els olyan eljaras, amely véges

id6ben meghatarozta a szeparal6 sikokat.

Lemma: A Gomory-metszés levigja az aktualis relaxalt feladat z;x = b

megoldasat (ha nem egész), és nem vag le egész megoldasokat.|8] |2] |3]

3.9. Paching

Ha megoldjuk a TSP feladathoz tartozé hozzarendelési feladatot, akkor egy
vagy tobb részkorutat kapunk. Ha egy részkorutat kapunk, akkor az valojaban
az eredeti TSP optimalis korutja, egyébként az optimalis hozzarendelésnek
megfelels graf a diszjunkt részkorutat egyesitése. Jo heurisztikdnak tiinik
ezen részkorutak minél kisebb koltségii 6sszekapcsolasa; az alabbi két eljaras

ezt hivatott elvégezni.|7]

3.9.1. 2-patching

Osszekapesolds: Valasszunk ki két vészkorutat: I,.J. I = {iy, iy, ..., 0, iq, . }
és J = {J1, 72, s Jps Jq» ---y varosok. Toroljik az (ip,i,) és (jp,J,) €leket és
hazzuk be az (ip,j,) és (Jp,1,) éleket, ekkor az 0j részkorut tartalmazza az

I'JJ graf varosait a koltség valtozas pedig:

d(ipvjq> + d(jp7 ZQ) - d(iZ” ZQ) - d(jp’jq)

Eljards:(R.M.Karp)
1.1épés: Oldjuk meg a hozzarendelési feladatot, ha a hozzarendelési feladat

optimélis megoldésa korut, akkor vége az eljarasnak, egyébként vessziik a 2.

13



lépést.
2.1épés: Kapcsoljuk 0ssze 2-patching eljarassal a két legkisebb elemszami
korutat. Ha az 4j megoldas korit, akkor visszatériink a megoldéssal, egyébként

kovetkezik a 2. 1épés.

3.9.2. 3-patching

Altalaban novelhets az eljaras hatékonysaga, ha egyszerre nem kettd, hanem

harom részkort fliziink dssze.

Osszekapesolds: Valasszunk ki harom részkorutat: I,.J, K I = {i1, 42, ... ip, g, ...

J = {J1, 72, s Jps Jgs -} €8 K = {ky, ko, ..., kp, kg, ... }varosok. Toroljiik az
(ipsiq), (Jpsdq) s (kp, k) eleket, valamint huzzuk be az (ip,J,), (Jp, kq) és
(kp,1q) éleket, ekkor az Gj részkorut tartalmazza az IJJ U K graf varosait a

koltség valtozas pedig:

d(iqu) + d(jp’ kq) + d<kpv Z.q) - d(ip’ iq) - d<jp7jq) - d(kp’ kq)

Eljards:

1. 1épés: Megoldjuk a hozzarendelési feladatot D-n

2. lépés: Ha kevesebb, mint 9 korat van, akkor jojjon a 3. 1épés, egyébként:
Rendezziik sorba a részkorutakat hossz szerint: ki, ..., k,,

Szamoljuk ki a d,.s 2-patching koltségeket a k.., k,,_;1s részkorutakra, minden
1 <r <[, 1<s<!indexparra, ahol | = [M/2].

Megoldjuk a d;; koltségmatrixt hozzarendelési feladatot és a megoldsasban
kapott részkorut parokat rendre Osszefiizziik, gy hogy a nagy koroket a kis
korokkel parositjuk arra torekedve, hogy az Osszefiizés utan ne legyen til
nagy a koltség novekedés.

Folytassuk az 1. 1épéssel!

3. 1épés: Ha 1 korat van, akkor optimumban vagyunk.

Ha 2 korat van, akkor Osszefiizziik Gket és az az optiméalis megoldés.

Ha 3 < korut van, akkor a 3 legrovidebbet Osszefésiiljiik és folytatjuk a 3.

lépéssel.
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4. Metrikus TSP

4.1. Feladat

Ha egy TSP feladatra teljesiil az alabbi két feltétel:

e Szimmetrikus ko6ltségmatrix, azaz A varosbol B-be eljutni ugyan
akkora koltséggel lehet, mint B-bsl A-ba.

e Haromszog egyenlStlenség, azaz d;; + dji, > dy, (i, 7, k)

ez tovabbra is NP-nehéz feladat, de 1étezik hozza approximaciés hanyados.

4.2. 2-approximéciés algoritmus

Jeloljik G-vel a TSP-t abrazolo grafot, ekkor:

1. lépés: Keressiink G-n minimélis feszit6fat Prim vagy Kruskal algorit-
mussal.

2. lépés: Jarjuk be a feszit6 fat preorder eljarassal; ekkor kapunk egy min-
den csiicsot legalabb egyszer érint6 korutat.

3. 1épés: Minden pontnak csak az els6 el6fordulasat tartsuk meg.

Tétel: A 2-approximécios eljaras approximécios hanyadosa 2.[8|

4.3. Christofides algoritmus

Az eljaras ismertetése el6tt kivetkezzen két grafelméleti fogalom, amelyekre
sziikség lesz ahhoz, hogy megértsiik az algoritmus miikddését.

Minimdlis pdarositis: G grafban minimélis parositas azon cq, ..., ¢, élek hal-
maza, amelyeknek nincs kozos pontjuk.

Teljes pdarositas: Ha minden csics valamelyik parositasbeli élnek a pontja.
Algoritmus:

1. 1épés: Hatarozzuk meg a minimalis feszitGfat.

2. lépés: A paratlan fokszamu cstucsok altal feszitett részfiban keressiink
minimalis teljes parositast, gy hogy eggyel noveljiik a fokszamot, ezzel
kiegészitve a fat.

3. 1épés: Fuler-kor épités.
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Minden pontnak az els§ megjelenését tartjuk meg.

Tétel: A Christofides algoritmus approximacios hanyadosa 2/3.
[8] Futasi id6: O(n?logan)

5. GlobAlis optimalizalas

5.1. Feladat kornyezet

Az eddigi eljarasoknal az optimumot vagy egy ahhoz kozeli allapotot ker-
estiink és a koltség az oda vezetd 1t fiiggvénye volt. A globalis optimalizalési
problémaknal a koltség az allapot fiiggvénye, tehat nem az uté.[9)

A globalis optimalizalasi modelje:
e lehetséges allapotok halmaza
e kezdgallapot(ok), végallapot(ok)
e lehetséges operatorok halmaza és egy atmenet fiiggvény

e kiértékels fiiggvény (f), mely minden lehetséges allapothoz valos értéket

rendel

5.2. Hegymaszo keresés és javitasai

Moh¢ megkozelités, az alap hegymaszo algoritmus csak lokalis optimumot
talal meg.

Hegymdszo:

1: aktualis allapot < véletlen allapot

2: szomszéd < aktuélis allapot egy max értéki szomszédja

2 if f(szomszd) < f(aktulis) return aktualis

else akutalis < szomszéd

AN

goto 2

Hegymasz6 javitasai:
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Sztochasztikus hegymdszo: a szomszédok koziil véletleniil valaszt, az ak-
tualis allapotnal jobbat, de nem feltétleniil a legjobbat. Lassabb, de ritkab-

ban akad el, mint az egyszerii hegymaszo.

Véletlen ujrainditott hegymdszo: Ha nem taldltunk célallapotot, akkor
véletlen kezd6pontbol inditsuk Gjra az algoritmsut. Fontos, hogy itt az egyes
keresések kozott nincs informacié megosztas. Bar sok fiigg a keresési tér

strukturajatol, de ez egy nagyon hatékony algoritmus.

5.3. Szimulalt hités

Alapoétlete a féemontés techninkdjanak analogiajan nyugszik 1ényege, hogy az
aktualisnal rosszabb értékeket is elfogad egyre csokkend valoszintiséggel. Leg-
fontosabb fogalom a hiitési terv, ez hatarozza meg, hogy milyen valosziniiséggel

fogadunk el egy ujabb "rossz" értéket.

Szimuldlt hités
: aktudlis < véletlen allapot; t < 0
t <t + 1;T <« hiitési-terv(t)
if (T == 0) return aktudlis
szomszéd <— aktualis egy véletlen szomszédja
d = f( szomszéd ) — f( aktualis )
if (d > 0) aktudlis < szomszéd

else aktualis «— szomszéd exp(d/T') valoszintiséggel

VS I N

goto 2:

Megfelels htitési tervvel megtalalhato vele a globalis optimum.|9]

Futasi id6: A hiitési tervtsl sok minden fiigg, de altalaban O(n?) koriili
id6 varhato.

17



5.4. Nyalab keresés

Populaci6 alapi keresés, azaz nem egy aktualis allapot van, hanem K db, ezt
hivjuk populéacionak és a teljes populacié hatassal van a kévetkez6 populécio
kivalasztasara.|9]

Nyaldb keresés

1: aktualis|] < K véletlen allapot

2: generaljuk mind a K &llapot 0sszes szomszédjat

3: aktualis[] < K legjobb az Gsszes szomszéd koziil
4: if aktualis[i] célallapot valamely i-re return aktualis[]
5: goto 2:

5.5. Genetikus algoritmus
Ez is populaci6 alapu keresés, de ki van bévitve néhany operatorral:

Kombinacié (cross over): a populacio egyedeit kettesével keresztezziik.
Itt azonban nem miikodik a hagyomanyos kereszezés, amit a String-
eknél hasznalhatunk, mert akkor a keresztezés utan nem részkort kap-

nank, tehat oda kell figyelni, hogy a TSP szabalyt ne sértsiik.

Mutacié: Néhany egyedben az egyedeken beliil felcseréliink egy vagy tobb

elemet.

Szelekcid: az 0j populacio egyedeinek kivalasztasahoz fitness (josagi vagy

cél-) fiiggvényt hasznalunk.

Hatékony genetikus algoritmus jelenleg nem ismert TSP-re. Szokas azonban

keverni méas algoritmussal, példaul a mutécio egy lokalis keresés. |9

Futasi id6: Az id6t meghatarozza a feladat méretén kiviil a populaciok
mérete. A kilépési feltétel lehet egy adott fitness érték elérése vagy adott
szami populacio lefutésa.

5.6. Tabu keresés (TS)

Mostanaba nagyon felkapott és ténylegesen is hatékony meta-heurisztika. Az

otlet, hogy:
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e az aktualis populacié mellett eltaroljuk az eddigi legjobb csicsokat
e készitiink egy tabu listat az utdbbi néhany aktualis cstcsbol

A tabu lista célja az, hogy elkeriiljiik a visszalépést egy nem tul régen

meglatogatott cstcsba.

Aspirdns kritérium: néha meg lehet szegni a tabu listat, példaul ha jobb
megoldast ad, mint az eddigi legjobb

Szétterjesztés (diverzifikicid): A még fel nem deritett részeket is megla-
togatjuk.

Felerdsités: A jo értékek koriili kornyezetet alaposabban be kell jarni.

Jeldlt lista: Ha tul nagy az aktudlis csicsok kornyezete, akkor csak a k

legjobbat vizsgéljuk.

Tterativan 1: kivalasztjuk a legjobb csticsokat az aktualis csticsok kérnyezetébdl
(kivéve a tabu listat)
2: ha az 1j cstcs jobb, mint az eddigi legjobbak koziil valamelyik, akkor azt
lecseréljiik
3: a fentiek alapjan modositjuk a tabu listat

Kilépési feltétel:

e ha a célfiiggvény az eltarolt legjobb csicsok halmazan optimalis

e ha az adott populacié vagy a legjobb eltarolt csticsok halmaza sokaig

nem valtozik

e tullépiink a koltségkorlaton (pl.: idGkorlat)

8]

5.7. Hangya koldnias keresés (ant colony system)

A természetben a hangyéak taplalék keresés kozben a taplaléktol a bolyhoz

vissza vezetd tton feromont bocsatanak ki magukbol, amit mas hangyak is
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nagy valoszintiséggel kévetni fognak, ha arra jarnak és tovabbi feromont boc-
satanak ki az uton, ezzel is novelve az uton a feromon szintet. Azonban a
feromon folyamatosan parolog, amig el nem éri a nulla szintet (érdemes lehet
nem iteracionként csdkkenteni az Gsszes Ut feromon szintjét, mert akkor ne-
hezen tudunk felderitést végezni és esetleg csak lokélis optimumok koriil moz-

gunk, hanem csak csak az adott iteracioban létrehozott utokon csokkentsiik).

Egyes hangyafajokra jellemz6, hogy ha jobb mindségi taplalékot (jobb
megoldast) talalnak, akkor tobb fermont bocsatanak ki a vissza aton, ezzel
novelve annak valdszintiségét, hogy mas hangyak (4gensek) is azon az tton
induljanak el. Ha ugyan ahhoz a taplalékhoz tobb ut is vezet, akkor a
rovidebb uton gyakrabban fordulnak a hangyak, aminek kovetkeztében ma-
gasabb lesz a feromon szint az adott iton, aminek kovetkeztében még tobb
hangya valasztja azt az utat és igy egy id6 utan a masik ut kivalasztédasanak
valdszintisége minimaélisra csokken. Az egyes utakon a feromon szinteket az
F Feromon-métrixban tartjuk nyilvan; f;; az ij cstcsok altal kifeszitett ut

feromon szintjét mutatja.

Onmagéaban egy hangya, azaz az agens igen korlatolt képességekkel bir,
azonban a teljes hangya kolonia igen hatékonyan oldja meg a kiilonbo6zé
kombinatorikus optiamlizalési feladatokat, raadasul konnyen adoptalhato az
egyes feladat tipusok kozott, igy hozzarendelési feladatra, hatizsak feladatra,

itemezési és TSP feladatokra is hamar elkésziiltek a megoldo eljarasok.

a, 1P
_— ij " d;
0T A

Yrerlz]

A fenti képlettel az ¢ varosbol a j varosba menés valoszintiségét szamoljuk
ki, ahol L a még latogathat6é varosok halmaza, a és [ pedig paraméterek,
amiket a futtatdsok sordn pontosithatunk. f;¢ és d;; tovabbra is rendre

jeloljék a feromon szintet és a tavolsagot ij csicsok kozott.
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A futéasi id6 fiigg a kilépési feltételtsl és a futtatas soran bedllitott

paraméterektsl. [5]
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