
1

Hatékony útvonal tervezési algoritmusok

Szabó Ádám

2

Tartalomjegyzék

1. Útvonal tervezés és nehézségei 5

1.1. Az útvonal tervezési alapfeladat 5

1.2. Komplexitás . 5

2. TSP feladat és invariánsai 6

2.1. TSP . 6

2.2. CVRP . 7

3. TSP megoldó algoritmusok 9

3.1. Alkalmazásuk . 9

3.2. Hozzárendelési feladat . 10

3.3. Legközelebbi város hozzáadása (Nearest addition) 10

3.4. Legközelebbi város beszúrása (Nearest insertion) 11

3.5. Legolcsóbb város beszúrása (Cheapest insertion) 11

3.6. Legtávolabbi város hozzáadása (Farthest addition) 11

3.7. Korlátozás és szétválasztás (B&B) 12

3.8. Korlátozás és vágás (B&C) . 13

3.9. Paching . 13

3.9.1. 2-patching . 13

3.9.2. 3-patching . 14

4. Metrikus TSP 15

4.1. Feladat . 15

4.2. 2-approximációs algoritmus 15

4.3. Christo�des algoritmus . 15

5. Globális optimalizálás 16

5.1. Feladat környezet . 16

5.2. Hegymászó keresés és javításai 16

5.3. Szimulált h¶tés . 17

5.4. Nyaláb keresés . 18

5.5. Genetikus algoritmus . 18

5.6. Tabu keresés (TS) . 18

3

5.7. Hangya kolóniás keresés (ant colony system) 19

4

1. Útvonal tervezés és nehézségei

1.1. Az útvonal tervezési alapfeladat

Klasszikus példa az útvonal tervezési problémára, amikor adott egy utazóüg-

ynök és városok egy diszkrét halmaza, amiket meg kell látogatnia pontosan

egyszer tetsz®leges sorrendben úgy, hogy a megtett összes út minimális legyen

és végül a kiindulási városba térjen vissza. Ezt a feladatot hívják utazó ügy-

nök problémának más néven TSP-nek (Traveling Salesman Problem). A fe-

ladat reprezentálható egy teljes, súlyozott (irányított és szimmetrikus) gráf-

fal (G). A gráf csúcsai a városok (V), az élei pedig a városokat összeköt®

utak város közötti út hosszát jelölik. Feladat: az el®bbi gráfban minimális

Hamilton-kör keresése.

Hamilton-út: Egy P út Hamilton-út G gráfban, ha a G minden csúcsát pon-

tosan egyszer érinti.

Hamilton-kör: Olyan Hamilton-út, amelynek a kezd® és végpontja mege-

gyezik.

Számos gyakorlati feladat vezethet® vissza TSP-re vagy annak valamely vál-

tozatára, ilyenek például a szállítmányozási és járattervezési feladatok, repül®l®k

és azok személyzetének útiterve, vagy ha egy adott munkadarabon (pl.: chip)

több (millió) lyukat kell fúrni (égetni), akkor a lyukak közti útvonalat célsz-

er¶ optimalizálni. [4] [8]

1.2. Komplexitás

A Hamilton-kör megtalálása egy gráfban NP-nehéz feladat, így a TSP és

valamennyi változata is szintén NP-nehéz, tehát nem létezik olyan poli-

nomiális idej¶ algoritmus, amely használatával meghatározható lenne az op-

timális megoldás, ha P 6= NP . (A továbbiakban implicit feltesszük, hogy

P 6= NP .) Egy másik megközelítés a komplexitás mérésének az, hogy

heurisztikus közelít® algoritmusokkal milyen "jó" megoldást lehet elérni. En-

nek egy mér®száma az aszimptotikus hányados, ami azt fejezi ki lényegében,

hogy egy heurisztikus algoritmus megoldása mennyivel tér el a feladat tényleges

5

optimum értékét®l.

C-approximációs heurisztikus algoritmus megoldásának célfüggvény értéke

legfeljebb C-szerese a feladat optimális megoldásának.

Tetsz®leges polinomkorlátos TSP heurisztikához nem adható meg aszimp-

totikus hányados.(S. Sahni és T. Gonzalez 1976)

Általános esetben a TSP bonyolult feladat kiszámíthatósági szempontból;

azonban léteznek olyan speciális osztályai amelyekre heurisztikus, s®t ap-

proximációs algoritmusokkal igen jó közelít® megoldást lehet adni és jó hír,

hogy a legtöbb gyakorlatban is megjelen® probléma ezekbe az osztályokba

vezethet®ek vissza.

Egyel®re nem foglalkozunk a feladatok kiszámíthatóságával, mivel még nem

ismerjük az egyes feladat típusok mögött álló matematikai modelleket. A

következ® fejezetben kerül bemutatásra a TSP feladat és fontosabb változatainak

matematikai modelljei. [4] [8]

2. TSP feladat és invariánsai

2.1. TSP

Legyen i és j G két csúcsa, ekkor az alábbi egész érték¶ lineáris programozási

(ILP) feladat adható meg: [8]

xij =

 1 ha van (közvetlen) út i és j között

0 egyébként

Jelölje cij az i és j által kifeszített él súlyát, jelen esetben a két város távol-

ságát.

A TSP feladat egy általános célfüggvénye:

n∑
i=1

n∑
j=1

cijxij → min

feltéve, hogy:

6

minden i csúcsot elhagyunk pontosan egyszer:

n∑
j=1

xij = 1

minden j csúcsba bemegyünk pontosan egyszer:

n∑
i=1

xij = 1

összes részkör kisz¶rése: ∑
iεS

∑
jεV−S

xij ≤ 1

V ε[1 . . . n]

2.2. CVRP

CVRP (Capacity Vehicle Route Planning), másnéven kapacitásos gépjárm¶

útvonal tervezési probléma. Adott: [8]

• G(V,E) súlyozott gráf

• v0 kezd®pont (továbbiakban: depo)

• k db járm¶

• c kapacitás korlát minden járm¶re

• dp jelölje a p pontban szállítandó mennyisé

Keressünk k db V0-t tartalmazó körutat hogy:

• ∀i− re : vi pontosan egy körúton van

• ∀ci − re :
∑
pεci dp ≤ c

7

Cél: A körutak összhossza minimális legyen.

A CVRP az alábbi ILP feladattal írható fel:

xij =

 1 ha van (közvetlen) út i és j között

0 egyébként

Célfüggvény:
n∑
i=0

n∑
j=0

xijDij → min

minden i csúcsot elhagyunk pontosan egyszer:

n∑
j=1

xij = 1

minden j csúcsba bemegyünk pontosan egyszer:

n∑
i=1

xij = 1

k él megy be és k él jön ki a dopóból:

n∑
j=0

x0j =
n∑
i=0

xi0 = k

*
∑
iεS

∑
jε[V−S]

xij ≥ r(S)

,ahol r(S): minimális járm¶szám, ami az S-beli kérések elszállításához szük-

séges.

Ez az ILP feladat felírás szinte egyértelm¶en következik a megoldandó

problémából, azonban némi átalakítással könnyebben kiszámolható formára

hozható feladat. Cseréljük ki, a *-gal megjelölt feltételt az alábbival:

ui − uj − cxij ≥ dj − c ,ahol ui: az i pont után a járm¶ által szállított

mennyiség. [8]

8

3. TSP megoldó algoritmusok

3.1. Alkalmazásuk

A TSP feladat NP-nehéz, ezért a feladat teljes megoldásterének bejárása ál-

talában nem célravezet® stratégia. A '70-es évek óta számos hatékony algo-

ritmus látott napvilágot; klasszikus megoldásnak számítanak a mohó algorit-

musok és a B&B, amelyek tárgyalása a fejezet kés®bbi részében következnek.

Ezen a kutatási területen jellemz®, hogy a már meglév® algoritmusokra szá-

mos gyorsítást találnak ki, például más tipusú megoldó eljárásokkal ötvözik

a kiindulásit vagy meghatároznak egy sz¶kebb feladat osztályt és annak

speciális tulajdonságait felhasználva érnek el javulást.

A kés®bbiekben bumetatott algoritmusok csoportosítása:

• Leszámlálásos

� "Brute force"

� (Fibonacci)

� (Newton)

• Véletlen választásos

� Evolúciós → genetikus algoritmus

� Hangyakolóniás keresés

� Tabu keresés

� Szimulált h¶tés

• Körút épít®

� Legközelebbi város hozzáadása

� Legközelebbi város beszúrása

� Legolcsóbb város beszúrása

� Legtávolabbi város hozzáadása

� Branch & Bound

9

A "nyers er®" módszere csak kis számú (13 db) város esetén talál op-

timális megoldást elfogadható id®n belül. Például 13 városra kb.: 1 nap

alatt számolható ki az optimális úthossz. 14 városra már nem érdemes

próbálkozni.[1]

A különböz® algoritmus típusok összahasonlításának nincs sok értelme,

mert feladat szerkezet, de leginkább implementáció függ®, hogy milyen ered-

ményt érnek el.

3.2. Hozzárendelési feladat

Ha megnézzük a TSP matematikai modelljét úgy, hogy elhagyjuk a harmadik

feltételt, akkor a hozzárendelési feladatot kapjuk. Ha a hozzárendelési fela-

dat lehetséges megoldásainak halmaza S, a TSP-é pedig L, akkor L ⊂ S.

Kézenfekv® a gondolat, hogy járjuk be az S halmazt és vizsgáljuk meg, hogy

hol vesz fel a célfüggvény érték minimumot, ezt nevezzük teljes leszámolási

eljárásnak, azonban ez nem célravezet® megoldás, mert általában az S hal-

maz túl nagy.

A hozzárendelési feladat optimum értéke a hozzá tartozó TSP optimumának

99, 2%-a(!), ezért a kés®bbiekben megismerkedünk több olyan algoritmussal

is, amelyek egy hozzárendelési feladatból indulnak ki és annak eredményét

járják be valamilyen heurisztikával vagy iteratívan javítják azt.

3.3. Legközelebbi város hozzáadása (Nearest addition)

Itt egy egyszer¶ mohó algoritmusról van szó, úgy m¶ködik, hogy mindig az

utoljára megtalált pontból megkeresi és hozzáf¶zi a hozzá legközelebbi várost.

Ha már nincs több város, akkor az utolsó pontot összeköti az els®vel.

Futási id®: Naív módszerrel On3 a lépés szám, de a távolságok tárolásá-

val O(n2) -re lehet csökkenteni.

A megoldás a legrosszabb esetben 1
2
blog2(n)c+ 1

2
-e az optimálisnak.[8]

10

3.4. Legközelebbi város beszúrása (Nearest insertion)

Ez az el®z®nél annyival intelligensebb módszer, hogy itt nem az utoljára vett

városhoz képest veszi a legközelebb es®t, hanem az összes eddig megtalált

városhoz képest keresi a legközebbi olyat, amelyik még nincs a részkörútban

és azt szúrja be a legolcsóbb helyre, tehát ha a cii′ volt a minimális, akkor az

i után i′, majd a j város következik.

Futási id®: O(n2)

A heurisztika eredménye legfeljebb kétszer rosszabb eredményt ad, mint

az optimális.[8]

3.5. Legolcsóbb város beszúrása (Cheapest insertion)

Azt a pontot szúrja be a részkörútba, amely hatására a legkevésbé n® a

részkörút összköltsége. Az eljárás m¶veletigénye o(n3) és asszimptotikus

hányadosa 2.

Futási id®: O(n2 log2(n))

A heurisztika eredménye legfeljebb kétszer rosszabb eredményt ad, mint

az optimális, hasonlóan a legközelebbi város beszúrása algoritmushoz.[8]

3.6. Legtávolabbi város hozzáadása (Farthest addition)

A körúttól legtávolabbi pontot szúrja be minimális költséggel. Általában

jobb megoldást ad az algoritmus mint az el®z®ek (Teszteltem, valóban így

van).

Futási id®: O(n2)

Legrosszabb esetben a heurisztika megoldása 2 ln(n) + 0.16 -szorosa az

optimálisnak

11

3.7. Korlátozás és szétválasztás (B&B)

Az egyik leggyakrabban használt eljárás a kombinatorikus optimalizálási fe-

ladatok megoldására. Az alapötlet, hogy írjuk fel a kiindulási TSP-hez tar-

tozó hozzárendelési feladatot, ekkor a lehetséges megoldások terét fa adatsz-

erkezettel ábrázoljuk és a fa azon ágait nem értékeljük ki, amelyek valószín¶-

leg nem tartalmaznak optimális megoldást.

Ennek eléréséhez de�niálni kell az L lehetséges megoldások terén két füg-

gvényt:

A szétválasztó függvény felel®s azért, hogy a lehetséges megoldások bármely

|L′| > 1 részhalmazához hozzárendeli L′ egy valódi osztályozását.

A korlátozó függvény bármely z(x)(xεL′)-re meghatároz egy alsó (maxi-

malizálás esetén fels®) korlátot.

Ha a kiszámított alsó korlátnál már van jobb megoldás, akkor az adott részfát

nem kell tovább kiértékelni.

Legyen ϕ a szétválasztó, g pedig a korlátozó függvény, ekkor a leszámolási

(B&B) fát a következ® eljárással építjük fel:

1. lépés gyökér := L, r := 0

2. lépés Határozzuk meg g(L)-t és rendeljük címkeként az L szögponthoz

iteratívan:

3. lépés Az aktuális fa levelein határozzuk meg a címkék minimumát és

válasszunk ki egy minimális?címkéj¶ levelet.

4. lépés Ha L′ = {x}, akkor return x
egyébként következ® lépés

5. lépés B®vítsük ki az aktuális fát ϕ(L′) elemeivel, mint L′ leszármazot-

taival, majd az új szögpontokhoz rendre számítsuk ki a korlátokat és ren-

deljük az illet® szögpontokhoz címkeként.

r++;

Jöjjön a 3. lépés!

Az eljárás helyes és véges id®ben befejez®dik. A futási id®t tulajdonkép-

pen a két függvény min®sége határozza meg. [8] [6]

12

3.8. Korlátozás és vágás (B&C)

Ha egész érték¶ TSP-r®l van szó, tehát xε0, 1, ekkor ha a B&B fa egy csúcsa

által reprezentált relaxált részfeladat megoldásakor sérül az egészérték¶ségi

feltétel, akkor vágással pontosítható az optimum alsó korlátjának értéke.

Az alapötlet az, hogy a lehetséges megoldások halmazából metsz® síkokkal

vágjuk le azokat a darabokat, amelyek nem tartalmaznak egész érték¶ (ko-

ordinátájú) megoldásokat.

A Gomory-féle metszés (1958) volt az els® olyan eljárás, amely véges

id®ben meghatározta a szeparáló síkokat.

Lemma: A Gomory-metszés levágja az aktuális relaxált feladat xi? = b

megoldását (ha nem egész), és nem vág le egész megoldásokat.[8] [2] [3]

3.9. Paching

Ha megoldjuk a TSP feladathoz tartozó hozzárendelési feladatot, akkor egy

vagy több részkörutat kapunk. Ha egy részkörutat kapunk, akkor az valójában

az eredeti TSP optimális körútja, egyébként az optimális hozzárendelésnek

megfelel® gráf a diszjunkt részkörutat egyesítése. Jó heurisztikának t¶nik

ezen részkörutak minél kisebb költség¶ összekapcsolása; az alábbi két eljárás

ezt hivatott elvégezni.[7]

3.9.1. 2-patching

Összekapcsolás: Válasszunk ki két részkörutat: I, J . I = {i1, i2, ..., ip, iq, ...}
és J = {j1, j2, ..., jp, jq, ...} városok. Töröljük az (ip, iq) és (jp, jq) éleket és

húzzuk be az (ip, jq) és (jp, iq) éleket, ekkor az új részkörút tartalmazza az

I
⋃
J gráf városait a költség változás pedig:

d(ip, jq) + d(jp, iq)− d(ip, iq)− d(jp, jq)

Eljárás:(R.M.Karp)

1.lépés: Oldjuk meg a hozzárendelési feladatot, ha a hozzárendelési feladat

optimális megoldása körút, akkor vége az eljárásnak, egyébként vesszük a 2.

13

lépést.

2.lépés: Kapcsoljuk össze 2-patching eljárással a két legkisebb elemszámú

körutat. Ha az új megoldás körút, akkor visszatérünk a megoldással, egyébként

következik a 2. lépés.

3.9.2. 3-patching

Általában növelhet® az eljárás hatékonysága, ha egyszerre nem kett®, hanem

három részkört f¶zünk össze.

Összekapcsolás: Válasszunk ki három részkörutat: I, J,K I = {i1, i2, ..., ip, iq, ...},
J = {j1, j2, ..., jp, jq, ...} és K = {k1, k2, ..., kp, kq, ...}városok. Töröljük az

(ip, iq), (jp, jq) és (kp, kq) éleket, valamint húzzuk be az (ip, jq), (jp, kq) és

(kp, iq) éleket, ekkor az új részkörút tartalmazza az I
⋃
J
⋃
K gráf városait a

költség változás pedig:

d(ip, jq) + d(jp, kq) + d(kp, iq)− d(ip, iq)− d(jp, jq)− d(kp, kq)

Eljárás:

1. lépés: Megoldjuk a hozzárendelési feladatot D-n

2. lépés: Ha kevesebb, mint 9 körút van, akkor jöjjön a 3. lépés, egyébként:

Rendezzük sorba a részkörutakat hossz szerint: k1, ..., km
Számoljuk ki a drs 2-patching költségeket a kr, km−l+s részkörutakra, minden

1 ≤ r ≤ l, 1 ≤ s ≤ l indexpárra, ahol l = [M/2].

Megoldjuk a dij költségmátrixú hozzárendelési feladatot és a megoldsásban

kapott részkörút párokat rendre összef¶zzük, úgy hogy a nagy köröket a kis

körökkel párosítjuk arra törekedve, hogy az összef¶zés után ne legyen túl

nagy a költség növekedés.

Folytassuk az 1. lépéssel!

3. lépés: Ha 1 körút van, akkor optimumban vagyunk.

Ha 2 körút van, akkor összef¶zzük ®ket és az az optimális megoldás.

Ha 3 ≤ körút van, akkor a 3 legrövidebbet összefésüljük és folytatjuk a 3.

lépéssel.

14

4. Metrikus TSP

4.1. Feladat

Ha egy TSP feladatra teljesül az alábbi két feltétel:

• Szimmetrikus költségmátrix, azaz A városból B-be eljutni ugyan

akkora költséggel lehet, mint B-b®l A-ba.

• Háromszög egyenl®tlenség, azaz dij + djk ≥ dik,∀(i, j, k)

ez továbbra is NP-nehéz feladat, de létezik hozzá approximációs hányados.

4.2. 2-approximációs algoritmus

Jelöljük G-vel a TSP-t ábrázoló gráfot, ekkor:

1. lépés: Keressünk G-n minimális feszít®fát Prim vagy Kruskal algorit-

mussal.

2. lépés: Járjuk be a feszít® fát preorder eljárással; ekkor kapunk egy min-

den csúcsot legalább egyszer érint® körutat.

3. lépés: Minden pontnak csak az els® el®fordulását tartsuk meg.

Tétel: A 2-approximációs eljárás approximációs hányadosa 2.[8]

4.3. Christo�des algoritmus

Az eljárás ismertetése el®tt következzen két gráfelméleti fogalom, amelyekre

szükség lesz ahhoz, hogy megértsük az algoritmus m¶ködését.

Minimális párosítás: G gráfban minimális párosítás azon c1, ..., cn élek hal-

maza, amelyeknek nincs közös pontjuk.

Teljes párosítás: Ha minden csúcs valamelyik párosításbeli élnek a pontja.

Algoritmus:

1. lépés: Határozzuk meg a minimális feszít®fát.

2. lépés: A páratlan fokszámú csúcsok által feszített részfában keressünk

minimális teljes párosítást, úgy hogy eggyel növeljük a fokszámot, ezzel

kiegészítve a fát.

3. lépés: Euler-kör építés.

15

Minden pontnak az els® megjelenését tartjuk meg.

Tétel: A Christo�des algoritmus approximációs hányadosa 2/3.

[8] Futási id®: O(n2log2n)

5. Globális optimalizálás

5.1. Feladat környezet

Az eddigi eljárásoknál az optimumot vagy egy ahhoz közeli állapotot ker-

estünk és a költség az oda vezet® út függvénye volt. A globális optimalizálási

problémáknál a költség az állapot függvénye, tehát nem az úté.[9]

A globális optimalizálási modelje:

• lehetséges állapotok halmaza

• kezd®állapot(ok), végállapot(ok)

• lehetséges operátorok halmaza és egy átmenet függvény

• kiértékel® függvény (f), mely minden lehetséges állapothoz valós értéket

rendel

5.2. Hegymászó keresés és javításai

Mohó megközelítés, az alap hegymászó algoritmus csak lokális optimumot

talál meg.

Hegymászó:

1: aktuális állapot ← véletlen állapot

2: szomszéd ← aktuális állapot egy max érték¶ szomszédja

3: if f(szomszd) ≤ f(aktulis) return aktuális

4: else akutális ← szomszéd

5: goto 2

Hegymászó javításai:

16

Sztochasztikus hegymászó: a szomszédok közül véletlenül választ, az ak-

tuális állapotnál jobbat, de nem feltétlenül a legjobbat. Lassabb, de ritkáb-

ban akad el, mint az egyszer¶ hegymászó.

Véletlen újraindított hegymászó: Ha nem találtunk célállapotot, akkor

véletlen kezd®pontból indítsuk újra az algoritmsut. Fontos, hogy itt az egyes

keresések között nincs információ megosztás. Bár sok függ a keresési tér

strukturájától, de ez egy nagyon hatékony algoritmus.

5.3. Szimulált h¶tés

Alapötlete a fémöntés techninkájának analógiáján nyugszik lényege, hogy az

aktuálisnál rosszabb értékeket is elfogad egyre csökken® valószín¶séggel. Leg-

fontosabb fogalom a h¶tési terv, ez határozza meg, hogy milyen valószín¶séggel

fogadunk el egy újabb "rossz" értéket.

Szimulált h¶tés

1: aktuális ← véletlen állapot; t ← 0

2: t← t+ 1;T ← h¶tési-terv(t)

3: if (T == 0) return aktuális

4: szomszéd ← aktuális egy véletlen szomszédja

5: d = f(szomszéd)− f(aktuális)
6: if (d > 0) aktuális ← szomszéd

7: else aktuális ← szomszéd exp(d/T) valószín¶séggel

8: goto 2:

Megfelel® h¶tési tervvel megtalálható vele a globális optimum.[9]

Futási id®: A h¶tési tervt®l sok minden függ, de általában O(n2) körüli

id® várható.

17

5.4. Nyaláb keresés

Populáció alapú keresés, azaz nem egy aktuális állapot van, hanem K db, ezt

hívjuk populációnak és a teljes populáció hatással van a következ® populáció

kiválasztására.[9]

Nyaláb keresés

1: aktuális[] ← K véletlen állapot

2: generáljuk mind a K állapot összes szomszédját

3: aktuális[]← K legjobb az összes szomszéd közül

4: if aktuális[i] célállapot valamely i-re return aktuális[i]

5: goto 2:

5.5. Genetikus algoritmus

Ez is populáció alapú keresés, de ki van b®vítve néhány operátorral:

Kombináció (cross over): a populáció egyedeit kettesével keresztezzük.

Itt azonban nem m¶ködik a hagyományos kereszezés, amit a String-

eknél használhatunk, mert akkor a keresztezés után nem részkört kap-

nánk, tehát oda kell �gyelni, hogy a TSP szabályt ne sértsük.

Mutáció: Néhány egyedben az egyedeken belül felcserélünk egy vagy több

elemet.

Szelekció: az új populáció egyedeinek kiválasztásához �tness (jósági vagy

cél-) függvényt használunk.

Hatékony genetikus algoritmus jelenleg nem ismert TSP-re. Szokás azonban

keverni más algoritmussal, például a mutáció egy lokális keresés. [9]

Futási id®: Az id®t meghatározza a feladat méretén kívül a populációk

mérete. A kilépési feltétel lehet egy adott �tness érték elérése vagy adott

számú populáció lefutása.

5.6. Tabu keresés (TS)

Mostanába nagyon felkapott és ténylegesen is hatékony meta-heurisztika. Az

ötlet, hogy:

18

• az aktuális populáció mellett eltároljuk az eddigi legjobb csúcsokat

• készítünk egy tabu listát az utóbbi néhány aktuális csúcsból

A tabu lista célja az, hogy elkerüljük a visszalépést egy nem túl régen

meglátogatott csúcsba.

Aspiráns kritérium: néha meg lehet szegni a tabu listát, például ha jobb

megoldást ad, mint az eddigi legjobb

Szétterjesztés (diverzi�káció): A még fel nem derített részeket is meglá-

togatjuk.

Feler®sítés: A jó értékek körüli környezetet alaposabban be kell járni.

Jelölt lista: Ha túl nagy az aktuális csúcsok környezete, akkor csak a k

legjobbat vizsgáljuk.

Iteratívan 1: kiválasztjuk a legjobb csúcsokat az aktuális csúcsok környezetéb®l

(kivéve a tabu listát)

2: ha az új csúcs jobb, mint az eddigi legjobbak közül valamelyik, akkor azt

lecseréljük

3: a fentiek alapján módosítjuk a tabu listát

Kilépési feltétel:

• ha a célfüggvény az eltárolt legjobb csúcsok halmazán optimális

• ha az adott populáció vagy a legjobb eltárolt csúcsok halmaza sokáig

nem változik

• túllépünk a költségkorláton (pl.: id®korlát)

[8]

5.7. Hangya kolóniás keresés (ant colony system)

A természetben a hangyák táplálék keresés közben a tápláléktól a bolyhoz

vissza vezet® úton feromont bocsátanak ki magukból, amit más hangyák is

19

nagy valószín¶séggel követni fognak, ha arra járnak és további feromont boc-

sátanak ki az úton, ezzel is növelve az úton a feromon szintet. Azonban a

feromon folyamatosan párolog, amíg el nem éri a nulla szintet (érdemes lehet

nem iterációnként csökkenteni az összes út feromon szintjét, mert akkor ne-

hezen tudunk felderítést végezni és esetleg csak lokális optimumok körül moz-

gunk, hanem csak csak az adott iterációban létrehozott utokon csökkentsük).

Egyes hangyafajokra jellemz®, hogy ha jobb min®ség¶ táplálékot (jobb

megoldást) találnak, akkor több fermont bocsátanak ki a vissza úton, ezzel

növelve annak valószín¶ségét, hogy más hangyák (ágensek) is azon az úton

induljanak el. Ha ugyan ahhoz a táplálékhoz több út is vezet, akkor a

rövidebb úton gyakrabban fordulnak a hangyák, aminek következtében ma-

gasabb lesz a feromon szint az adott úton, aminek következtében még több

hangya választja azt az utat és így egy id® után a másik út kiválasztódásának

valószín¶sége minimálisra csökken. Az egyes utakon a feromon szinteket az

F Feromon-mátrixban tartjuk nyilván; fij az ij csúcsok által kifeszített út

feromon szintjét mutatja.

Önmagában egy hangya, azaz az ágens igen korlátolt képességekkel bír,

azonban a teljes hangya kolónia igen hatékonyan oldja meg a különböz®

kombinatorikus optiamlizálási feladatokat, ráadásul könnyen adoptálható az

egyes feladat típusok között, így hozzárendelési feladatra, hátizsák feladatra,

ütemezési és TSP feladatokra is hamar elkészültek a megoldó eljárások.

pij =
fαij · 1

dij

β

∑
kεL[

1
dij

β
]

A fenti képlettel az i városból a j városba menés valószín¶ségét számoljuk

ki, ahol L a még látogatható városok halmaza, α és β pedig paraméterek,

amiket a futtatások során pontosíthatunk. fif és dij továbbra is rendre

jelöljék a feromon szintet és a távolságot ij csúcsok között.

20

A futási id® függ a kilépési feltételt®l és a futtatás során beállított

paraméterekt®l. [5]

21

Hivatkozások

[1] http://www.dc.�.udc.es/lidia/mariano/demos/tsp/lab3b.html.

[2] http://www.rpi.edu/ mitchj/papers/mitche2.pdf.

[3] V. Béla. Egész érték¶ programozás, typotex, 2006.

[4] T. Csendes. Optimalizálás alkalmazásai jegyzet.

[5] J. Dombi. Intelligens rendszerek, el®adásjegyzet.

[6] C. Imreh. http://www.inf.u-szeged.hu/ cimreh/5.pdf.

[7] C. Imreh. http://www.inf.u-szeged.hu/ cimreh/8.pdf.

[8] C. Imreh. Utazó ügynök és járattervez® algoritmusok, órai jogyzet.

[9] M. Jelasity. Mesterséges intelligencia el®adás jegyzet, 2009.

22

