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11. Utazé ugynok heurisztikak

A kozelit6 eljardsok létjogosultsiga, hasznossiga tobbféleképp indokol-
haté. Az NP-nehéz problémdk esetén nem ismeretesek polinomkorlatos
miiveletigény(i megoldd eljarasok. A rendelkezésre all6 algoritmusok miivelet-
igénye altaldban exponencidlis fliggvénye a probléma méretének. Ennek
kdvetkeztében a nagyobb méretli feladatok megolddsanak id6igénye annyira
nagy, hogy esetenként a megoldas nem realizalhato. fgy az NP-nehéz problé-
mak esetében létjogosultsaga van kozelito eljardsoknak. Ezek nem a tényleges
optimalis megoldast szolgaltatjik, hanem egy lehetséges megoldést ered-
ményeznek csak. Az igy el6éllitott lehetséges megoldassal szemben alapvetd
elvaras, hogy ”7j6” legyen abban az értelemben, miszerint a hozzatartozo
célfiiggvényérték kozel legyen az optimumértékhez. Az ilyen tipusu elja-
rasokat szokasos heurisztikus eljdrdsoknak vagy egyszerlien heurisztikdknak
nevezni.

A korabbiakban megismerkedtiink a B& B eljardssal, amely igen sok NP-
nehéz probléma esetében egy nagy miiveletigényt algoritmus felépitését teszi
lehet6vé. Ezen eljarasokban a hatékonysag javitasara felhasznalhatdk a ren-
delkezésre allo lehetséges megolddsok. Minél jobb lehetséges megoldassal
rendelkeziink, altaldban annal gyorsabb, hatékonyabb lesz a B&B eljaras.
Kovetkezésképp fontos az egyes problémacsoportokra olyan heurisztikak ki-
dolgozdsa, amelyek gyorsak (polinomkorldtos miiveletigénytiek) és olyan le-
hetséges megoldast szolgaltatnak, melynek célfiiggvényértéke kozel van az
optimumeértékhez.

Az elmondottak kapcsan rogton felvetédik a kérdés, hogy egy adott
heurisztikdt miként lehet mindsiteni. Mikor mondhatjuk, hogy valamely
heurisztika j67 Az elmilt évtizedekben a heurisztikdk vizsgalatara az alabbi
harom maddszer alakult ki:

(1) legrosszabb esetek vizsgalata,
(2) valdszinliségi analizis,
(3) empirikus analizis.

A kovetkezdkben rovid attekintést adunk ezen modszerekrél.
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Legrosszabb esetek vizsgalata

Tekintsiink egy C minimalizdlasi problémaosztalyt és jeloljon A egy, a
tekintett problémak kozelité megolddsat szolgaltaté heurisztikat. A prob-
lémaosztaly tetszbleges P probléméjara jelolje A(P) a heurisztika dltal szol-
galtatott lehetséges megoldéson felvett célfiiggvényértéket és OPT(P) az op-
timumértéket. Ekkor az A algoritmust egy ¢ konstansra c - approximdcids
algoritmusnak nevezziik, ha minden P probléma esetén A (P) < c¢-OPT(P).
A legkisebb c értéket, amelyre az algoritmus c¢ - approximécids az algorit-
mus approrimdcids hdnyadosdnak nevezziik. Az approximdciés hanyados
egy tovabbi valtozata az aszimptotikus approximdcios hanyados. Az algorit-
musra minden pozitiv egész n-re definidljuk az R,,(A) = sup{A(P)/OPT(P) :
P € C,OPT(P) > n} értéket, és amennyiben létezik az M = limsupR,,(A)
érték, az adja meg a heurisztika aszimptotikus approximdcids hdnyadosdat.
Az aszimptotikus approximéciés hanyados és az approximéciés hanyados
kozotti 1ényeges kiilonbség az, hogy az aszimptotikus hényados azon in-
putokra, ahol az optimalis koltség kicsi nem koveteli meg, hogy a heurisztika
altal adott megoldas az optimumhoz kozeli érték legyen.

Az approximécios hanyados illetve az aszimptotikus approximéciés ha-
nyados nagysaga a kiilénb6z6 problémaosztalyokra és a kiillonb6zé heurisz-
tikdkra més és mas. Igen jo, 1 és 2 kozé esé aszimptotikus approximacios
hanyadosok adédtak szamos bin-packing heurisztikdra. Ezzel szemben az
altalanos utazé tigynok probléméra 1976-ban Sahni és Gonzalez [?] iga-
zoltak, hogy amennyiben létezik konstans approximéaciés hdnyados valamely
polinomkorlatos TSP-heurisztikara, akkor P=NP.

Az emlitett negativ eredmény alapjan akar el is vethetnénk a polinom-
korlatos TSP heurisztikdk gondolatat. Azonban mas problémaosztalyoknal
nyert tapasztalatok alapjan a legrosszabb esetek vizsgalatdnak eredménye
és az algoritmus gyakorlatban torténd viselkedése kozott lényeges eltérés
lehet. Erre szemléletes példa a szimplex algoritmus. Az igen sok megoldédsra
keriilt linearis programozasi feladat alapjan az atlagos iteracids lépésszam
kozelitoleg 3n, ahol n a feladat egyenleteinek szamat jeloli. Masrészt is-
mert olyan linedris programozasi feladat (Id. [3]), amelyre az iteracids
lépésszam 2. Tovabbi ilyen jellegli észrevételek azt tamasztjak ala, hogy
az approximécios hanyados bar lényeges informaciot ad az algoritmusrdl,
de ennek alapjan nem itélheté6 meg maradéktalanul az algoritmus josdga.
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Tovabbi érv a TSP heurisztikdk vizsgdlatdhoz, hogy bizonyos specialis TSP
feladatosztalyokra léteznek viszonylag jo approximécios hanyadossal ren-
delkez6 TSP heurisztikak .

Valészintliségi analizis

Ezekben a vizsgilatokban rogzitett feladatméret mellett olyan P fela-
datot tekintenek, amelyben a paraméterek (egyiitthaték), mint fliggetlen
valészintiségi véltozok vannak megadva. Ekkor A(P) és OPT(P), valamint
hanyadosuk is valészintiségi valtozd, melynek varhato értékébdl egy atlagos
eltérésre lehet kovetkeztetni. Az igy elGallitott mutatoval szemben kifogésol-
haté, hogy a paramétereket megadod valdszinliségi valtozdk eloszlasaira tett
feltételek nagyban befolyasoljak azt, ugyanakkor a feltételek nem feltétlentil
a problémaosztily jellemzo tulajdonsagait tikrozik. (Altaléban az egyenle-
tes eloszlast teszik fel a feladatban szerepld valdszintiségi véltozdkra.)

Empirikus analizis

Az ilyen tipusu vizsgdlatokban konkrét problémamegolddasokbdl nyert
eredmények alapjan lehet bizonyos mutatékat képezni. A szdmitdstechnika
fejlédése, a gyors, nagyteljesitményii szamitégépek megjelenése lehet6vé tette
azonos tipusu nagyszdmu probléma megoldéasat. Ezt kihaszndlva, rogzitett
szamtartomanybdl valamilyen (dltaldban egyenletes) eloszlas mellett vélet-
lenszeriien valasztva egyiitthatokat, majd az el6allitott konkrét problémak-
nak meghatarozva az optimélis, valamint a heurisztikus megoldasat, képezhe-
t6 a két célfiiggvényérték hanyadosa. Ezt elég sokszor ismételve, és dtlagolva
a hanyadosokat, egyfajta empirikus mérdszamot kapunk. A vézolt vizsgalat-
ban megkérdGjelezhet a valasztott eloszlds és szamtartomany.

A fenti vazlatos attekintésbdl kitlinik, hogy a heurisztikdk jésdganak
vizsgédlata igen bonyolult és csak részben megvalésithato feladat. Altaldban
a heurisztikus eljardsokrdl az érdeklédok tovabbi meggondolasokat és részle-
teket taldlhatnak a [?] és [?] kényvekben. Mi a tovdbbiakban az egyszertibb
TSP heurisztikdk koziil fogunk néhanyat ismertetni.

Az elmult idészakban szamos TSP heurisztika keriilt kidolgozasra és
jelenleg is tobb kutatd foglalkozik tovabbi eljarasok felépitésén, illetve a
meglévl eljarasok vizsgdlataval, javitdsdval (1d. pl. [?], [2], [5], [?]). A
kiilonb6z6 algoritmusok alapvetéen harom csoportba sorolhatok:
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(1) koritépits eljérésok,
(2) korit javitasat szolgdlé algoritmusok,
(3) kombinalt eljardsok ((1) és (2) kombindcidi).

A tovabbiakban ismertetésre keriilé heurisztikdk egy eljards kivételével
az (1) csoportba tartoznak. A targyalds egyszertisitésének érdekében jelolje
N az {1,...,n} halmazt.

Nearest addition

El6készitd rész. Legyen r =1, I, = {1}, E, = {(1,1)}. (Az 1 véros lesz
az induld részkorit.) Térjiink ra az itericids eljarasrészre.

Iterdcios rész (r. iterécid)

Ha r = n, akkor vége az eljarasnak, az FE,-beli élekbdl all6 korut az
eljarassal szolgdltatott lehetséges megoldas. Ellenkezd esetben hatarozzunk
meg egy olyan j € I, k € N\ I, indexpart, amelyre

cir = min {min{cy :s€ I.}}.

Jk teN\IT{ {cst r}}
Legyen I,11 = I, U{k}. Mivel j € I, ezért pontosan egy olyan j' € I,
index van, amelyre (j,5') € E, (r = 1 esetén j = j'). Ekkor legyen E, 1 =
(E-\{(7,7)}) U{(, k), (k,5")}. Noveljik r értékét 1-gyel, és térjiink ra a
kovetkezd iteracids lépésre.

Az eljaras ugy szemléltetheto, hogy rendelkezésiinkre all egy részkorut
(r = 1 esetén egyelemii részkorit). Ehhez kivalasztjuk a legkozelebbi koriuton
kiviili varost. (Itt a legkdzelebbi véros gy értendd, hogy vessziik a kortit
pontjaibdl a koriton kiviili pontokba vezetd Osszes élet és ezen élek silyainak
a minimumét, ez a cj;, mennyiség.) Az igy kivalasztott varossal bévitjiik a
korutat gy, hogy a hozza legkozelebb esd, a kortutban szerepl6 j varosbol
ebbe a vérosba latogatunk, majd innen a j véros j' leszarmazottjdba. Az
aldbbi dbra mutatja a beszurési technikat. Az aktualis részkortutbdl toroljitk
a (7,7") élet és bovitjik a (4, k), (k,j') élekkel.

k

j o i

11.1. dabra. Beszurasi technika.
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A szamitasokat nagyban megkoénnyiti egy olyan tavolsagvektor hasznala-
ta, amely minden iteracids lépésben megadja az aktualis részkoruton kiviili
varosoknak a részkoruttol vald tavolsdgat. Az elsé iterdcids lépésben ez
a C maétrix els6 sorvektora az (1,1) indexi elem kivételével. Egyszeriien
belathatd, hogy amennyiben v, az r-edik iteracids 1épésben a tavolsagvektor,
és ebben a lépésben a k varossal bovitjiik a részkorutat, akkor v, i-et
megkapjuk gy, hogy a koruton kiviili varosokra rendre képezziik a v, vek-
tor megfelel6 komponensének és a C matrix k-adik soraban 1évo megfelel6
célfiiggvényegyiitthaténak a minimumat.

Az eljards demonstraldséara alkalmazzuk a fenti heurisztikat az el6zéekben
vizsgalt 8-vérosos feladatra. Ekkor vi = (—,2,11,10,8,7,6,5). fgy az
aktuélis részkoriuthoz (jelenleg az 1 varost tartalmazo részkorit) legkozelebb
levé varos a 2-vel jelzett. Bévitve 2-vel a részkorutat, az (1,2), (2,1) élekbél
allé 1j részkorithoz jutunk. A tévolsagvektort a kovetkezdképpen tudjuk
aktualizalni. A v; vektor j-edik komponensének és cpj-nek kell képezni a
minimumadt, ez lesz a vy vektor j-edik komponense, ahol j = 3,...,8. A
teljes eljaras végrehajtasat az aldbbi tablazatban foglaltuk Gssze, ahol az
aktualis részkorutat ciklikus permutaciéként adjuk meg.

r Vy (4.k) részkorit

1 (—,2%,11,10,8,7,6,5) (1,2) (1,2)

2 (—,—,1*,8,8,4,6,5) (2,3) (1,2,3)

3 (=.—.—.8.8.4,3*5) (3.7 (1,2,3,7)

4 (=,——,8,8,4,—,3%) (7.8) (1,2,3.7,8)

5 (—.—,—.8,6.3* —. —) (8,6) (1,2,3,7,8,6)
6 (== —2%6,— —,—) (6,4) (1,2,3,7,8,6,4)
7 (===, —, 1" — — =) (4,5) (1,2,3,7,8,6,4,5)

A tekintett feladatra az eljards most pontosan egy optimélis megoldast
eredményezett. FEz egy kicsit megtéveszto. A vizsgdlt heurisztika nem ilyen
j6. Az el6z6ekbél tudjuk, hogy az altaldnos TSP-re a P # N P feltétel mel-
lett nem létezik konstans approximéciés hanyados polinomkorlatos heurisz-
tikék esetében. A targyalt eljarasrol egyszertien belathatd, hogy polinomkor-
l4tos, mégpedig o(n?) miiveletigénnyel, igy 4ltaldnos esetben nem varhaté
hozza kosntans approximaciés hanyados.
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Nearest insertion

Az eljaras ugyanigy épiil fel, mint az el6z6. Az eltérés annyi, hogy
nem a kivalasztott éllel bovitjik a részkorutat, hanem a kivalasztott, k-
val jelolt varosra meghatarozzuk k lehet6 legjobb (legkisebb koltséggel jaro)
beszurasat a részkorutba, és ezt hajtjuk végre.

FElbkészité rész. Legyen r = 1, I, = {1}, E, = {(1,1)}. Térjiink réd az
iteracids eljarasrészre.

Iterdcios rész (r. iteracid)

Ha r = n, akkor vége az eljarasnak, az FE,-beli élekbdl 4ll6 korit a
heurisztikaval el6allitott lehetséges megoldas. Ellenkez6 esetben hatarozzunk
meg egy olyan j € I, k € N \ I, indexpart, amelyre

cir, = min {min{cg : s € I, .
jk teN\IT{ { st r}}

Legyen I, = I, U{k}, majd valasszunk egy olyan (u,v) € E, élet, amelyre

duv = Cuk + Cho — Cyp = Min{cep + s — cst 2 (5,1) € B}

Legyen E,11 = (B \ {(u,v)}) U{(u,k), (k,v)}. Noveljik r értékét 1-gyel,
és folytassuk az eljarast a kovetkezo iterdcids 1épéssel.

Ezen eljarasnal is hasznalhaté az eloz6ekben bevezetett tavolsagvektor.
A heurisztika bemutatdsara ismételten a 8-vérosos feladatot fogjuk hasznalni.
A végrehajtds egyes 1épéseit a kovetkezo tablazat tartalmazza.

T v, k (u,v) O részkorut

1 (—,2%,11,10,8,7,6,5) 2 (1,1) - (1,2)

2 (—,—,1*,8,8,4,6,5) 3 (2,1) 0 (1,2,3)

3 (—,—,—.,8,8,4,3*5) 7 (3,1) 8 (1,2,3,7)

4 (—=,—,—,8,8,4,—,3% 8 (7,1) 0 (1,2,3,7,8)

5 (=,—,—,8,6,3*, —,—) 6 (2,3) 8 (1,2,6,3,7,8)

6 (—,—,—,2%.6,—,—,—) 4 (6,3) 7 (1,2,6,4,3,7,8)
7 (—,—, == 1% = —, =) 5 (4,3) 0 (1,2,6,4,5,3,7,8)

A kapott koruthoz tartozd célfiiggvényérték 31, az optimum értéke 26,
igy a hanyados 1.19. Az eljarassal kapcsolatban megemlitjiik, hogy miivelet-
igénye o(n?), tovdbb4 olyan specilis TSP feladatokra, melyek koltségmatrixa-
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ra teljesiil a haromszogegyenlGtlenség és a koltségmatrix szimmetrikus iga-
zolast nyert (Id. [?]), hogy ebben az esetben az approximéciés hdnyados
2.

Farthest insertion

Az eljards analdg az el6z0hoz. Az eltérés csupdn annyi, hogy az aktudlis
részkoruttol legtavolabb levs varost valasztjuk ki, és ezt szirjuk be a lehetd
legkisebb koltséggel a részkorutba.

Itt is hasznalhaté a tavolsagvektor. A heurisztikat ismét a 8-varosos
problémara alkalmazzuk, és a végrehajtas 1épéseinek eredményét az alabbi
tablazat tartalmazza.

r v, k (u,v) Ouw részkorut

1 (—,2,11%,10,8,7,6,5) 3 (1,1) - (1,3)

2 (—,2,—,10%,8,7,3,5) 4 (1,3) 9 (1,4,3)

3 (—,2,—,—,1,7*,3,5) 6 (1,4) —1 (1,6,4,3)

4 (=,2,—,—,1,—,3,5%) 8 (1,6) 1 (1,8,6,4,3)

) (=, 2%, —, —,1,—,1,—) 2 (4,3) 0 (1,8,6,4,2,3)
6 (—,—,—,—, 1", = 1,-) 5 (4,2) 3 (1,8,6,4,5,2,3)
7 (————,—,—,1,—) 7 (1,8) 4 (1,7,8,6,4,5,2,3)

A kapott koruthoz tartozo célfiiggvényérték 32.

Cheapest insertion

Hasonlé az el6zéekhez. A lényeges eltérés a részkorut bovitésére szolgald
véros kivalasztdsaban van. Minden, az aktuélis részkoruton kivili k (€
N\ I,) varosra kiszamitjuk, hogy mennyi az aktudlis részkoritba torténd
beszurasanak minimalis koltsége figyelembe véve az Gsszes lehetséges beszu-
rasokat. fgy minden k € N \ I, varosra adédik egy beszurési koltség. Ezek
kozil valasztunk egy minimadlisat, és az ennek megfelel§ varos (minimélis
koltségli) beszurasaval bévitjiik a korutat.

A heurisztika végrehajtasat a vizsgdalt példan szemléltetjiik.
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r k (u,v) Ouw részkorit

1] 2 (1,1) - (1,2)

2 | 3 (2.1) 0 (1,2,3)

3 6 (2,3) 8 (1,2,6,3)

4] 5 (2,6) 6 (1,2,5,6.,3)

51 4 (2,5) 1 (1,2,4,5,6,3)
6 7 (2,4) 8 (1,2,7,4,5,6,3)
7 8 (2,7) 2 (1,2,8,7,4,5,6,3)

A kapott koruthoz tartozo célfliggvényérték 33. Az eljaras miiveletigénye
o(n?®). A [?] dolgozatban igazoldst nyert, hogy a mér emlitett specidlis TSP-k
esetében (szimmetrikus koltségmaétrixiiak, amelyekre teljesiil a hdromszoge-
gyenlStlenség) az eljards approxméciés hanyadosa 2.

Tekintettel arra, hogy az ismertetett eljardsok mindegyike igen gyors,
tovabba az eléallitott korut fiigg a kiindulé varostdl (mi ezt rendre 1-nek
véalasztottuk), lehetséges ugyanazt a heurisztikdt tobbszor is végrehajtani
mas és més kiinduldsi varosokkal, majd az el6allé koérutak kozil venni a
legjobbat.

A téargyalt heurisztikdkat illetéen egymdstol fiiggetleniil Adrabinski és
Syslo [?], valamint Golden és téarsai [?] végeztek empirikus vizsgdlatokat.
A kapott eredmények azt mutatjdk, hogy a farthest insertion eljaras jobb
értékeket szolgdltat altaldban, mint a mésik harom algoritmus. A kovetkezd
tabldzatban szerepl6 szamsorokat a [?] munkdbdl gytjtottik ki. Az adatok 5
darab 100 x 100-as euklidesi TSP-re vonatkoznak. (A varosok egy euklidesi
tér valamely sikjaban vannak és tavolsaguk a térben a pontok tavolsiga.)
A tabldzatban azt adjuk meg, hogy a kozelité megoldas célfiiggvényértéke
hany szézaléka az optimum értékének.

Nearest insertion (all cities) 118.69 117.81 122.96 114.44 120.33
Farthest insertion (all cities)  105.14 106.97 103.17 101.99 107.42
Cheapest insertion (all cities) 112.07 111.67 120.83 112.97 112.16

A kovetkezd eredményeket Adrabinski és Syslo [?] munkéjabol gytijtottitk
ki. (A feladatok méretei rendre n = 20,27, 42,57,120).
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Nearest addition (one city) 186.58 113.88 111.02 114.76 121.78
Nearest insertion (one city) 138.21 106.89 110.87 109.25 117.27
Farthest insertion (one city)  128.45 100.35 101.43 101.28 103.06

Patching eljarasok

A cimben szereplé heurisztikék a hozzarendelési feladat és az utazd
ligynok problémdak kapcsolatara épiilnek, és a kovetkezd észrevételen ala-
pulnak. Oldjuk meg a megfelel6 hozzarendelési feladatot. Ha az optimalis
megoldas korut, akkor megkaptuk a TSP optimalis megoldasat. Ellenkez6
esetben az optimalis hozzarendelésnek megfelel6 graf diszjunkt részkorutak
egyesitése. Ezen részkorutak szamardl bizonyitast nyert, hogy amenny-
iben a koltségmétrix elemeit egyenletes eloszlas alapjan generdljuk, akkor a
részkorutak szamanak varhaté értéke log(n). [gy a részkorutak kis koltséggel
jaré Gsszekapcsolasa, Osszeflizése egy jé heurisztikus megoldast eredményez-
het. Attdl fliggben, hogy miként kapcsoljuk Gssze a részkorutakat, kiillonb6zo
algoritmusok épitheték fel. A tovdabbiakban két ilyen tipusu eljarast fogunk
ismertetni.

2-patching eljaras

Tekintstink két részkorutat. Jeldlje I, J az egyes részkorutakban szerepld
varosok halmazat, tovabb4 tetszdleges k véarosra jelolje k" a k leszadrmazottjat
a k-t tartalmazo6 részkorutban. Legyen i € I és j € J. Akkor tordlve a
részkorutakbdl az (i,1"), (4,7') éleket, és felvéve az (i, '), (j,i') éleket, olyan
részkorutat kapunk, amely az I U J-beli varosokat tartalmazza. Az alabbi
abra mutatja az Osszekapcsolast.

11.2. dbra. A két részkorit Osszevondisa.
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A két kor Osszefiizésével keletkezd koltséget egyszeriien megkaphatjuk,
ez c;j + cjiy — c — cjj. Véve ezeket a koltségeket az Osszes 1 € [ és j € J
indexpéarra, majd képezve ezek minimumat, megkapjuk a két részkor ilyen
tipusu ”o6sszekapcsolasara” vonatkozo minimalis koltséget. Ezt 2-patching
koltségnek és a részkorutak megfeleld 6sszekapcsolasat 2-patching miveletnek
nevezzilkk. Fzek utan felépitheté az aldbbi eljaras, amelyet R. M. Karp
publikalt 1979-ben a [?] dolgozatban.

Eljaras ([?])

Elbkészité rész. Oldjuk meg az A(C) hozzéarendelési feladatot. Ha A(C)
optimalis megoldasa korut, akkor vége az eljarasnak. Ellenkezd esetben
térjink ra az iteracios eljarasrészre.

Tterdcios rész. Valasszunk ki két legkisebb varosszamu részkorutat és
kapcsoljuk Ossze 6ket egy alkalmas 2-patching miivelettel. Ha az el6allé 1j
megoldas (hozzarendelés) korit, akkor vége az eljardsnak. Ellenkez6 esetben
térjunk ra a kovetkezo iteraciora.

Az eljaras demonstralasara tekintsiik ismét az el6z6 példat. A hozzaren-
delési feladat optimalis megoldasa a kévetkezo hdarom részkorutbdl all.

11.8. dbra. A kapott harom részkorit.

7

Vélasszuk ki a masodik és harmadik részkoérutat. A kivalasztott rész-
korutakra a kovetkez6 tédblazatban adjuk meg a 2-patching koltségeket. (A
koltségek szamitasanal az A(©) métrixot hasznaltuk.)
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koltség

cfl%) + 6(7%) — 05105) — 6(7%) =94+6=15

cfg) + cé%) — cfl%) — cg;) =74+5=12

cé%) + Cg%) - Cé%) — c%) =7+9=16

O 10 00 g o

Cé%) + 6(7(31) — cé?l) — 6(78) =74+7=14

(=} (=} ot ot 1SN SN
oo -~ o =~ oo N | .

cg;) + cgjl) — cé?l) — cé7) =94+9=18

A 2-patching koltség 10. A megfelel$ 2-patching miivelet sorén az (5,7) és
(8,6) éleket kell felvenni és az (5,6), (8,7) éleket kell tordlni. Az Gj megoldés
a 11.4. dbran megadott két részkorutbol all:

7

3 k >
11.4. dbra. Részkorutak az Osszevonds utéan.

Kiszamitva a fenti két korre a 2-patching koltséget, az i = 3, j = 5 esetben
kapjuk a minimumot. T6rélve a (3,1), (5,7) éleket, valamint felvéve a (3,7),
(5,1) éleket, az alabbi korutat kapjuk, amely éppen egy optimalis megoldés.

2//3\\

11.5. dbra. A 2-patching eljdrssal nyert optimélis megoldas.
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Az ismertetett 2-patching eljarasra J. M. Steele és R. M. Karp végzett
valészintiségi analizist (1d. [?]). Igazoltdk, hogy a [0,1] intervallumon egyen-
letes eloszlasu fiiggetlen valdszintliségi valtozdk esetén a kozelitd érték és az
optimumérték hényadosanak véarhaté értéke 1 + o(n_%).

3-patching eljaras

Ketténél tobb kor Osszekapcsolasa hatékonyabb eljardast eredményezhet.
Ezen az észrevételen alapul a [?] dolgozatban ko6zolt 3-patching eljards,
melynek megadasahoz sziikségesek bizonyos el6késziiletek.

Tekintstink harom részkorutat. Jelolje rendre I, J, K a részkorutakban
szereplé varosok halmazat. Legyen i € I, j € J, k € K, tovabba jeldlje
7', 7', k' rendre az i, j, k leszdrmazottait az I, .J, K halmazokhoz tartozé rész-
korutakban. Akkor tordlve az (i,4'), (j,7'), (k, k') éleket, és felvéve az (i,5'),
(7, k"), (k,i') éleket, a harom részkorutat egyetlen részkoritba (korttba)
tudjuk egyesiteni. A 11.6. dbra szemlélteti a harom részkorit egyesitését.

11.6. dbra. Harom részkoriut osszekapcsolédsa.

A héarom részkorut tekintett Osszekapcsoldsdnak koltsége:

Cijr + Cjk! + Crir — Ciir — Cjjr — Cik -

Rendre meghatarozva ezeket a koltségeket minden ¢ € I, 5 € J, k €
K indexre, megkapjuk a harom részkorut ilyen tipusu Osszekapcsoldasara
vonatkozé minimalis koltséget. Ezt a koltséget 3-patching koltségnek, és a
részkorutak ennek megfelelé Gsszekapcsolasat 3-patching miveletnek nevez-
ziik.

Ezek utéan felépitheto a kovetkezo heurisztikus eljarés.
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Eljaras

Elékészitd rész. Oldjuk meg az A(C) hozzdrendelési feladatot. Ha A(C)
optimalis megoldasa korut, akkor vége az eljarasnak. Ellenkezé esetben
térjiink ra az iteracids eljarasrészre.

Tterdcios rész

o 1. lépés. Jelolje m az aktualis hozzarendelés részkoritjainak a szamat.
Ha m < 9, akkor a 2. 1épés kovetkezik. Ellenkez6 esetben ren-
dezzik a részkorutakat elemszamuk tagabb értelemben vett névekvo
sorrendjébe. Jelolje a rendezett sorozatot Uj,...,U,. Szamitsuk
ki a d,s 2-patching koltségeket az U,,U,,_;4s részkorutakra minden
1 <r <1, 1< s < indexparra, ahol | = [m/2]. Oldjuk meg
a (di;) koltségmatrixi [ x l-es hozzarendelési feladatot, és jeldlje az
optimalis hozzdrendelést ¢. Hajtsunk végre egy d,,() koltségl 2-
patching miiveletet az Uy, Uy,_j4 () Tészkorutakon minden 1 <7 </
indexre. Az igy képezett részkorutak altal meghatarozott hozzéren-
delést tekintve aktualis hozzarendelésnek, folytassuk az eljarast az 1.
lépés ismétlésével.

o 2. lépés. Ha az aktudlis hozzarendelés korit, akkor vége az eljarasnak.
Ellenkez6 esetben, ha m < 3, akkor hajtsunk végre a két részkoruton
egy 2-patching miveletet, és vége az eljarasnak. m > 3 esetén haté-
rozzunk meg a részkorutak koziil hdrom olyan részkorutat, amelyek
3-patching koltsége minimalis. Hajtsunk végre a kivalasztott hiarom
részkoruton egy, a minimalis koltségnek megfelel$ 3-patching miiveletet.
Az 14j hozzarendelést tekintve aktudlis hozzarendelésnek, és részkorit-
jainak szamat az aktudlis m-nek, folytassuk az eljardst a 2. 1épés
ismétlésével.

A fenti eljarasban m > 9 esetén a kis koroket parositjuk a nagy koérokkel,
és olyan parositasra toreksziink, hogy az Osszeparositott koroket osszeflizve,
a koltségek novekedése ne legyen jelentGs. A 9 konstans hasznélatat az
indokolja, hogy fixpont nélkiili permutacidk esetében a részkorok szamanak
vérhaté értéke kozelitbleg log(n), ahol n a vérosok szaméat jeloli. Végiil az
eljaras hatékony végrehajtdsdhoz bevezethet6 egy 3-dimenziés témb, amely
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a részkorutakra a 3-patching koltségeket tartalmazza. Az elsé ilyen tomb
alapjan a tovabbi tombok mar viszonylag kis miiveletigénnyel kiszamithatok.

Az eljaras szemléltetésére tekintsiik ismét a korabbiakban vizsgalt 8-
varosos feladatot. A megfelel¢ hozzarendelési feladat optimadlis megolddsa
az (1,2),(2,3),(3,1), a (4,5),(5,6),(6,4) és a (7,8),(8,7) éleket tartalmazd
részkorutakbdl all. A Cijt + Cjk' + Crir — Ciir — Cjjr — Ci! koltségeket Aijk—val
jelolve, a konkrét értékeket a kovetkezo tablazatban adtuk meg:

i J k] Ajie |t 1 J 1Rl A |3 F k] Agje [ 3171 k| Ay
1147 23 21518 20 117114 17 21814 19
11418 22 21617 23 11715 21 21815 14
1157 20 2168 25 1176 16 21816 17
1]15(8 22 31417 19 184 17 3714 22
1167 23 3148 16 1181]5 15 3171]5 24
1168 26 3(5|7 21 1[8|6 19 3|171]6 23
2147 25 3158 21 21714 21 31814 13
2148 23 3167 20 21715 22 31815 9*
2157 19 31618 21 21716 16 3186 17

Az i =3, j =8 és k =5 indexekre kapjuk a legkisebb értéket. Végrehajtva
a megfelelé 3-patching miveletet, az aldbbi kérat adédik, amely specidlisan
optimalis megoldés is.

11.7. dbra. A 3-patching eljarassal nyert optimadlis megoldas.



207

Az ismertetett eljardsokkal kapcsolatosan a [?] munkaban egy empirikus
analizis talalhato, amelyben ezen eljarasok nyertek Gsszehasonlitast. A vizs-
galatok soran rendre minden tekintett méret mellett 100-100 probléma kertilt
generalasra. A célfiiggvényegyiitthatok a 0,1,...,100 egészek koziil egyen-
letes eloszlas mellett lettek generdlva. A szamitogépes vizsgilat eredmé-
nyét a kovetkezd tablazatban foglaltuk Gssze. Négy varosszamra, az n =
100, n = 150, n = 200 és n = 250 véarosszamokra tortént a 100-100
utazé lUgynok probléma generdldsa. A tabliazat baloldala tartalmazza a
vizsgalt eljarasokat, és a megfelel6 sor adja meg az illetd eljarashoz tartozo
értékeket. Minden varosméretre az elsé oszlop adja meg az érintett eljardssal
meghatarozott célfiiggvényértékek valamint az optimumértékek hanyadosai-
nak atlagat, a masodik oszlop tartalmazza az érintett eljaras futasi idejeinek
atlagat, végiil a harmadik oszlop azt mutatja, hogy az érintett eljards hany
esetben szolgaltatta a legjobb célfiiggvényértéket. Ez a B&B eljarasnal tires
maradt, mivel ez mindig az optimélis megoldast szolgéltatja.

n = 100 n = 150 n = 200 n = 250
average|average| best |average|average| best |average|average|best [average|average| best
ratio sec. [value| ratio sec. [value | ratio sec. [value| ratio sec. [value
B&B 1.000 | 40.78 | - 1.000 | 87.69 - 1.000 | 194.1| - 1.000 | 320.9| -
3-patching
k=5| 1.054| 19.53 | 88 | 1.056 | 58.55 | 81 | 1.052| 190.2 | 82 1.059( 370.8| 80
3-patching
k=3| 1.061| 11.60| 70 1.063| 34.93 | 67 1.061 | 122.0| 54 1.078 | 218.6| 48
3-patching
k=1| 1.069 3.84| 55 1.096 | 11.90 39 1.094 39.8| 25 1.134 72.6| 24
2-patching

k=5 1.090| 11.14 | 33 | 1.082| 29.70 | 38 | 1.069 88.4 | 40 1.101| 158.3| 37

2-patching
k=3 1.092 6.69| 28 1.097 | 17.92 26 1.085 53.1| 27 1.119 94.8( 23

2-patching
k=1 1.108 221 21 1.127 6.04 15 1.127 17.7| 13 1.177 31.5] 12

cheapest
insertion | 4.654 7771 0 6.794 | 37.48 0 9.934 89.7(1 O 18.11| 17541 O

nearest
insertion 4.392 9.19]| 0 7.047 | 43.66 0 11.39 | 1046 | O 18.60 | 205.1] O

farthest
insertion 4.534 876 | 0 7.110 | 43.71 0 11.39 | 1046 | O 18.60 [ 205.3| O

nearest
addition 18.43 709 0 33.84 | 32.72 0 57.51 770 0O 98.43 | 149.7( O

A fenti tabldzat szépen mutatja, a kdvetkezd tendencidkat. Valamennyi
patching eljaras egészen j6 szuboptimélis megoldasokat szolgéltat, és ez a
7josag” nem valtozik szignifikdnsan a feladatok méretének névekedésével.
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Ezzel szemben a kiilonb6z6 beszurasi eljarasokra azt tapasztalhatjuk, hogy
az altaluk meghatdrozott lehetséges megoldasok célfiiggvényértéke tobbszo-
rose az optimumértéknek es ez szignifikansan romlik a feladatok méreteinek
névekedésével.

Az eddig bemutatott heurisztikus eljarasok mindegyike az altalanos e-
setre (a koltségmatrixrdél nem tételeziink fel semmit) lett kifejlesztve. Ettol
fliggetlentil ezek az eljardsok alkalmazhaték olyan TSP feladatosztalyokra,
ahol a koltségmatrixokra kiilonb6zé megszoritdsokat tesziink. A bemutatott
eljarasokhoz flizott megjegyzések azt mutatjak, hogy bizonyos megszoritasok
mellett a heurisztikak viselkedésérdl tobbet tudunk allitani.

A tovabbiakban specidlis TSP feladatosztdlyokat vizsgalunk és ezekre
kifejlesztett heurisztikus eljarasokat mutatunk be. Elscként a szimmetrikus
esetet vizsgaljuk (c;; = c¢j, @ = 1,...,n;j = 1,...,n), ami megfelel az
irdnyitatlan grafok esetének, és erre adunk meg egy korutjavité heurisztikus
eljarast.

Az ismertetésre keriil6 eljaras azon az észrevételen alapul, hogy amennyi-
ben adott egy korut, tgy abbdl tordlve két nem szomszédos élet, a korut
két diszjunkt tutra esik szét. Ezek utan létezik két olyan egyértelmiien
meghatarozott él, hogy ezekkel bévitve a két utbdl all6 grafot, az eredmény
egy masik korit lesz. (Példaul, ha az (1,2),...(4,5), (1,5) élekbél &ll6 korit-
bdl toroljik a (2,3) és (4,5) éleket, akkor az el6all két utbdl csak a (2,4)
és (3,5) élek felvételével készitheté korit. A tovabbiak egyszeriisitésének
érdekében nevezziink az X korit szomszédjdnak minden olyan kérutat, amely
el6éll X-bol két él torlésével, és két 1ij él felvételével. Egyszertien beldthato,
hogy X™*" szomszédjainak a szdma n(n — 3)/2, ha énmagat nem szamitjuk
szomszédnak.

2-optimalis eljaras
El6készit6é rész. Hatérozzuk meg valamilyen eljirassal a feladat egy X
koritjat. Legyen X0 = X, 7 = 0, és térjiink r4 az itercids részre.

Iterdcids rész (r. iteracid)

e 1. lépés. Hatarozzuk meg )g(’”) osszes szomszédjat. Ha X minden X
szomszédjara z(X() < z(X) teljesiil, akkor vége az eljarasnak, X(")
az eljarassal el6allitott korut. Ellenkez6 esetben a 2. 1épés kovetkezik.

o 2. lépés. Jeloljon X X() szomszédjai koziil egy olyan kérutat, ame-
lyen a z fiiggvény a szomszédokra vonatkozéan minimélis értéket vesz
fel. Legyen X(t1) = X, noveljiik r értékét eggyel, és térjiink ré a
kovetkezo iteracids lépésre.
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Az eljaras bemutatasara tekintsiik a kovetkezd példéat.

11.1. példa. Tekintsiik azt az 5 varosos utazo igynok feladatot, amely-
nek koltségmatrixa az alabbi C matrix és legyen az indulé kortdtunk az a
korut, amely az

X0:1-—2--3-—4--5--1

sorrendben megy végig a varosokon. Ekkor z(X(0)) = 20.

3 4
2

S Ot =
NN W N

A kiindulési korit szomszédjait tartalmazza a kovetkezo tablazat.

r torolt élek X ) szomszédja 2(X)
0 (1,2), (3,4) 1-3-2-4-5-1 20
0 (1,2), (4,5) 1-4-3-2-5-1 14
0 (2,3), (4,5) 1-2-4-3-5-1 18
0 (2,3),(1,5) 1-2-5-4-3-1 23
0 (3,4),(1,5) 1-2-3-5-4-1 15

Tehat
XMW1 - —4—--3--2--5--1, 2(XM) =14
Az eljaras kovetkezd iteracids lépésében szamolt szonszédokat tartal-
mazza a kovetkezo tablazat.

r torolt élek X ) szomszédja 2(X)
1 (1,4), (2,3) 1-3-4-2-5-1 20
1 (1,4),(2,5) 1-2-3—4-5-1 20
1 (3,4), (2,5) 1-4-2-3-5-1 12
1 (1,5),(3,4) 1-3-2-5-4-1 17
1 (2,3),(1,5) 1-4-3-5-2-1 15

Ekkor
X®?:1--4--2--3--5--1, 2(X®)=12.
Az eljaras altal a kovetkezo iteracios 1épésben szamolt szonszédokat tar-
talmazza a kovetkezd tablazat.
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T torolt élek X ) szomszédja 2(X)
2 1,4),(2,3) 1-2-4-3-5-1 18
2 (1,4), (3,5) 1-3-2—4-5-1 20
2 (2,4), (3,5) 1-4-3-2-5-1 14
2 (2,4),(1,5) 1-4-5-3-2-1 15
2 (2,3),(1,5) 1-4-2-5-3-1 15

Ekkor X minden X szomszédjéra z(X?)) < z(X) teljesiil, igy vége az
eljarasnak, és a heurisztika éltal kapott megoldas az (1,4,2,3,5,1) kort.

A fejezet hatralevd részében olyan TSP problémakat vizsgalunk, ame-
lyekben a koltségmatrix szimmetrikus és teljesiil a haromszogegyenl6tlenség.
Az ilyen maétrixok esetére ismertetiink egy 3/2-approximécids heurisztikat.

Az eljaras ismertetéséhez a probléma grafelméleti reprezentédcidjat hasz-
naljuk. A problémdhoz egy teljes (barmely két pont kozott megy él) ira-
nyitatlan halézatot rendeliink, amelynek csicsai a varosoknak felelnek meg,
és az éleken a hosszak a két varost 0sszekotd Ut hosszai. A feladat ekkor
az, hogy megtaldljuk azt az Osszes ponton atmend kort, amelyre a koérben
szerepld élek hosszainak Osszege minimélis.

Az eljaras megaddsdhoz sziikségiink lesz a kovetkezd definiciéra. Egy
Euler féle multigraf Euler korének a roviditésén pontoknak azt a sorozatat
értjiik, amelyet ugy kapunk, hogy a korben minden csicsnak csak az els6
el6fordulasat tartjuk meg, amennyiben tobbszor is szerepel a tovabbi eléfor-
dulasait toroljiik a pontok listdjabdl.

11.2. példa A 2.5. példaban tekintett multigréfra meghatarozott Euler
kor pontok sorozataval a kovetkezéképpen irhaté le: (1,6,5,4,3,2,5,2,1).
Az Euler kor roviditése az (1,6,5,4,3,2) pontsorozatot adja meg.

Egy Euler kor roviditése pontok egy sorbarendezését adja meg, amelybol
egy korutat kapunk, ha a kezd6pontot Osszekotjik a végponttal. Amenny-
iben a pontok multigrafjdhoz tartozoé élekre teljesiil a haromszogegyenlétlen-
ség, akkor az Euler korben szerepl6 élek stilyainak 6sszegére és a roviditéshez
tartozé korutban szereplo élek hosszainak Osszegére teljesiill a kovetkezd
allités.

11.1. segédtétel A roviditéshez tartozé kéritban az élek siulyainak
osszege legfeljebb annyi, mint az Euler kérben az élek sulyainak dsszege.

Bizonyitds. Legyen (pi,...,pn) a roviditésben a pontok sorozata. A
tovabbiakban a p,11 pontot a p; pontnak feleltetjiik meg. Jelolje az Fuler
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korben a p; és p;y1 pontok elsé eléforduldsai kozotti pontokat g1, ..., ik,
ahol a pontok ezen sorozata iires is lehet.

A haromszog egyenl6tlenséget alkalmazva tobbszor egymds utan adodik,
hogy minden i-re teljesiil ¢p,p,,; < Cpigiy + Z?i:_ll Caij i1 T Caipis- Ezen
értékeket Osszegezve adddik a segédtétel allitasa.

A Euler korok roviditésének alkalmazdsdval megadhatjuk Christofides
heurisztikus algoritmusat.

Christofides eljardsa ([1])

e 1. lépés. Hatarozzunk meg a feladatot leiré G halézatban egy minimalis
feszitofat Kruskal algoritmusa alapjan. Jelolje ezt a fat T'.

o 2. lépés. Legyen G’ az a részgrifja G-nek, amelynek a pontjai T
paratlan fokszamu pontjai, és az élei G azon élei, amelyek ezen pontok
kozott mennek. Hatarozzuk meg a 3.3. fejezetben leirt algoritmus
alapjdn G’ egy minimélis koltségii teljes parositasit. Egészitsik ki a
parositasban szereplo élekkel a T' fat.

e 3. lépés. Az igy kapott multigrafban hatarozzunk meg egy Euler kort.

o . lépés. Vegyiik a kapott Euler kor roviditését, a roviditéshez tartozo
korit a heurisztikaval eloallitott megoldas.

Els6ként igazoljuk, hogy az eljaras végrehajthaté.

11.2. segédtétel A Christofides eljardasban megadott lépések mindegyike
végrehajthato, és az eredmény eqy korut lesz.

Bizonyitds. Mivel a kiindulasi graf egy teljes graf, ezért Osszefiiggd,
igy Kruskal algoritmusa valéban egy feszit6fat ad eredményil. Mivel egy
grafban a csucsok fokszamainak Gsszege az élek szamanak kétszerese (min-
den élt beszamolunk mindkét végpontjanal), ezért a fokszamok Gsszege paros.
Masrészt ha a fokszdmok Osszege paros, akkor pdros azon pontoknak a
szama, amelyeknek paratlan a fokszama. fgy a 2. lépésben tekintett G
grafnak paros szamu csicsa van, tovabbd a graf teljes, igy a péarositési fela-
datnak van optimaélis megolddsa. A megoldasban szerepld éleket hozzdvéve
T-hez egy olyan 0Osszefliggé multigrafthoz jutunk, amelyben minden csiics
fokszéma péros (azon pontok fokszdma, amelyeké paratlan volt 1-el novekszik).
Tehat a multigraf kielégiti a 2.1. tétel feltételeit, igy van Euler kore, tehat
a 3. lépés végrehajthaté. Mivel az Euler kor roviditése soran valéban
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egy korutat kapunk, azért a 4. lépés utan egy lehetséges megoldashoz ju-
tunk. Fontos megjegyezniink, hogy mivel minden 1épés polinomidlis idében
végrehajthatd, ezért a teljes algoritmus is.

Az algoritmus egy optimaélishoz kozeli megoldédst ad, miként azt a kovetkezd
allitas mutatja.

11.1. tétel Christofides heurisztikus algoritmusa 3/2-approzimdcios al-
goritmus.

Bizonyitds Tekintsiink egy tetszbleges P TSP problémat. Jeldlje az
eljaras els6 1épése soran kapott T' feszit6fa hosszat ¢(T'). Jelolje a masodik
lépésben megkonstrualt parositasra a parositasban szerepld élek 0sszhosszat
c(M). Végil jeloljiik a probléma optimélis megoldasanak a koltségét OPT(P)-
vel.

Els6ként vegyilik észre, hogy egy korutbdl elhagyva barmely élét egy
feszitofat kapunk, igy a minimalis feszit6fa hossza kisebb, mint az optimalis
korut koltsége, azaz ¢(T') < OPT(P).

Most vizsgaljuk a parositds koltségét. Legyenek pq,pa,...,p2; a T feszi-
tofa paratlan fokszamu pontjai. Az dltalanossag megszoritasa nélkil felte-
hetjiik, hogy ezek a pontok ilyen sorrendben helyezkednek el a P probléma
optimalis megoldast adé korutjaban is, hiszen ezt a pontok atindexelésével
elérhetjiik. Masrészt ekkor a 11.1 segédtétel bizonyitdsahoz hasonléan a
héromszogegyenldtlenség tobbszori alkalmazasdval azt kapjuk, hogy a ¢y, p, .,
tavolsag legfeljebb annyi mint az optimélis koritban a p; és a p;41 pon-
tokat Osszekotd utszakaszban az élek hosszainak Osszege. Kovetkezésképpen
Z?iil pipiiat Cpoypn < OPT(P).

Vegyiik a kovetkez6 parositdsait a pi,pe,...,p2; pontoknak. Legyen M,
a (pn,p1) és a (p2i,p2i+1), (1 = 1,...,j5 — 1) pontparokat Osszekotd élek
halmaza, Mo pedig a (p2;41,p2i+2), (i =0,...,7 —1) pontparokat 6sszekotd
élek halmaza. Ekkor a két parositas koltségének az Osszege Zfi Il Cpi it
Cpyyn < OPT(P). Ezen észrevétel alapjan adddik, hogy a két parosités
kozil arra, amelynek kisebb a koltsége, ez a koltség legfeljebb OPT(P)/2,
masrészt ebbdl kévetkezik, hogy ¢(M) < OPT(P).

A ¢(T) és c(M) értékekre adott becsléseink alapjan adédik, hogy az
eljaras 3. 1épésében megkonstrualt Euler kérben az élek hosszainak az
Osszege legfeljebb %OPT(P), amibdl a 11.1. segédtétel alapjan adédik, hogy
a heurisztika éltal szolgaltatott megoldasban is legfeljebb %OPT (P) az élek
hosszainak az Osszege, amivel a tétel allitasat igazoltuk.

A fejezet lezarasként a kovetkezd példan mutatjuk be Christofides algo-
ritmusat.
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11.3. példa. Tekintsiik azt az 5 varosos utazo igynok feladatot, amely-
nek koltségmatrixa az aldbbi C métrix

2 3
4

W = W
D W N Ot

Els6ként hajtsuk végre Kruskal algoritmusat. Az algoritmus a kovetkezo
éleket vélasztja ki a megadott sorrendben (1,2),(2,5), (1,3),(1,4). A kapott
feszitéfa hossza 10. A feszitéfdban a pératlan fokszdmu pontok 1,3,4,5.
Megoldva az ezen pontokbdl és a kozottiik futé élekbdl alld grafra a parositasi
problémat, azt kapjuk, hogy a minimadlis koltségii teljes pérositds az (1,4)
és (3,5) éleket tartalmazza, és a parositas koltség 6. Tehdt a 3. 1épésben
vizsgalt multigrafnak az élei (1,2),(1,3),(1,4),(1,4),(2,5),(3,5). Az Euler
kort keres6 algoritmus a kovetkezd pontsorozatot adja vissza 1,2,5,3,1,4, 1.
Ezen Euler kornek a roviditése az 1,2,5,3,4 sorrendje a pontoknak, igy a
Christofides algoritmus altal adott korut az 1 —2 —5 —3 — 4 — 1, amely
korutnak a koltsége 13.
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