
193

11. Utazó ügynök heurisztikák

A közeĺıtő eljárások létjogosultsága, hasznossága többféleképp indokol-
ható. Az NP-nehéz problémák esetén nem ismeretesek polinomkorlátos
műveletigényű megoldó eljárások. A rendelkezésre álló algoritmusok művelet-
igénye általában exponenciális függvénye a probléma méretének. Ennek
következtében a nagyobb méretű feladatok megoldásának időigénye annyira
nagy, hogy esetenként a megoldás nem realizálható. Így az NP-nehéz problé-
mák esetében létjogosultsága van közeĺıtő eljárásoknak. Ezek nem a tényleges
optimális megoldást szolgáltatják, hanem egy lehetséges megoldást ered-
ményeznek csak. Az ı́gy előálĺıtott lehetséges megoldással szemben alapvető
elvárás, hogy ”jó” legyen abban az értelemben, miszerint a hozzátartozó
célfüggvényérték közel legyen az optimumértékhez. Az ilyen t́ıpusú eljá-
rásokat szokásos heurisztikus eljárásoknak vagy egyszerűen heurisztikáknak
nevezni.

A korábbiakban megismerkedtünk a B&B eljárással, amely igen sok NP-
nehéz probléma esetében egy nagy műveletigényű algoritmus feléṕıtését teszi
lehetővé. Ezen eljárásokban a hatékonyság jav́ıtására felhasználhatók a ren-
delkezésre álló lehetséges megoldások. Minél jobb lehetséges megoldással
rendelkezünk, általában annál gyorsabb, hatékonyabb lesz a B&B eljárás.
Következésképp fontos az egyes problémacsoportokra olyan heurisztikák ki-
dolgozása, amelyek gyorsak (polinomkorlátos műveletigényűek) és olyan le-
hetséges megoldást szolgáltatnak, melynek célfüggvényértéke közel van az
optimumértékhez.

Az elmondottak kapcsán rögtön felvetődik a kérdés, hogy egy adott
heurisztikát miként lehet minőśıteni. Mikor mondhatjuk, hogy valamely
heurisztika jó? Az elmúlt évtizedekben a heurisztikák vizsgálatára az alábbi
három módszer alakult ki:

(1) legrosszabb esetek vizsgálata,

(2) valósźınűségi anaĺızis,

(3) empirikus anaĺızis.

A következőkben rövid áttekintést adunk ezen módszerekről.



194

Legrosszabb esetek vizsgálata

Tekintsünk egy C minimalizálási problémaosztályt és jelöljön A egy, a
tekintett problémák közeĺıtő megoldását szolgáltató heurisztikát. A prob-
lémaosztály tetszőleges P problémájára jelölje A(P ) a heurisztika által szol-
gáltatott lehetséges megoldáson felvett célfüggvényértéket és OPT(P ) az op-
timumértéket. Ekkor az A algoritmust egy c konstansra c - approximációs
algoritmusnak nevezzük, ha minden P probléma esetén A(P ) ≤ c ·OPT(P ).
A legkisebb c értéket, amelyre az algoritmus c - approximációs az algorit-
mus approximációs hányadosának nevezzük. Az approximációs hányados
egy további változata az aszimptotikus approximációs hányados. Az algorit-
musra minden pozit́ıv egész n-re definiáljuk az Rn(A) = sup{A(P )/OPT(P ) :
P ∈ C,OPT(P ) ≥ n} értéket, és amennyiben létezik az MA = limsupRn(A)
érték, az adja meg a heurisztika aszimptotikus approximációs hányadosát.
Az aszimptotikus approximációs hányados és az approximációs hányados
közötti lényeges különbség az, hogy az aszimptotikus hányados azon in-
putokra, ahol az optimális költség kicsi nem követeli meg, hogy a heurisztika
által adott megoldás az optimumhoz közeli érték legyen.

Az approximációs hányados illetve az aszimptotikus approximációs há-
nyados nagysága a különböző problémaosztályokra és a különböző heurisz-
tikákra más és más. Igen jó, 1 és 2 közé eső aszimptotikus approximációs
hányadosok adódtak számos bin-packing heurisztikára. Ezzel szemben az
általános utazó ügynök problémára 1976-ban Sahni és Gonzalez [?] iga-
zolták, hogy amennyiben létezik konstans approximációs hányados valamely
polinomkorlátos TSP-heurisztikára, akkor P=NP.

Az emĺıtett negat́ıv eredmény alapján akár el is vethetnénk a polinom-
korlátos TSP heurisztikák gondolatát. Azonban más problémaosztályoknál
nyert tapasztalatok alapján a legrosszabb esetek vizsgálatának eredménye
és az algoritmus gyakorlatban történő viselkedése között lényeges eltérés
lehet. Erre szemléletes példa a szimplex algoritmus. Az igen sok megoldásra
került lineáris programozási feladat alapján az átlagos iterációs lépésszám
közeĺıtőleg 3n, ahol n a feladat egyenleteinek számát jelöli. Másrészt is-
mert olyan lineáris programozási feladat (ld. [3]), amelyre az iterációs
lépésszám 2n. További ilyen jellegű észrevételek azt támasztják alá, hogy
az approximációs hányados bár lényeges információt ad az algoritmusról,
de ennek alapján nem itélhető meg maradéktalanul az algoritmus jósága.



195

További érv a TSP heurisztikák vizsgálatához, hogy bizonyos speciális TSP
feladatosztályokra léteznek viszonylag jó approximációs hányadossal ren-
delkező TSP heurisztikák .

Valósźınűségi anaĺızis

Ezekben a vizsgálatokban rögźıtett feladatméret mellett olyan P fela-
datot tekintenek, amelyben a paraméterek (együtthatók), mint független
valósźınűségi változók vannak megadva. Ekkor A(P ) és OPT (P ), valamint
hányadosuk is valósźınűségi változó, melynek várható értékéből egy átlagos
eltérésre lehet következtetni. Az ı́gy előálĺıtott mutatóval szemben kifogásol-
ható, hogy a paramétereket megadó valósźınűségi változók eloszlásaira tett
feltételek nagyban befolyásolják azt, ugyanakkor a feltételek nem feltétlenül
a problémaosztály jellemző tulajdonságait tükrözik. (Általában az egyenle-
tes eloszlást teszik fel a feladatban szereplő valósźınűségi változókra.)

Empirikus anaĺızis

Az ilyen t́ıpusú vizsgálatokban konkrét problémamegoldásokból nyert
eredmények alapján lehet bizonyos mutatókat képezni. A számı́tástechnika
fejlődése, a gyors, nagyteljeśıtményű számı́tógépek megjelenése lehetővé tette
azonos t́ıpusú nagyszámú probléma megoldását. Ezt kihasználva, rögźıtett
számtartományból valamilyen (általában egyenletes) eloszlás mellett vélet-
lenszerűen választva együtthatókat, majd az előálĺıtott konkrét problémák-
nak meghatározva az optimális, valamint a heurisztikus megoldását, képezhe-
tő a két célfüggvényérték hányadosa. Ezt elég sokszor ismételve, és átlagolva
a hányadosokat, egyfajta empirikus mérőszámot kapunk. A vázolt vizsgálat-
ban megkérdőjelezhető a választott eloszlás és számtartomány.

A fenti vázlatos áttekintésből kitűnik, hogy a heurisztikák jóságának
vizsgálata igen bonyolult és csak részben megvalóśıtható feladat. Általában
a heurisztikus eljárásokról az érdeklődők további meggondolásokat és részle-
teket találhatnak a [?] és [?] könyvekben. Mi a továbbiakban az egyszerűbb
TSP heurisztikák közül fogunk néhányat ismertetni.

Az elmúlt időszakban számos TSP heurisztika került kidolgozásra és
jelenleg is több kutató foglalkozik további eljárások feléṕıtésén, illetve a
meglévő eljárások vizsgálatával, jav́ıtásával (ld. pl. [?], [2], [5], [?]). A
különböző algoritmusok alapvetően három csoportba sorolhatók:



196

(1) körútéṕıtő eljárások,
(2) körút jav́ıtását szolgáló algoritmusok,
(3) kombinált eljárások ((1) és (2) kombinációi).

A továbbiakban ismertetésre kerülő heurisztikák egy eljárás kivételével
az (1) csoportba tartoznak. A tárgyalás egyszerűśıtésének érdekében jelölje
N az {1, . . . , n} halmazt.

Nearest addition

Előkésźıtő rész. Legyen r = 1, Ir = {1}, Er = {(1, 1)}. (Az 1 város lesz
az induló részkörút.) Térjünk rá az iterációs eljárásrészre.

Iterációs rész (r. iteráció)
Ha r = n, akkor vége az eljárásnak, az Er-beli élekből álló körút az

eljárással szolgáltatott lehetséges megoldás. Ellenkező esetben határozzunk
meg egy olyan j ∈ Ir, k ∈ N \ Ir indexpárt, amelyre

cjk = min
t∈N\Ir

{min{cst : s ∈ Ir}} .

Legyen Ir+1 = Ir ∪ {k}. Mivel j ∈ Ir, ezért pontosan egy olyan j′ ∈ Ir

index van, amelyre (j, j′) ∈ Er (r = 1 esetén j = j′). Ekkor legyen Er+1 =
(Er \ {(j, j′)}) ∪ {(j, k), (k, j′)}. Növeljük r értékét 1-gyel, és térjünk rá a
következő iterációs lépésre.

Az eljárás úgy szemléltethető, hogy rendelkezésünkre áll egy részkörút
(r = 1 esetén egyelemű részkörút). Ehhez kiválasztjuk a legközelebbi körúton
kivüli várost. (Itt a legközelebbi város úgy értendő, hogy vesszük a körút
pontjaiból a körúton kivüli pontokba vezető összes élet és ezen élek súlyainak
a minimumát, ez a cjk mennyiség.) Az ı́gy kiválasztott várossal bőv́ıtjük a
körutat úgy, hogy a hozzá legközelebb eső, a körútban szereplő j városból
ebbe a városba látogatunk, majd innen a j város j′ leszármazottjába. Az
alábbi ábra mutatja a beszúrási technikát. Az aktuális részkörútból töröljük
a (j, j′) élet és bőv́ıtjük a (j, k), (k, j′) élekkel.

j j’

k

11.1. ábra. Beszúrási technika.



197

A számı́tásokat nagyban megkönnýıti egy olyan távolságvektor használa-
ta, amely minden iterációs lépésben megadja az aktuális részkörúton kivüli
városoknak a részkörúttól való távolságát. Az első iterációs lépésben ez
a C mátrix első sorvektora az (1, 1) indexű elem kivételével. Egyszerűen
belátható, hogy amennyiben vr az r-edik iterációs lépésben a távolságvektor,
és ebben a lépésben a k várossal bőv́ıtjük a részkörutat, akkor vr+1-et
megkapjuk úgy, hogy a körúton ḱıvüli városokra rendre képezzük a vr vek-
tor megfelelő komponensének és a C mátrix k-adik sorában lévő megfelelő
célfüggvényegyütthatónak a minimumát.

Az eljárás demonstrálására alkalmazzuk a fenti heurisztikát az előzőekben
vizsgált 8-városos feladatra. Ekkor v1 = (−, 2, 11, 10, 8, 7, 6, 5). Így az
aktuális részkörúthoz (jelenleg az 1 várost tartalmazó részkörút) legközelebb
levő város a 2-vel jelzett. Bőv́ıtve 2-vel a részkörutat, az (1, 2), (2, 1) élekből
álló új részkörúthoz jutunk. A távolságvektort a következőképpen tudjuk
aktualizálni. A v1 vektor j-edik komponensének és c2j-nek kell képezni a
minimumát, ez lesz a v2 vektor j-edik komponense, ahol j = 3, . . . , 8. A
teljes eljárás végrehajtását az alábbi táblázatban foglaltuk össze, ahol az
aktuális részkörutat ciklikus permutációként adjuk meg.

r vr (j, k) részkörút

1 (−, 2∗, 11, 10, 8, 7, 6, 5) (1, 2) (1, 2)

2 (−,−, 1∗, 8, 8, 4, 6, 5) (2, 3) (1, 2, 3)

3 (−,−,−, 8, 8, 4, 3∗, 5) (3, 7) (1, 2, 3, 7)

4 (−,−,−, 8, 8, 4,−, 3∗) (7, 8) (1, 2, 3, 7, 8)

5 (−,−,−, 8, 6, 3∗,−,−) (8, 6) (1, 2, 3, 7, 8, 6)

6 (−,−,−, 2∗, 6,−,−,−) (6, 4) (1, 2, 3, 7, 8, 6, 4)

7 (−,−,−,−, 1∗,−,−,−) (4, 5) (1, 2, 3, 7, 8, 6, 4, 5)

A tekintett feladatra az eljárás most pontosan egy optimális megoldást
eredményezett. Ez egy kicsit megtévesztő. A vizsgált heurisztika nem ilyen
jó. Az előzőekből tudjuk, hogy az általános TSP-re a P �= NP feltétel mel-
lett nem létezik konstans approximációs hányados polinomkorlátos heurisz-
tikák esetében. A tárgyalt eljárásról egyszerűen belátható, hogy polinomkor-
látos, mégpedig o(n2) műveletigénnyel, ı́gy általános esetben nem várható
hozzá kosntans approximációs hányados.



198

Nearest insertion

Az eljárás ugyanúgy épül fel, mint az előző. Az eltérés annyi, hogy
nem a kiválasztott éllel bőv́ıtjük a részkörutat, hanem a kiválasztott, k-
val jelölt városra meghatározzuk k lehető legjobb (legkisebb költséggel járó)
beszúrását a részkörútba, és ezt hajtjuk végre.

Előkésźıtő rész. Legyen r = 1, Ir = {1}, Er = {(1, 1)}. Térjünk rá az
iterációs eljárásrészre.

Iterációs rész (r. iteráció)

Ha r = n, akkor vége az eljárásnak, az Er-beli élekből álló körút a
heurisztikával előálĺıtott lehetséges megoldás. Ellenkező esetben határozzunk
meg egy olyan j ∈ Ir, k ∈ N \ Ir indexpárt, amelyre

cjk = min
t∈N\Ir

{min{cst : s ∈ Ir}} .

Legyen Ir+1 = Ir ∪{k}, majd válasszunk egy olyan (u, v) ∈ Er élet, amelyre

δuv = cuk + ckv − cuv = min{csk + ckt − cst : (s, t) ∈ Er}.
Legyen Er+1 = (Er \ {(u, v)}) ∪ {(u, k), (k, v)}. Növeljük r értékét 1-gyel,
és folytassuk az eljárást a következő iterációs lépéssel.

Ezen eljárásnál is használható az előzőekben bevezetett távolságvektor.
A heurisztika bemutatására ismételten a 8-városos feladatot fogjuk használni.
A végrehajtás egyes lépéseit a következő táblázat tartalmazza.

r vr k (u, v) δuv részkörút

1 (−, 2∗, 11, 10, 8, 7, 6, 5) 2 (1, 1) - (1, 2)

2 (−,−, 1∗, 8, 8, 4, 6, 5) 3 (2, 1) 0 (1, 2, 3)

3 (−,−,−, 8, 8, 4, 3∗, 5) 7 (3, 1) 8 (1, 2, 3, 7)

4 (−,−,−, 8, 8, 4,−, 3∗) 8 (7, 1) 0 (1, 2, 3, 7, 8)

5 (−,−,−, 8, 6, 3∗,−,−) 6 (2, 3) 8 (1, 2, 6, 3, 7, 8)

6 (−,−,−, 2∗, 6,−,−,−) 4 (6, 3) 7 (1, 2, 6, 4, 3, 7, 8)

7 (−,−,−,−, 1∗,−,−,−) 5 (4, 3) 0 (1, 2, 6, 4, 5, 3, 7, 8)

A kapott körúthoz tartozó célfüggvényérték 31, az optimum értéke 26,
ı́gy a hányados 1.19. Az eljárással kapcsolatban megemĺıtjük, hogy művelet-
igénye o(n2), továbbá olyan speciális TSP feladatokra, melyek költségmátrixá-



199

ra teljesül a háromszögegyenlőtlenség és a költségmátrix szimmetrikus iga-
zolást nyert (ld. [?]), hogy ebben az esetben az approximációs hányados
2.

Farthest insertion

Az eljárás analóg az előzőhöz. Az eltérés csupán annyi, hogy az aktuális
részkörúttól legtávolabb levő várost választjuk ki, és ezt szúrjuk be a lehető
legkisebb költséggel a részkörútba.

Itt is használható a távolságvektor. A heurisztikát ismét a 8-városos
problémára alkalmazzuk, és a végrehajtás lépéseinek eredményét az alábbi
táblázat tartalmazza.

r vr k (u, v) δuv részkörút

1 (−, 2, 11∗, 10, 8, 7, 6, 5) 3 (1, 1) - (1, 3)

2 (−, 2,−, 10∗, 8, 7, 3, 5) 4 (1, 3) 9 (1, 4, 3)

3 (−, 2,−,−, 1, 7∗, 3, 5) 6 (1, 4) −1 (1, 6, 4, 3)

4 (−, 2,−,−, 1,−, 3, 5∗) 8 (1, 6) 1 (1, 8, 6, 4, 3)

5 (−, 2∗,−,−, 1,−, 1,−) 2 (4, 3) 0 (1, 8, 6, 4, 2, 3)

6 (−,−,−,−, 1∗,−, 1,−) 5 (4, 2) 3 (1, 8, 6, 4, 5, 2, 3)

7 (−,−,−,−,−,−, 1,−) 7 (1, 8) 4 (1, 7, 8, 6, 4, 5, 2, 3)

A kapott körúthoz tartozó célfüggvényérték 32.

Cheapest insertion

Hasonló az előzőekhez. A lényeges eltérés a részkörút bőv́ıtésére szolgáló
város kiválasztásában van. Minden, az aktuális részkörúton ḱıvüli k (∈
N \ Ir) városra kiszámı́tjuk, hogy mennyi az aktuális részkörútba történő
beszúrásának minimális költsége figyelembe véve az összes lehetséges beszú-
rásokat. Így minden k ∈ N \ Ir városra adódik egy beszúrási költség. Ezek
közül választunk egy minimálisat, és az ennek megfelelő város (minimális
költségű) beszúrásával bőv́ıtjük a körutat.

A heurisztika végrehajtását a vizsgált példán szemléltetjük.



200

r k (u, v) δuv részkörút

1 2 (1, 1) - (1, 2)

2 3 (2, 1) 0 (1, 2, 3)

3 6 (2, 3) 8 (1, 2, 6, 3)

4 5 (2, 6) 6 (1, 2, 5, 6, 3)

5 4 (2, 5) 1 (1, 2, 4, 5, 6, 3)

6 7 (2, 4) 8 (1, 2, 7, 4, 5, 6, 3)

7 8 (2, 7) 2 (1, 2, 8, 7, 4, 5, 6, 3)

A kapott körúthoz tartozó célfüggvényérték 33. Az eljárás műveletigénye
o(n3). A [?] dolgozatban igazolást nyert, hogy a már emĺıtett speciális TSP-k
esetében (szimmetrikus költségmátrixúak, amelyekre teljesül a háromszöge-
gyenlőtlenség) az eljárás approxmációs hányadosa 2.

Tekintettel arra, hogy az ismertetett eljárások mindegyike igen gyors,
továbbá az előálĺıtott körút függ a kiinduló várostól (mi ezt rendre 1-nek
választottuk), lehetséges ugyanazt a heurisztikát többször is végrehajtani
más és más kiindulási városokkal, majd az előálló körutak közül venni a
legjobbat.

A tárgyalt heurisztikákat illetően egymástól függetlenül Adrabinski és
Syslo [?], valamint Golden és társai [?] végeztek empirikus vizsgálatokat.
A kapott eredmények azt mutatják, hogy a farthest insertion eljárás jobb
értékeket szolgáltat általában, mint a másik három algoritmus. A következő
táblázatban szereplő számsorokat a [?] munkából gyűjtöttük ki. Az adatok 5
darab 100× 100-as euklidesi TSP-re vonatkoznak. (A városok egy euklidesi
tér valamely śıkjában vannak és távolságuk a térben a pontok távolsága.)
A táblázatban azt adjuk meg, hogy a közeĺıtő megoldás célfüggvényértéke
hány százaléka az optimum értékének.

Nearest insertion (all cities) 118.69 117.81 122.96 114.44 120.33
Farthest insertion (all cities) 105.14 106.97 103.17 101.99 107.42
Cheapest insertion (all cities) 112.07 111.67 120.83 112.97 112.16

A következő eredményeket Adrabinski és Syslo [?] munkájából gyűjtöttük
ki. (A feladatok méretei rendre n = 20, 27, 42, 57, 120).



201

Nearest addition (one city) 186.58 113.88 111.02 114.76 121.78
Nearest insertion (one city) 138.21 106.89 110.87 109.25 117.27
Farthest insertion (one city) 128.45 100.35 101.43 101.28 103.06

Patching eljárások

A ćımben szereplő heurisztikák a hozzárendelési feladat és az utazó
ügynök problémák kapcsolatára épülnek, és a következő észrevételen ala-
pulnak. Oldjuk meg a megfelelő hozzárendelési feladatot. Ha az optimális
megoldás körút, akkor megkaptuk a TSP optimális megoldását. Ellenkező
esetben az optimális hozzárendelésnek megfelelő gráf diszjunkt részkörutak
egyeśıtése. Ezen részkörutak számáról bizonýıtást nyert, hogy amenny-
iben a költségmátrix elemeit egyenletes eloszlás alapján generáljuk, akkor a
részkörútak számának várható értéke log(n). Így a részkörutak kis költséggel
járó összekapcsolása, összefűzése egy jó heurisztikus megoldást eredményez-
het. Attól függően, hogy miként kapcsoljuk össze a részkörutakat, különböző
algoritmusok éṕıthetők fel. A továbbiakban két ilyen t́ıpusú eljárást fogunk
ismertetni.

2-patching eljárás

Tekintsünk két részkörutat. Jelölje I, J az egyes részkörutakban szereplő
városok halmazát, továbbá tetszőleges k városra jelölje k′ a k leszármazottját
a k-t tartalmazó részkörútban. Legyen i ∈ I és j ∈ J . Akkor törölve a
részkörutakból az (i, i′), (j, j′) éleket, és felvéve az (i, j′), (j, i′) éleket, olyan
részkörutat kapunk, amely az I ∪ J-beli városokat tartalmazza. Az alábbi
ábra mutatja az összekapcsolást.

i

i’

j’

j

11.2. ábra. A két részkörút összevonása.



202

A két kör összefűzésével keletkező költséget egyszerűen megkaphatjuk,
ez cij′ + cji′ − cii′ − cjj′ . Véve ezeket a költségeket az összes i ∈ I és j ∈ J
indexpárra, majd képezve ezek minimumát, megkapjuk a két részkör ilyen
t́ıpusú ”összekapcsolására” vonatkozó minimális költséget. Ezt 2-patching
költségnek és a részkörutak megfelelő összekapcsolását 2-patching műveletnek
nevezzük. Ezek után feléṕıthető az alábbi eljárás, amelyet R. M. Karp
publikált 1979-ben a [?] dolgozatban.

Eljárás ([?])

Előkésźıtő rész. Oldjuk meg az A(C) hozzárendelési feladatot. Ha A(C)
optimális megoldása körút, akkor vége az eljárásnak. Ellenkező esetben
térjünk rá az iterációs eljárásrészre.

Iterációs rész. Válasszunk ki két legkisebb városszámú részkörutat és
kapcsoljuk össze őket egy alkalmas 2-patching művelettel. Ha az előálló új
megoldás (hozzárendelés) körút, akkor vége az eljárásnak. Ellenkező esetben
térjünk rá a következő iterációra.

Az eljárás demonstrálására tekintsük ismét az előző példát. A hozzáren-
delési feladat optimális megoldása a következő három részkörútból áll.

2 5 7

8

1 3 64

11.3. ábra. A kapott három részkörút.

Válasszuk ki a második és harmadik részkörutat. A kiválasztott rész-
körutakra a következő táblázatban adjuk meg a 2-patching költségeket. (A
költségek számı́tásánál az A(0) mátrixot használtuk.)



203

i j költség

4 7 c
(0)
48 + c

(0)
75 − c

(0)
45 − c

(0)
78 = 9 + 6 = 15

4 8 c
(0)
47 + c

(0)
85 − c

(0)
45 − c

(0)
87 = 7 + 5 = 12

5 7 c
(0)
58 + c

(0)
76 − c

(0)
56 − c

(0)
78 = 7 + 9 = 16

5 8 c
(0)
57 + c

(0)
86 − c

(0)
56 − c

(0)
87 = 8 + 2 = 10∗

6 7 c
(0)
68 + c

(0)
74 − c

(0)
64 − c

(0)
78 = 7 + 7 = 14

6 8 c
(0)
67 + c

(0)
84 − c

(0)
64 − c

(0)
87 = 9 + 9 = 18

A 2-patching költség 10. A megfelelő 2-patching művelet során az (5, 7) és
(8, 6) éleket kell felvenni és az (5, 6), (8, 7) éleket kell törölni. Az új megoldás
a 11.4. ábrán megadott két részkörútból áll:

1

2

3

4

5

7

8
6

11.4. ábra. Részkörutak az összevonás után.

Kiszámı́tva a fenti két körre a 2-patching költséget, az i = 3, j = 5 esetben
kapjuk a minimumot. Törölve a (3, 1), (5, 7) éleket, valamint felvéve a (3, 7),
(5, 1) éleket, az alábbi körutat kapjuk, amely éppen egy optimális megoldás.

2 7

5

1

3

8

6

4

11.5. ábra. A 2-patching eljárśsal nyert optimális megoldás.



204

Az ismertetett 2-patching eljárásra J. M. Steele és R. M. Karp végzett
valósźınűségi anaĺızist (ld. [?]). Igazolták, hogy a [0,1] intervallumon egyen-
letes eloszlású független valósźınűségi változók esetén a közeĺıtő érték és az
optimumérték hányadosának várható értéke 1 + o(n− 1

2 ).

3-patching eljárás

Kettőnél több kör összekapcsolása hatékonyabb eljárást eredményezhet.
Ezen az észrevételen alapul a [?] dolgozatban közölt 3-patching eljárás,
melynek megadásához szükségesek bizonyos előkészületek.

Tekintsünk három részkörutat. Jelölje rendre I, J,K a részkörutakban
szereplő városok halmazát. Legyen i ∈ I, j ∈ J , k ∈ K, továbbá jelölje
i′, j′, k′ rendre az i, j, k leszármazottait az I, J,K halmazokhoz tartozó rész-
körutakban. Akkor törölve az (i, i′), (j, j′), (k, k′) éleket, és felvéve az (i, j′),
(j, k′), (k, i′) éleket, a három részkörutat egyetlen részkörútba (körútba)
tudjuk egyeśıteni. A 11.6. ábra szemlélteti a három részkörút egyeśıtését.

i’

i

j’ j

k’

k

11.6. ábra. Három részkörút összekapcsolása.

A három részkörút tekintett összekapcsolásának költsége:

cij′ + cjk′ + cki′ − cii′ − cjj′ − ckk′ .

Rendre meghatározva ezeket a költségeket minden i ∈ I, j ∈ J , k ∈
K indexre, megkapjuk a három részkörút ilyen t́ıpusú összekapcsolására
vonatkozó minimális költséget. Ezt a költséget 3-patching költségnek, és a
részkörutak ennek megfelelő összekapcsolását 3-patching műveletnek nevez-
zük.

Ezek után feléṕıthető a következő heurisztikus eljárás.



205

Eljárás

Előkésźıtő rész. Oldjuk meg az A(C) hozzárendelési feladatot. Ha A(C)
optimális megoldása körút, akkor vége az eljárásnak. Ellenkező esetben
térjünk rá az iterációs eljárásrészre.

Iterációs rész

• 1. lépés. Jelölje m az aktuális hozzárendelés részkörútjainak a számát.
Ha m ≤ 9, akkor a 2. lépés következik. Ellenkező esetben ren-
dezzük a részkörutakat elemszámuk tágabb értelemben vett növekvő
sorrendjébe. Jelölje a rendezett sorozatot U1, . . . , Um. Számı́tsuk
ki a drs 2-patching költségeket az Ur, Um−l+s részkörutakra minden
1 ≤ r ≤ l, 1 ≤ s ≤ l indexpárra, ahol l = [m/2]. Oldjuk meg
a (dij) költségmátrixú l × l-es hozzárendelési feladatot, és jelölje az
optimális hozzárendelést ϕ. Hajtsunk végre egy drϕ(r) költségű 2-
patching műveletet az Ur, Um−l+ϕ(r) részkörutakon minden 1 ≤ r ≤ l
indexre. Az ı́gy képezett részkörutak által meghatározott hozzáren-
delést tekintve aktuális hozzárendelésnek, folytassuk az eljárást az 1.
lépés ismétlésével.

• 2. lépés. Ha az aktuális hozzárendelés körút, akkor vége az eljárásnak.
Ellenkező esetben, ha m < 3, akkor hajtsunk végre a két részkörúton
egy 2-patching műveletet, és vége az eljárásnak. m ≥ 3 esetén hatá-
rozzunk meg a részkörutak közül három olyan részkörutat, amelyek
3-patching költsége minimális. Hajtsunk végre a kiválasztott három
részkörúton egy, a minimális költségnek megfelelő 3-patching műveletet.
Az új hozzárendelést tekintve aktuális hozzárendelésnek, és részkörút-
jainak számát az aktuális m-nek, folytassuk az eljárást a 2. lépés
ismétlésével.

A fenti eljárásban m > 9 esetén a kis köröket párośıtjuk a nagy körökkel,
és olyan párośıtásra törekszünk, hogy az összepárośıtott köröket összefűzve,
a költségek növekedése ne legyen jelentős. A 9 konstans használatát az
indokolja, hogy fixpont nélküli permutációk esetében a részkörök számának
várható értéke közeĺıtőleg log(n), ahol n a városok számát jelöli. Végül az
eljárás hatékony végrehajtásához bevezethető egy 3-dimenziós tömb, amely



206

a részkörutakra a 3-patching költségeket tartalmazza. Az első ilyen tömb
alapján a további tömbök már viszonylag kis műveletigénnyel kiszámı́thatók.

Az eljárás szemléltetésére tekintsük ismét a korábbiakban vizsgált 8-
városos feladatot. A megfelelő hozzárendelési feladat optimális megoldása
az (1, 2), (2, 3), (3, 1), a (4, 5), (5, 6), (6, 4) és a (7, 8), (8, 7) éleket tartalmazó
részkörutakból áll. A cij′ + cjk′ + cki′ − cii′ − cjj′ − ckk′ költségeket ∆ijk-val
jelölve, a konkrét értékeket a következő táblázatban adtuk meg:

i j k ∆ijk i j k ∆ijk i j k ∆ijk i j k ∆ijk

1 4 7 23 2 5 8 20 1 7 4 17 2 8 4 19

1 4 8 22 2 6 7 23 1 7 5 21 2 8 5 14

1 5 7 20 2 6 8 25 1 7 6 16 2 8 6 17

1 5 8 22 3 4 7 19 1 8 4 17 3 7 4 22

1 6 7 23 3 4 8 16 1 8 5 15 3 7 5 24

1 6 8 26 3 5 7 21 1 8 6 19 3 7 6 23

2 4 7 25 3 5 8 21 2 7 4 21 3 8 4 13

2 4 8 23 3 6 7 20 2 7 5 22 3 8 5 9∗

2 5 7 19 3 6 8 21 2 7 6 16 3 8 6 17

Az i = 3, j = 8 és k = 5 indexekre kapjuk a legkisebb értéket. Végrehajtva
a megfelelő 3-patching műveletet, az alábbi körút adódik, amely speciálisan
optimális megoldás is.

2 7

5

1

3

8

6

4
11.7. ábra. A 3-patching eljárással nyert optimális megoldás.



207

Az ismertetett eljárásokkal kapcsolatosan a [?] munkában egy empirikus
anaĺızis található, amelyben ezen eljárások nyertek összehasonĺıtást. A vizs-
gálatok során rendre minden tekintett méret mellett 100-100 probléma került
generálásra. A célfüggvényegyütthatók a 0, 1, . . . , 100 egészek közül egyen-
letes eloszlás mellett lettek generálva. A számı́tógépes vizsgálat eredmé-
nyét a következő táblázatban foglaltuk össze. Négy városszámra, az n =
100, n = 150, n = 200 és n = 250 városszámokra történt a 100-100
utazó ügynök probléma generálása. A táblázat baloldala tartalmazza a
vizsgált eljárásokat, és a megfelelő sor adja meg az illető eljáráshoz tartozó
értékeket. Minden városméretre az első oszlop adja meg az érintett eljárással
meghatározott célfüggvényértékek valamint az optimumértékek hányadosai-
nak átlagát, a második oszlop tartalmazza az érintett eljárás futási idejeinek
átlagát, végül a harmadik oszlop azt mutatja, hogy az érintett eljárás hány
esetben szolgáltatta a legjobb célfüggvényértéket. Ez a B&B eljárásnál üres
maradt, mivel ez mindig az optimális megoldást szolgáltatja.

n = 100 n = 150 n = 200 n = 250
average
ratio

average
sec.

best
value

average
ratio

average
sec.

best
value

average
ratio

average
sec.

best
value

average
ratio

average
sec.

best
value

B&B 1.000 40.78 - 1.000 87.69 - 1.000 194.1 - 1.000 320.9 -
3-patching

k=5 1.054 19.53 88 1.056 58.55 81 1.052 190.2 82 1.059 370.8 80

3-patching
k=3 1.061 11.60 70 1.063 34.93 67 1.061 122.0 54 1.078 218.6 48

3-patching
k=1 1.069 3.84 55 1.096 11.90 39 1.094 39.8 25 1.134 72.6 24

2-patching
k=5 1.090 11.14 33 1.082 29.70 38 1.069 88.4 40 1.101 158.3 37

2-patching
k=3 1.092 6.69 28 1.097 17.92 26 1.085 53.1 27 1.119 94.8 23

2-patching
k=1 1.108 2.21 21 1.127 6.04 15 1.127 17.7 13 1.177 31.5 12

cheapest
insertion 4.654 7.77 0 6.794 37.48 0 9.934 89.7 0 18.11 175.4 0

nearest
insertion 4.392 9.19 0 7.047 43.66 0 11.39 104.6 0 18.60 205.1 0

farthest
insertion 4.534 8.76 0 7.110 43.71 0 11.39 104.6 0 18.60 205.3 0

nearest
addition 18.43 7.09 0 33.84 32.72 0 57.51 77.0 0 98.43 149.7 0

A fenti táblázat szépen mutatja, a következő tendenciákat. Valamennyi
patching eljárás egészen jó szuboptimális megoldásokat szolgáltat, és ez a
”jóság” nem változik szignifikánsan a feladatok méretének növekedésével.



208

Ezzel szemben a különböző beszúrási eljárásokra azt tapasztalhatjuk, hogy
az általuk meghatározott lehetséges megoldások célfüggvényértéke többszö-
röse az optimumértéknek es ez szignifikánsan romlik a feladatok méreteinek
növekedésével.

Az eddig bemutatott heurisztikus eljárások mindegyike az általános e-
setre (a költségmátrixról nem tételezünk fel semmit) lett kifejlesztve. Ettől
függetlenül ezek az eljárások alkalmazhatók olyan TSP feladatosztályokra,
ahol a költségmátrixokra különböző megszoŕıtásokat teszünk. A bemutatott
eljárásokhoz fűzött megjegyzések azt mutatják, hogy bizonyos megszoŕıtások
mellett a heurisztikák viselkedéséről többet tudunk álĺıtani.

A továbbiakban speciális TSP feladatosztályokat vizsgálunk és ezekre
kifejlesztett heurisztikus eljárásokat mutatunk be. Elsőként a szimmetrikus
esetet vizsgáljuk (cij = cji, i = 1, . . . , n; j = 1, . . . , n), ami megfelel az
iránýıtatlan gráfok esetének, és erre adunk meg egy körútjav́ıtó heurisztikus
eljárást.

Az ismertetésre kerülő eljárás azon az észrevételen alapul, hogy amennyi-
ben adott egy körút, úgy abból törölve két nem szomszédos élet, a körút
két diszjunkt útra esik szét. Ezek után létezik két olyan egyértelműen
meghatározott él, hogy ezekkel bőv́ıtve a két útból álló gráfot, az eredmény
egy másik körút lesz. (Például, ha az (1, 2), . . . (4, 5), (1, 5) élekből álló körút-
ból töröljük a (2, 3) és (4, 5) éleket, akkor az előálló két útból csak a (2, 4)
és (3, 5) élek felvételével késźıthető körút. A továbbiak egyszerűśıtésének
érdekében nevezzünk az X̄ körút szomszédjának minden olyan körutat, amely
előáll X̄-ből két él törlésével, és két új él felvételével. Egyszerűen belátható,
hogy X̄n×n szomszédjainak a száma n(n− 3)/2, ha önmagát nem számı́tjuk
szomszédnak.

2-optimális eljárás

Előkésźıtő rész. Határozzuk meg valamilyen eljárással a feladat egy X̄
körútját. Legyen X(0) = X̄, r = 0, és térjünk rá az iterációs részre.

Iterációs rész (r. iteráció)

• 1. lépés. Határozzuk meg X(r) összes szomszédját. Ha X(r) minden X̄
szomszédjára z(X(r)) ≤ z(X̄) teljesül, akkor vége az eljárásnak, X(r)

az eljárással előálĺıtott körút. Ellenkező esetben a 2. lépés következik.

• 2. lépés. Jelöljön X̄ X(r) szomszédjai közül egy olyan körutat, ame-
lyen a z függvény a szomszédokra vonatkozóan minimális értéket vesz
fel. Legyen X(r+1) = X̄, növeljük r értékét eggyel, és térjünk rá a
következő iterációs lépésre.



209

Az eljárás bemutatására tekintsük a következő példát.

11.1. példa. Tekintsük azt az 5 városos utazó ügynök feladatot, amely-
nek költségmátrixa az alábbi C mátrix és legyen az induló körútunk az a
körút, amely az

X(0) : 1 −−2 −−3 −−4 −−5 −−1
sorrendben megy végig a városokon. Ekkor z(X(0)) = 20.

C =




3 4 1 2
2 5 3

6 2
7




A kiindulási körút szomszédjait tartalmazza a következő táblázat.

r törölt élek X(r) szomszédja z(X̄)
0 (1, 2), (3, 4) 1−3−2−4−5−1 20
0 (1, 2), (4, 5) 1−4−3−2−5−1 14
0 (2, 3), (4, 5) 1−2−4−3−5−1 18
0 (2, 3), (1, 5) 1−2−5−4−3−1 23
0 (3, 4), (1, 5) 1−2−3−5−4−1 15

Tehát
X(1) : 1 −−4 −−3 −−2 −−5 −−1, z(X(1)) = 14.

Az eljárás következő iterációs lépésében számolt szonszédokat tartal-
mazza a következő táblázat.

r törölt élek X(r) szomszédja z(X̄)
1 (1, 4), (2, 3) 1−3−4−2−5−1 20
1 (1, 4), (2, 5) 1−2−3−4−5−1 20
1 (3, 4), (2, 5) 1−4−2−3−5−1 12
1 (1, 5), (3, 4) 1−3−2−5−4−1 17
1 (2, 3), (1, 5) 1−4−3−5−2−1 15

Ekkor
X(2) : 1 −−4 −−2 −−3 −−5 −−1, z(X(2)) = 12.

Az eljárás által a következő iterációs lépésben számolt szonszédokat tar-
talmazza a következő táblázat.



210

r törölt élek X(r) szomszédja z(X̄)
2 (1, 4), (2, 3) 1−2−4−3−5−1 18
2 (1, 4), (3, 5) 1−3−2−4−5−1 20
2 (2, 4), (3, 5) 1−4−3−2−5−1 14
2 (2, 4), (1, 5) 1−4−5−3−2−1 15
2 (2, 3), (1, 5) 1−4−2−5−3−1 15

Ekkor X(2) minden X̄ szomszédjára z(X(2)) ≤ z(X̄) teljesül, ı́gy vége az
eljárásnak, és a heurisztika által kapott megoldás az (1, 4, 2, 3, 5, 1) körút.

A fejezet hátralevő részében olyan TSP problémákat vizsgálunk, ame-
lyekben a költségmátrix szimmetrikus és teljesül a háromszögegyenlőtlenség.
Az ilyen mátrixok esetére ismertetünk egy 3/2-approximációs heurisztikát.

Az eljárás ismertetéséhez a probléma gráfelméleti reprezentációját hasz-
náljuk. A problémához egy teljes (bármely két pont között megy él) irá-
nýıtatlan hálózatot rendelünk, amelynek csúcsai a városoknak felelnek meg,
és az éleken a hosszak a két várost összekötő út hosszai. A feladat ekkor
az, hogy megtaláljuk azt az összes ponton átmenő kört, amelyre a körben
szereplő élek hosszainak összege minimális.

Az eljárás megadásához szükségünk lesz a következő defińıcióra. Egy
Euler féle multigráf Euler körének a rövid́ıtésén pontoknak azt a sorozatát
értjük, amelyet úgy kapunk, hogy a körben minden csúcsnak csak az első
előfordulását tartjuk meg, amennyiben többször is szerepel a további előfor-
dulásait töröljük a pontok listájából.

11.2. példa A 2.5. példában tekintett multigráfra meghatározott Euler
kör pontok sorozatával a következőképpen ı́rható le: (1, 6, 5, 4, 3, 2, 5, 2, 1).
Az Euler kör rövid́ıtése az (1, 6, 5, 4, 3, 2) pontsorozatot adja meg.

Egy Euler kör rövid́ıtése pontok egy sorbarendezését adja meg, amelyből
egy körutat kapunk, ha a kezdőpontot összekötjük a végponttal. Amenny-
iben a pontok multigráfjához tartozó élekre teljesül a háromszögegyenlőtlen-
ség, akkor az Euler körben szereplő élek súlyainak összegére és a rövid́ıtéshez
tartozó körútban szereplő élek hosszainak összegére teljesül a következő
álĺıtás.

11.1. segédtétel A rövid́ıtéshez tartozó körútban az élek súlyainak
összege legfeljebb annyi, mint az Euler körben az élek súlyainak összege.

Bizonýıtás. Legyen (p1, . . . , pn) a rövid́ıtésben a pontok sorozata. A
továbbiakban a pn+1 pontot a p1 pontnak feleltetjük meg. Jelölje az Euler



211

körben a pi és pi+1 pontok első előfordulásai közötti pontokat qi1, . . . , qiki
,

ahol a pontok ezen sorozata üres is lehet.
A háromszög egyenlőtlenséget alkalmazva többször egymás után adódik,

hogy minden i-re teljesül cpipi+1 ≤ cpiqi1 +
∑ki−1

j=1 cqij ,qi,j+1 + cqiki
pi+1 . Ezen

értékeket összegezve adódik a segédtétel álĺıtása.

A Euler körök rövid́ıtésének alkalmazásával megadhatjuk Christofides
heurisztikus algoritmusát.

Christofides eljárása ([1])

• 1. lépés. Határozzunk meg a feladatot léıró G hálózatban egy minimális
fesźıtőfát Kruskal algoritmusa alapján. Jelölje ezt a fát T .

• 2. lépés. Legyen G′ az a részgráfja G-nek, amelynek a pontjai T
páratlan fokszámú pontjai, és az élei G azon élei, amelyek ezen pontok
között mennek. Határozzuk meg a 3.3. fejezetben léırt algoritmus
alapján G′ egy minimális költségű teljes párośıtását. Egésźıtsük ki a
párośıtásban szereplő élekkel a T fát.

• 3. lépés. Az ı́gy kapott multigráfban határozzunk meg egy Euler kört.

• 4. lépés. Vegyük a kapott Euler kör rövid́ıtését, a rövid́ıtéshez tartozó
körút a heurisztikával előálĺıtott megoldás.

Elsőként igazoljuk, hogy az eljárás végrehajtható.

11.2. segédtétel A Christofides eljárásban megadott lépések mindegyike
végrehajtható, és az eredmény egy körút lesz.

Bizonýıtás. Mivel a kiindulási gráf egy teljes gráf, ezért összefüggő,
ı́gy Kruskal algoritmusa valóban egy fesźıtőfát ad eredményül. Mivel egy
gráfban a csúcsok fokszámainak összege az élek számának kétszerese (min-
den élt beszámolunk mindkét végpontjánál), ezért a fokszámok összege páros.
Másrészt ha a fokszámok összege páros, akkor páros azon pontoknak a
száma, amelyeknek páratlan a fokszáma. Így a 2. lépésben tekintett G
gráfnak páros számú csúcsa van, továbbá a gráf teljes, ı́gy a párośıtási fela-
datnak van optimális megoldása. A megoldásban szereplő éleket hozzávéve
T -hez egy olyan összefüggő multigráfhoz jutunk, amelyben minden csúcs
fokszáma páros (azon pontok fokszáma, amelyeké páratlan volt 1-el növekszik).
Tehát a multigráf kieléǵıti a 2.1. tétel feltételeit, ı́gy van Euler köre, tehát
a 3. lépés végrehajtható. Mivel az Euler kör rövid́ıtése során valóban



212

egy körútat kapunk, azért a 4. lépés után egy lehetséges megoldáshoz ju-
tunk. Fontos megjegyeznünk, hogy mivel minden lépés polinomiális időben
végrehajtható, ezért a teljes algoritmus is.

Az algoritmus egy optimálishoz közeli megoldást ad, miként azt a következő
álĺıtás mutatja.

11.1. tétel Christofides heurisztikus algoritmusa 3/2-approximációs al-
goritmus.

Bizonýıtás Tekintsünk egy tetszőleges P TSP problémát. Jelölje az
eljárás első lépése során kapott T fesźıtőfa hosszát c(T ). Jelölje a második
lépésben megkonstruált párośıtásra a párośıtásban szereplő élek összhosszát
c(M). Végül jelöljük a probléma optimális megoldásának a költségét OPT(P )-
vel.

Elsőként vegyük észre, hogy egy körútból elhagyva bármely élét egy
fesźıtőfát kapunk, ı́gy a minimális fesźıtőfa hossza kisebb, mint az optimális
körút költsége, azaz c(T ) ≤ OPT (P ).

Most vizsgáljuk a párośıtás költségét. Legyenek p1, p2, . . . , p2j a T fesźı-
tőfa páratlan fokszámú pontjai. Az általánosság megszoŕıtása nélkül felte-
hetjük, hogy ezek a pontok ilyen sorrendben helyezkednek el a P probléma
optimális megoldást adó körútjában is, hiszen ezt a pontok átindexelésével
elérhetjük. Másrészt ekkor a 11.1 segédtétel bizonýıtásához hasonlóan a
háromszögegyenlőtlenség többszöri alkalmazásával azt kapjuk, hogy a cpi,pi+1

távolság legfeljebb annyi mint az optimális körútban a pi és a pi+1 pon-
tokat összekötő útszakaszban az élek hosszainak összege. Következésképpen∑2j−1

i=1 cpi,pi+1+ cp2j ,p1 ≤ OPT (P ).
Vegyük a következő párośıtásait a p1, p2, . . . , p2j pontoknak. Legyen M1

a (pn, p1) és a (p2i, p2i+1), (i = 1, . . . , j − 1) pontpárokat összekötő élek
halmaza, M2 pedig a (p2i+1, p2i+2), (i = 0, . . . , j − 1) pontpárokat összekötő
élek halmaza. Ekkor a két párośıtás költségének az összege

∑2j−1
i=1 cpi,pi+1+

cp2j ,p1 ≤ OPT (P ). Ezen észrevétel alapján adódik, hogy a két párośıtás
közül arra, amelynek kisebb a költsége, ez a költség legfeljebb OPT (P )/2,
másrészt ebből következik, hogy c(M) ≤ OPT (P ).

A c(T ) és c(M) értékekre adott becsléseink alapján adódik, hogy az
eljárás 3. lépésében megkonstruált Euler körben az élek hosszainak az
összege legfeljebb 3

2OPT (P ), amiből a 11.1. segédtétel alapján adódik, hogy
a heurisztika által szolgáltatott megoldásban is legfeljebb 3

2OPT (P ) az élek
hosszainak az összege, amivel a tétel álĺıtását igazoltuk.

A fejezet lezárásként a következő példán mutatjuk be Christofides algo-
ritmusát.



213

11.3. példa. Tekintsük azt az 5 városos utazó ügynök feladatot, amely-
nek költségmátrixa az alábbi C mátrix

C =




2 3 3 5
4 4 2

3 3
6




Elsőként hajtsuk végre Kruskal algoritmusát. Az algoritmus a következő
éleket választja ki a megadott sorrendben (1, 2), (2, 5), (1, 3), (1, 4). A kapott
fesźıtőfa hossza 10. A fesźıtőfában a páratlan fokszámú pontok 1, 3, 4, 5.
Megoldva az ezen pontokból és a közöttük futó élekből álló gráfra a párośıtási
problémát, azt kapjuk, hogy a minimális költségű teljes párośıtás az (1, 4)
és (3, 5) éleket tartalmazza, és a párośıtás költség 6. Tehát a 3. lépésben
vizsgált multigráfnak az élei (1, 2), (1, 3), (1, 4), (1, 4), (2, 5), (3, 5). Az Euler
kört kereső algoritmus a következő pontsorozatot adja vissza 1, 2, 5, 3, 1, 4, 1.
Ezen Euler körnek a rövid́ıtése az 1, 2, 5, 3, 4 sorrendje a pontoknak, ı́gy a
Christofides algoritmus által adott körút az 1 − 2 − 5 − 3 − 4 − 1, amely
körútnak a költsége 13.



214



Bibliography

[1] Christofides, N. Worst-case analysis of a new heuristic for the travel-
ing salesman problem. Technical report, Graduate School of Industrial
Administration, Carnegie-Mellon University, Pittsburgh PA, 1976.

[2] Johnson, D. S., L. A. McGeoch, The traveling salesman problem: A
case study in local optimization, in: Local Search in Combinatorial
Optimization, (eds.: E. H. L. , Aarts, J. K. Lenstra), Wiley, New York,
1997, 215-310.

[3] Klee, V., G. J. Minty, How good is the the simplex algorithm?, in:
Inequalities, III, (ed.: O. Shisha), Academic Press, New York, 1972,
159-175.

[4] Lin, S., Computer Solutions of the Traveling Salesman Problem, Bell
Syst. Tech. J. 44 (1965), 2245-2269.

[5] Reinelt, G., The Traveling Salesman: Computational Solutions for TSP
Applications, Springer-Verlag, Berlin, 1994.

215


