
Here we study the role of the migration for the online restricted assignment
scheduling problem. In this model the j-th job has a processing time pj but
we cannoit schedule it on every machine only on a subset of machines. In
the case of the online problem the best known algorithm is Greedy which is
O(logm)-competitive, and it is proved that no o(logm)-competitive algorithm
exists. This lower bound can be extended easily to the migration model where
in each step it is allowed to migrate jobs depending on the size of the aczual
jobs. Therefore we consider the amortized model here, which means that an
algorithm has a migration factor λ if in each step the total processing time of
the migrated jobs is at most λ times the total processing time of the arrived
jobs.

We will suppose that the optimal makespan is known in advance. As it
often happens in makespan scheduling we just loose a constant factor in the
competitive ratio by this assumption. This can be proved by the standard
doubling technique.

Let J = {J1, . . . , Jn} the set of jobs,M = {M1, . . . ,Mm} the set of machines
and Ei ⊆ M for 1 ≤ i ≤ n the set of machines to which the job Ji is eligible.
Let pi be the size of job Ji and `(i) the load of machine Mi at the currently
considered point in time, which is the sum of loads of the active jobs assigned
to i. Let ε > 0 be a constant. Let OPT be the (guessed) optimum makespan,
which is fixed in our calculations.

If there is an incoming job Ji

1. assign Ji to a machine Mj , such that j = {`(j) |Mj ∈ Ei}

2. while there is a job Jt residing on a machine Mj and a machine Mj′ ∈ Et

such that `(j) ≥ `(j′) + (1 + ε)OPT
reassign Jt from Mj to Mj′ .

lemma Migration is bounded by 3λ/ε, where λ is the makespan algorithm
X achieves.

For a fixed point in time define Φ :=
∑

j:Mj∈M `(j)2. Clearly Φ ≥ 0. By the
invariant that all machines have load at most `(j) ≤ λOPT before a new job
arrives, the increase in potential when a new job Jt arrives is bounded by

(`(j) + pt)2 − `(j)2
= 2pt`(j) + p2

t

≤ 2ptλOPT + p2
t

≤ 3ptλOPT, where the last inequality is because of λ ≥ 1, pt ≤ OPT . Thus,
the total potential is bounded by 3λOPT

∑
1≤t≤n pt.

Consider the potential change when a job Jt is migrated from a machine
Mj to a machine Mj′ . Clearly, only the load of the two machines Mj and Mj′

changes and we can bound the change in potential as follows. Let `(j) and `(j′)
denote the load of the machines before job Jt is migrated. Then we have that
the change in potential is

`(j)2 + `(j′)2 −
(
(`(j)− pt)2 + (`(j′) + pt)2

)
= `(j)2 + `(j′)2 −

(
(`(j)2 − 2pt`(j) + p2

t + `(j′)2 + 2pt`(j′) + p2
t

)
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= 2pt(`(j)− `(j′))− 2p2
t

≥ 2pt(1 + ε)OPT − 2p2
t

≥ 2pt(1 + ε)OPT − 2ptOPT
= εptOPT when a job Jt with size pt is migrated. In order to bound the total
volume of migration we enumerate the migrated jobs in the ordering they were
migrated. Let J ′1, . . . , J

′
k be these jobs. Note that it is possible that a job was

migrated multiple times and thus J ′i = J ′l is possible for i 6= l. Let p′1, . . . , p
′
k

the corresponding processing times.
As the potential is non-negative and the loss in potential, when job J ′t is

migrated, is at least εptOPT , we can bound the migrated volume by∑
1≤t≤k εp

′
tOPT ≤ 3λOPT

∑
1≤t≤n pt

⇐⇒
∑

1≤t≤k p
′
t ≤ 3λ/ε

∑
1≤t≤n pt,

which yields a factor of migration of 3λ/ε.
Lemma The algorithm is O(log(m)/ log log(m))-competitive.
Suppose that after the migration step the maximal load is at least C ·OPT ,

denote the machine with this load by v. Define the following sets of the ma-
chines. Let S0 = v and S1 be the set of machines where some of the jobs
assigned to v can be executed. For any i ≥ 2 let Si contain the machines which
are not contained in S0 ∪ S1 . . . ∪ Si−1 and can execute some jobs assigned to
one of the machines in S0 ∪ S1 . . . ∪ Si−1. Denote the size of Si by ni.

First observe that the load is at least (C − i(1 + ε))OPT on the machines
of Si. We can prove this statement by induction. For i = 0 it is obviously true.
Suppose that the statement is true for a given i and consider a machine u from
set Si+1. Then there exists a machine w in set S0 ∪ S1 . . . ∪ Si which has a
job which can be executed on u. On the other hand the load of w is at least
(C − i(1 + ε))OPT by the induction hypothesis. If u had smaller load than
(C − (i + 1)(1 + ε))OPT then one job should migrate from w to u which is a
contradiction.

Now we prove that ni ≥
∏i

j=1(C − j(1 + ε)) for C − 1 ≥ i ≥ 1. We prove
that by induction. First consider S1. The jobs which are assigned to v must be
scheduled in the optimal schedule as well. The total load of these jobs is at least
C · OPT and the load of a machine in the optimal schedule is at most OPT ,
therefore these jobs must be distributed to at least C machines in the optimal
offline schedule. This also yields that n1 ≥ C − 1 ≥ C − (1 + ε). We can prove
the inductive step by a similar argument. Suppose that the statement is valid
for an 1 ≤ i < C − 1. Consider the machines in S0 ∪ S1 . . . ∪ Si. The total load
on these machines is at least

∑i
j=0 ni · (C − i(1 + ε))OPT . This yields that at

least
∑i

j=0 ni · (C − i(1 + ε)) machines are used to schedule these jobs in an
optimal schedule, therefore

ni+1 ≥
i∑

j=0

ni · (C − i(1 + ε))−
i∑

j=0

ni =
i∑

j=0

ni · (C − i(1 + ε)− 1).

Thus we obtained that ni+1 ≥ ni(C − 1− i(1 + ε)) ≥
∏i+1

j=1(C − j(1 + ε)).
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On the other hand we have that
∑C−1

i=1 ni ≤ m thus we obtain that
∏C−1

j=1 (C−
j(1 + ε)) ≤ m and this proves that C = O(log(m)/ log log(m)).
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