
1. Online és dinamikus problémák

1.1. Online problémák

A gyakorlati problémákban gyakran fordulnak el® olyan optimalizálási fel-
adatok, ahol a bemenetet (más néven inputot, vagyis a feladatot de�niáló
számadatokat) csak részenként ismerjük meg, és a döntéseinket a már megka-
pott információk alapján, a további adatok ismerete nélkül kell meghoznunk.

Ilyen feladatok esetén on-line problémáról beszélünk. Az on-line algorit-
musok elméletének igen sok alkalmazása van a számítástudomány, a közgaz-
daságtan, és az operációkutatás különböz® területein.

Az on-line algoritmusok elméletének területér®l az els® eredmények az
1970-es évekb®l származnak, majd a 90-es évek elejét®l kezdve egyre több
kutató kezdett el az on-line algoritmusok területéhez kapcsolódó problémák-
kal foglalkozni. Számos részterület alakult ki és napjainkban is a legfon-
tosabb, algoritmusokkal foglalkozó konferenciákon rendszeresen ismertetnek
új eredményeket ezen témakörb®l. Ennek a jegyzetnek nem célja a téma-
kör részletes áttekintése, terjedelmi okokból ez nem is lenne lehetséges ezen
keretek között, további eredmények találhatóak a [6], [8], [11] m¶vekben.
Célunk néhány részterület részletesebb ismertetésén keresztül a legfontosabb
algoritmustervezési technikák és bizonyítási módszerek bemutatása.

1.2. Elemzési módszerek

Mivel egy online algoritmusnak részenként kell meghozni a döntéseit a tel-
jes bemenet ismerete nélkül, ezért egy ilyen algoritmustól nem várhatjuk el,
hogy a teljes információval rendelkez® algoritmusok által megkapható opti-
mális megoldást szolgáltassa. Azon algoritmusokat, amelyek ismerik a teljes
inputot o�-line algoritmusoknak nevezzük.

Az online algoritmusok hatékonyságának vizsgálatára két alapvet® mód-
szert használnak. Az egyik lehet®ség az átlagos eset elemzése, ebben az
esetben fel kell tételeznünk valamilyen valószín¶ségi eloszlást a lehetséges
bemenetek terén, és a célfüggvénynek az erre az eloszlásra vonatkozó vár-
ható értékét vizsgáljuk. Ezen megközelítés hátránya, hogy általában nincs
információnk arról, hogy a lehetséges inputok milyen valószín¶ségi eloszlást
követnek. Amennyiben elérhet®ek való adatok, akkor az átlagos eset elemzés
helyettesíthet® az algoritmusok empirikus analízisével, azaz a valós tesztada-
tokon elért eredmények összehasonításával. Ilyen esetekben nincs szükségünk

1

az input eloszlások ismeretére, és a várható érték számítására sem.
A másik megközelítés egy legrosszabb-eset elemzés, amelyet versenyké-

pességi elemzésnek nevezünk. Ebben az esetben az online algoritmus által
kapott megoldás célfüggvényértékét hasonlítjuk össze az optimális o�-line
célfüggvényértékkel.

Egy online minimalizálási probléma esetén egy online algoritmust C-
versenyképesnek nevezünk, ha tetsz®leges inputra teljesül, hogy az algoritmus
által kapott megoldás költsége nem nagyobb mint az optimális o�-line költség
C-szerese. Egy algoritmus versenyképességi hányadosa a legkisebb olyan C
szám, amelyre az algoritmus C-versenyképes.

Általában egy tetsz®leges ALG online algoritmusra az I inputon felvett
célfüggvényértéket ALG(I)-vel jelöljük. Az I inputon felvett optimális o�-
line célfüggvényértéket OPT(I)-vel jelöljük. Használva ezt a jelölésrendszert
a versenyképességet minimalizálási problémákra a következ®képpen de�niál-
hatjuk.

Az ALG algoritmus C-versenyképes ha ALG(I) ≤ C · OPT(I) teljesül
minden I input esetén.

Szokás használni a versenyképesség további két változatát. Egy minima-
lizálási probléma esetén az ALG algoritmus enyhén C-versenyképes ha van
olyan B konstans, hogy ALG(I) ≤ C ·OPT(I) +B teljesül minden I input
esetén.

Egy algoritmus enyhe versenyképességi hányadosa a legkisebb olyan C
szám, amelyre az algoritmus enyhén C-versenyképes.

Természetesen igaz, hogy ha egy algoritmus er®sen versenyképes valamely
C konstanssal, akkor ezzel egyidej¶leg ugyanezzel a konstanssal gyengén is
versenyképes.

A fentiekben a minimalizálási problémákra de�niáltuk a versenyképes-
ségi analízis fogalmait. A de�níciók hasonlóan értelmezhet®ek maximali-
zálási problémák esetén is. Ekkor az ALG algoritmus C-versenyképes ha
ALG(I) ≥ C · OPT(I) teljesül minden I input esetén, illetve enyhén C-
versenyképes ha valamely B konstans mellett ALG(I) ≥ C · OPT(I) + B
teljesül minden I inputra. Tehát amíg mimimalizálandó célfüggvény esetén
az el®bbi konstansra C ≥ 1, addig maximalizálandó célfüggvény esetén pedig
C ≤ 1.

2

1.3. Online problémák a szállítmánytervezésben

A szállítási problémák on-line jellege több esetben is el®fordulhat. Egyrészt
sok esetben a szállítás folyamata során keletkeznek új igények, amelyeket
szintén ki kell szolgálnunk. Bizonyos alkalmazásokban megvárható, amíg az
eddigi tervek szerinti végrehajtásban keletkezik szabad er®forrás, más ese-
tekben az új kérés nem várhat hosszan és azonnal újratervezés szükséges.
Egy másik online jelleg abból adódik, hogy a szállítás folyamat közben vál-
tozhatnak a körülmények: változhatnak az úthálózat paraméterei, továbbá
a szállítási tervhez képest keletkez® egyéb eltérések is szükségessé tehetik
az el®zetes tervek megváltoztatását. A szállítmánytervezés területén belül
szokás az online feladatokat dinamikus problémának is nevezni (ld. [3] és
[14]).

A megváltozott körülmények kezelésére két alapvet® stratégiát haszná-
lunk. Az egyik stratégia befejezi a közvetlenül nem érintett szállítási terveket
és csak a közvetlenül érintett tervek útvonalait módosítja, a másik megkö-
zelítés a tervek összességét újraoptimalizálja a megváltozott körülményeknek
megfelel®en. Ezeknek a stratégiáknak és több mindkét stratégiát használó
algoritmusnak a vizsgálata jelenleg is folyik.

Általában a valós alkalmazásokban az input adatokkal kapcsolatosan két
kérdés merül fel, egyrészt azoknak a lényeges változása, evolúciója amely tel-
jesen új kérések megjelenését tekinti, a másik az input adatok min®sége, ami
azok stabilitását jellemzi. A min®séget általában sztochasztikus modellekkel
jellemzik, ezzel ebben a tanulmányban nem foglalkozunk. Azzal kapcsolat-
ban, hogy mennyire dinamikus az input különböz® mér®számokat vezettek
be. A dinamikusság által okozott nehézség tulajdonképpen két tulajdonság-
tól függ, az egyik az, hogy mekkora az új adatok mennyisége, a másik az,
hogy mennyire sürg®s az azokban megjelent kérések kiszolgálása. Az els® mé-
r®szám a dinamizmus foka, amit a δ = ndin/ntot formulával de�niálhatunk,
ahol ndin a dinamikus, kés®bb megjelent kérések száma, ntot pedig az összes
kérés száma. A f® különbség az online algoritmusok klasszikus területéhez
képest, hogy a dinamikus szállítmánytervezési esetben gyakran olyan prob-
lémákat vizsgálnak, ahol a dinamizmus foka viszonylag alacsony, míg ilyen
kikötések az online algoritmusoknál nem szokásosak. Amennyiben a dinami-
kus kérések sürg®sségét is �gyelembe vesszük, akkor számít, hogy egy kérés
mikor válik ismerté, ezt az i kérésre az ri érkezési id® adja meg. Amennyiben
T jelöli a teljes szállítás végrehajtási idejét, D pedig a dinamikusan érkezett
kérések halmazát, akkor használhatjuk a következ® sürg®sséget is �gyelembe

3

vev® mér®számot, amit a dinamizmus e�ektív fokának neveznek

δe =
1

ntot

∑
i∈D

ri
T
.

Fontosnak tartjuk megegyezni, hogy amennyiben id®ablakok is vannak a
kérések teljesítéséhez, akkor a sürg®sség nem a teljes szállítás végrehajtási
idejét®l függ, hanem az aktuális igény engedélyezett id®ablakának a végét®l.
Legyen ci az i-dik kérés id®ablakának a befejezési id®pontja. Erre a modellre
a dinamizmus e�ektív fokát a következ®képpen terjesztették ki.

δTW
e =

1

ntot

∑
i∈D

(1− ci − ri
T

).

2. Online utazó ügynök modellek

Ebben a fejezetben a szállítási útvonaltervezés azt a változatát foglaljuk
össze, amelyben az igények on-line érkeznek továbbá csak az útvonalter-
vezés problémáját vesszük, így a szállítóeszközök kapacitását nem vesszük
�gyelembe. Az algoritmusok közvetlenül használhatóak abban az esetben ha
a szállítandó mennyiségek kicsik, nem haladhatják meg a szállítóeszközök
kapacitását, továbbá az itt tervezett algoritmusok továbbfejlesztései használ-
hatóak lesznek majd a szállítmánytervezés on-line változatának megoldása
során. A következ® modelleket mutatjuk be.

2.1. On-line utazó ügynök probléma

Adott valamennyi pont a gráfban. A szállítóeszköz az útját egy meghatá-
rozott O pontban kezdi. Különböz® id®pontokban egy-egy címet kap - a
célállomások címét -, ahová még el kell menjen. Ebben a pillanatban új-
ratervezheti az útját úgy, hogy az összes címre, aminek a címét megkapta,
eljusson. Ez a probléma a szállítmányszervezés speciális eseteiben fordul-
hat el®, amikor a szállítóeszköz begy¶jtési vagy szétosztási feladatot hajt
végre. A probléma on-line utazó ügynök feladat (OLTSP) néven ismert több
változatát vizsgálták attól függ®en, hogy milyen megszorításokat alkalma-
zunk a feladat kiírásában (ld. [1], [5],[7]) . A legfontosabb a következ® két
változat. Az els®ben az eszközt®l nincs megkövetelve az, hogy a kiindulási
pontba visszatérjen miután minden hozzá beérkez® kérést kielégített, a másik

4

megközelítésben viszont ez elvárt követelmény. Az els® megközelítést nomád
változatnak hívjuk és N-OLTSP-vel (Nomadic-OLTSP) jelölik, a másodikat
pedig hazajáró TSP-nek nevezzük és H-OLTSP-vel (Homing-OLTSP) jelölik.
Mindkét megközelítésben a cél a teljesítési id® minimalizálása.

Az N-OLTSP probléma megoldására kifejlesztették a következ® algorit-
must, amely egy mohó jelleg¶ stratégiát követ. Minden alkalommal, amikor
új kérés érkezik, tervezzük újra az utat úgy, hogy az a még ki nem szolgált
kérések halmazára fektetett legrövidebb Hamilton út legyen.

Legyen S(t) a t id®pontig beérkezett még nem kielégített igények hal-
maza, beleértve a legújabb kérést is és a kiindulási pontot. Tegyük fel, hogy
a t id®pontban, amikor az új kérés beérkezett, a járm¶ a p(t) pontban van.
Tervezzük meg azt az útvonalat, amely p(t)-b®l kiindulva minimális id® alatt
kielégíti az S(t)-ben szerepl® igényeket és folytassa a szállítóeszköz ezen út-
vonalterv alapján az elosztást.

Ezt az algoritmust GTR algoritmusnak nevezik és a versenyképességére
az alábbi állítás teljesül:

1. Tétel. A GTR algoritmus 2-versenyképes a nomád online TSP feladatra.

Fontos megjegyeznünk, hogy a fentiekben leírt algoritmusok versenyké-
pessége közel optimális, mivel teljesül az alábbi állítás.

2. Tétel. A nomád online TSP feladatra nincs olyan online algoritmus,
amelynek kisebb a versenyképessége, mint 2.

Az N-OLTSP-re bemutatott mohó algoritmus könnyen átalakítható egy,
a H-OLTSP-t megoldó mohó algoritmussá, annyit kell tenni, hogy nem uta-
kat, hanem a kiindulási pontban végz®d® utakat kell keresni. Másrészt a
H-OLTSP esetében egy mohó keretrendszeren belül felhasználható az a tény,
hogy legvégül vissza kell érnünk a kiindulási pontba. Ezt úgy érjük el, hogy
különbséget teszünk azon kérések között, amelyek viszonylag közel vannak a
kiindulási ponthoz, és azok között, amelyek viszonylag messze vannak t®le.
Ezt a következ® PAH (Plan at Home) algoritmussal oldhatjuk meg.

1. Amikor a szerver a kiindulási pontban van, akkor azt az optimális utat
kezdi el követni, amely optimálisan kiszolgálja az összes még ki nem
szolgált kérést, majd visszatér az eredeti, kiindulási pontba.

2. Ha a t id®pontban új kérés érkezik be a szállítóeszközhöz az x pontból,
akkor az alábbi két lépés egyikét fogja tenni:

5

(a) Ha d(x, o) > d(p(t), o), akkor a szerver visszamegy a kiindulási
pontba (a legrövidebb úton), és az 1-es esetben leírtakat teszi.

(b) Ha d(x, o) ≤ d(p, o), akkor a szállítóeszköz a kérést addig �-
gyelmen kívül hagyja, amíg újra vissza nem érkezik a kiindulási
pontba.

3. Tétel. A PAH algoritmus 2-versenyképes a hazajáró modellben.

Ez az algoritmus optimális abban az értelemben, hogy nincs kisebb ver-
senyképeséggel rendelkez® online algoritmus, amint azt az alábbi állítás mu-
tatja.

4. Tétel. A hazajáró online TSP feladatra nincs olyan online algoritmus,
amelynek kisebb a versenyképessége, mint 2.

Mindkét algoritmusban az újraoptimalizálás során egy NP -nehéz felada-
tot kell megoldanunk, ezért a fenti algoritmusok futási ideje exponenciális.
Az algoritmusok egy gyorsított polinomiális idej¶ változatát kapjuk, ha az új-
raoptimalizálási részben az egzakt megoldó algoritmusokat az utazó ügynök
problémára széles körben vizsgált során heurisztikus eljárásokkal helyettesít-
jük.

2.2. Fuvarrendelési modellek

A szállítmánytervezés során az igények többnyire nem abban a formában ér-
keznek, hogy a szállítóeszköznek el kell mennie egy adott pontba, hanem
abban a formában érkeznek, hogy a szállítóeszköznek el kell mennie egy
pontba és onnan egy másik pontba kell szállítania. Tehát ebben a modell-
ben a szállítóeszköz az útját egy meghatározott O pontban kezdi és oda is
kell visszatérjen. Különböz® id®pontokban egy-egy címpárt kap, egy szállí-
tás kezd® és végállomását. Ebben a pillanatban újratervezheti az útját úgy,
hogy az összes szállítást, aminek az igényét megkapta végrehajthassa. Ez
a probléma a szállítmányszervezés azon esetében fordul el®, amikor a szál-
lítóeszköznek az egyes megrendeléseket külön-külön kell végrehajtania, nem
szállíthat párhuzamosan különböz® igényekhez tartozó értékeket egyszerre.
Az így kapott on-line problémát on-line fuvarrendelési feladatnak nevezik a
szakirodalomban (ld. [2],[9],[10]). A feladat megoldására a következ® algo-
ritmusokat fejlesztették ki:

6

Újratervez® algoritmus: Amennyiben egy új kérés érkezik, a szállítóeszköz
befejezi az aktuális szállítást, majd az eddig tervezett útvonaltervet elhagyja
és egy új optimális útvonaltervet dolgoz ki, az aktuális még ki nem elégített
igények �gyelembevételével.

Ignoráló algoritmus: Ez az algoritmus ignorálja az új kéréseket mind-
addig, amíg be nem fejezi az aktuális körutat amivel visszatér a kiindulási
pontba. Utána az aktuális (már megjelent, de még nem teljesített) igények
alapján az algoritmus kiszámít egy optimális körutat és ez lesz az új aktuális
körút.

Ezen algoritmusok versenyképességét határozza meg az alábbi tétel.

5. Tétel. Mind az újratervez® mind az ignoráló algoritmus 5/2 versenyképes
a fuvarrendelési modellben függetlenül attól, hogy a szállítóeszköznek mekkora
a kapacitása.

Amennyiben a szállítóeszköz kapacitása végtelen, azaz tetsz®leges számú
kérést szolgálhat ki egyszerre, akkor a PAH algoritmus következ® kiterjesztése
egy hatékony megoldó algoritmus. Ezt az algoritmust TIR (Temporaly Ignore
Request) algoritmusnak nevezték el.

Megfontolt (SMART) algoritmus: Az algoritmus futása során a szállító-
eszköz a következ® három állapotban lehet.

• üres: Ebben az állapotban a szállítóeszköz a kiindulási O pontban van,
és nincs olyan igény, amelyet ki kellene szolgálnia.

• alvó: Ebben az állapotban vannak igények, amiket ki kellene szolgálni,
de ezek azonnali kiszolgálása túl költséges (a költségbecsl® subrutin
alapján), így az algoritmus még vár további igényekre.

• dolgozó: Ebben az állapotban az algoritmus egy (a költségbecsl® sub-
rutin által meghatározott) terv szerint szolgálja ki az igényeket.

A költségbecsl® subrutin egy Θ > 1 paramétert®l függ és a következ®kép-
pen m¶ködik: Az algoritmus kiszámolja a minimális idej¶ S körutat, amely
a kiindulási pontban kezd®dik, kiszolgálja az összes aktuális igényt és a ki-
indulási pontban végz®dik. Amennyiben a körút befejezhet® a Θt id®pont
el®tt (t az aktuális id®pont), akkor a subrutin az (S, dolgozó) értéket adja
vissza, ellenkez® esetben az (S, alvó) választ.

Az állapotokat az algoritmus a következ®képpen váltogatja:

7

• Üres állapot: Amennyiben az algoritmus az üres állapotban van, akkor
megvárja az els® T id®pontot, amelyben új igény merül fel. Ebben az
id®pontban meghívja a költségbecsl® subrutint. Amennyiben az ered-
mény (S, dolgozó), akkor az eljárás a dolgozó állapotba kerül, a járm¶
elkezdi végrehajtani az S körutat. Ellenkez® esetben az algoritmus az
alvó állapotba kerül, egy Q ébredési id®vel, amely a legkisebb T -nél
nagyobb olyan érték, ami kielégíti a T + l(S) ≤ ΘT feltételt (ahol l(S)
a körút végrehajtásának ideje).

• Alvó állapot: Az algoritmus az alvó állapotban az ébredési idejéig sem-
mit nem csinál. Az ébredési id®ben újra meghívja a költségbecsl® sub-
rutint. Amennyiben az eredmény (S, dolgozó), akkor az eljárás a dol-
gozó állapotba kerül, a járm¶ elkezdi végrehajtani az S körutat. Ellen-
kez® esetben az algoritmus az alvó állapotba kerül, egy újraszámított
ébredési id®vel.

• Dolgozó állapot: A dolgozó állapot alatt, amíg az aktuális körutat
be nem járja, a járm¶ a hívásokat �gyelmen kívül hagyja. Miután
a járm¶ visszaért a kiindulási pontba vagy átáll az üres állapotba (ha
nincs kielégítetlen igény) vagy meghívja a költségbecsl® subrutint, és az
eredményt®l függ®en újra dolgozó állapotba vagy alvó állapotba kerül.

6. Tétel. A SMART algoritmus 2-versenyképes.

Mindhárom prezentált algoritmus során meg kell oldani a probléma o�ine
változatát, mivel ez egy NP nehéz feladat a gyakorlatban használhatunk
heurisztikák vagy közelít® algoritmusok által kapott megoldásokat is.

2.3. Online utazó szerel® probléma

Amennyiben a célfüggvény a városokba való érkezési id®k összege illetve át-
laga, akkor az on-line utazó szerel® problémáról beszélünk. Ezt a problémát
a [13, 9] cikkekben vizsgálták. A feladat igen nehéz a szakirodalomban f®leg
csak egyenes esetén vizsgálták az online problémát. Két esetet különböztet-
hetünk meg a klasszikus utazó szerel® probléma esetén a kérések egy pontként
jelennek meg és a szervernek oda kell mennie a kiszolgáláshoz, és a megér-
kezésének az id®pontját tekintjük a kérés kiszolgálási idejének. Másrészt itt
is szokás a fuvarrendelési modellek vizsgálata is, ahol a kérés a metrikus tér

8

két pontja, és a kérés kiszolgálásához els®ként el kell mennünk a kérés kezd®-
pontjába, majd a végpontjába és a végpontba való megérkezéskor szolgáltuk
ki a kérést. Itt �gyelembe kell vennünk azt is, hogy van-e kapacitáskorlátja
a szervernek. Amennyiben a szerver kapacitása 1, akkor egy kérés kiszolgá-
lásának megkezdését követ®en azt a kezd®pontból el kell vinnie a végpontba,
azaz egyszerre nem szolgálhatunk ki több kérést. Ha a szerver kapacítása
végtelen, akkor egyszerre párhuzamosan több kérés kiszolgálása is folyhat.
Ez azt jelenti, hogy egy kérés kiszolgálása az els® olyan, a kérés megjelenését
követ® id®pontban kezd®dik, amikor a kezd®pontjába megy a szerver és az
ezt követ® els® olyan id®pontban fejez®dik be, amikor a végpontjába megy
a szerver. Ezen végtelen kapacitásos feladat megoldására az alábbi BCR
(Blindly Construct Route) algoritmust javasolták a [9] cikkben.

BCR Algoritmus: Legyen σ = min{t; |u|}, ahol u a 0 id®pontban meg-
jelent kérések kezd®pontjai közül a 0-hoz legközelebbinek az 0-tól való távol-
sága (amennyiben van ilyen kérés) és t az els® nem 0 id®pontban megjelen®
kérés megjelenési ideje. A 0 id®pontban a szerver elkezd jobbra mozogni,
amíg a σ pontba meg nem érkezik. Ezt követ®en visszamegy 0-ba. Majd el-
megy a másik irányba a −2σ pontig és onnan visszatér a 0-ba. Így folytatja
a k-dik fázisban a (−2)kσ pontig megy majd onnan vissza 0-ba. Minden ké-
rést akkor kezd kiszolgálni, amikor a kérés megjelenése után el®ször átmegy
a kezd®pontján, és akkor fejezi be a kiszolgálást, mikor ezt követ®en els®ként
ér oda a kérés végpontjához.

7. Tétel. ([9]) Ha a metrikus tér egy egyenes, akkor a BCR algoritmus 9-
versenyképes, ha minden kérésre ugyanaz a kezd® és végpont és 15-versenyképes
az általános fuvarra hívó modellben.

3. Többcélú változatok

Többcélú optimalizálásról beszélünk, amikor egy feladat megoldása során
több, különböz® szempontot is �gyelembe kell venni, amelyek mindegyikét
egy-egy a feladat lehetséges megoldásain értelmezett célfüggvény írja le. Bi-
zonyos esetekben ilyenkor van egy kiemelt célfüggvény, amelynek a legna-
gyobb a jelent®sége és a többi célfüggvény csak azon megoldások rangso-
rolására szolgál, amelyek a kiemelt célfüggvény szerint optimálisak. De az
esetek többségében nincs ilyen rangsorolás a célfüggvények között, hanem
mindegyik célfüggvényt egyformán, vagy hasonló mértékben �gyelembe kell

9

vennünk. A probléma az, hogy ezekben az esetekben gyakran el®fordul, hogy
bizonyos megoldások, amelyek nagyon jó eredményt adnak az egyik célfügg-
vény szempontjából rosszul teljesítenek a másik célfüggvény alapján.

3.1. Többcélú optimalizálásban használt modellek

Tömören összefoglaljuk milyen megközelítéseket szokás használni a több cél-
függvényt is �gyelembe vev® modellekben, majd részletesebben bemutatjuk
miként használhatóak ezek a hálózati folyamatok szintézisének esetén. Mi-
vel a hálózati folyamatok témakörében többnyire minimalizálási feladatokat
kell megoldanunk, ezért a továbbiakban feltételezzük, hogy minden szempont
egy minimalizálandó célfüggvény által van megadva. Ennek megfelel®en mi-
nimum feladatokra adjuk meg az összes de�níciót. Mindezt az általánosság
megszorítása nélkül feltehetjük, hiszen egy maximum feladat áttranszfor-
málható egy minimum feladatra ha a célfüggvényt megszorozzuk −1-el. De
megjegyezzük, hogy a de�níciók maguk is minden nehézség nélkül kiterjeszt-
het®ek maximalizálási feladatokra is.

Az alapvet® megközelítés, hogy olyan megoldásokat keresünk, amelyek
nem javíthatóak egyik célfüggvény szerint sem anélkül, hogy más célfügg-
vényekben rontanánk a megoldás hatékonyságán. A matematikailag precíz
de�níció érdekében tegyük fel, hogy k darab minimalizálandó célfüggvényünk
van, amiket f1, . . . , fk jelöl, továbbá a probléma lehetséges megoldásainak a
halmazát jelölje S.

Két megoldást összehasonlítva egy nyilvánvaló gondolat azt mondanunk,
hogy egy x ∈ S megoldás akkor jobb, mint egy y ∈ S, ha minden szempont
szerint jobb, azaz minden i = 1, . . . , k értékre teljesül, hogy fi(x) < fi(y).
Ezen fogalom alapján de�niálhatjuk a gyenge e�ciens megoldásokat. Egy
megoldás gyenge e�ciensnek nevezünk, ha nincsen nála jobb megoldás. Te-
hát egy x∗ ∈ S megoldást akkor nevezünk gyenge e�ciens megoldásnak,
ha nincs olyan x ∈ S megoldás, amelyre teljesülne fi(x) < fi(x

∗) minden
i = 1, . . . , k esetén.

Egy másik, az el®z®nél megenged®bb, és szélesebb körben használt foga-
lom két megoldás összehasonlítására a következ®. Azt is mondhatjuk, hogy
egy x ∈ S megoldás akkor jobb, mint egy y ∈ S, ha egyik szempont sze-
rint sem rosszabb és legalább az egyik szempont szerint jobb. Tehát minden
i = 1, . . . , k értékre teljesül, hogy fi(x) ≤ fi(y) és van olyan j ∈ {1, . . . , k}
index, amelyre fj(x) < fj(y). Az ebben az értelemben vett legjobb megoldá-
sokat szokás er®sen e�ciens vagy Pareto optimális megoldásoknak nevezni.

10

Tehát egy x∗ ∈ S megoldást akkor nevezünk Pareto optimális megoldásnak,
ha nincs olyan x ∈ S megoldás, amelyre teljesülne fi(x) ≤ fi(x

∗) minden
i = 1, . . . , k esetén és fj(x) < fj(x

∗) valamely j ∈ {1, . . . , k} indexre.
Többcélú optimalizálási feladatok esetén az egyik megközelítés az, hogy

meghatározzuk a Pareto optimális megoldásokat. Másrészt az összes Pareto
optimális megoldás legenerálásán kívül más módszereket is szokás használni
többcélú optimalizálási feladatok megoldására. Az egyik lehet®ség, hogy a
különböz® célfüggvényekb®l egy aggregált célfüggvényt hozzunk létre. En-
nek a legegyszer¶bb és legelterjedtebb módja az, hogy vesszük a célfüggvé-
nyek egy pozitív súlyokkal képzett súlyozott összegét, és erre az aggregált
függvényre keressük a minimális megoldást. Másrészt indokolt esetben más,
minden változóban szigorúan monoton függvény is használható aggregált cél-
függvényként. Így a problémát visszavezetjük egy egyetlen célfüggvényes op-
timalizálási feladatra. A két megközelítés közötti kapcsolatot adja meg az
alábbi állítás.

8. Tétel. Minden optimális megoldás amit egy, az eredeti célfüggvények po-
zitív súlyokkal vett lineáris kombinációjával képzett aggregált költségfüggvény
alapján kaptunk Pareto optimális megoldása a többcélú optimalizálási feladat-
nak.

Fontosnak tartjuk megjegyezni, hogy a fenti állítás teljesen hasonlóan
igazolható minden olyan aggregált célfüggvényre, ami szigorúan monoton nö-
vekv® az összes változóban. Bizonyos alkalmazások esetén szoktak a lineáris
kombinációnál bonyolultabb aggregált függvényeket is vizsgálni.

Egy további megközelítése a többcélú optimalizálási problémáknak, amely-
ben kiemelünk egy célt és ezen cél szerint keressük az optimális megoldást,
miközben a többi szempontot korlátozási feltételként írjuk el®. Az egyszer¶bb
leírás érdekében tegyük fel, hogy az f1 függvényt emeltük ki, amely szerint
optimalizálni szeretnénk, ez a célfüggvények átjelölésével biztosítható. Ezt
szokás ε-korlátozás módszerének is nevezni. Tehát egy korlátozásos egycélú
redukciónál adottak C2, . . . , Ck konstansok és az optimalizálási feladatunk a
következ®:

min f1(x)
fi(x) ≤ Ci, i = 2, . . . , k
x ∈ S
Egy ilyen korlátozásos egycélú redukciónál nem feltétlenül teljesül, hogy

az optimális megoldás az eredeti többcélú feladatnak Pareto optimális meg-
oldása lesz, hiszen el®fordulhatnak olyan megoldásai is a feladatnak, amelyek

11

f1 szerint ugyanazt az értéket veszik fel, mint a kiválasztott optimális meg-
oldás, de a többi célfüggvény szerint jobbak. Másrészt egy kicsit gyengébb
állítást kimondhatunk.

9. Tétel. Ha egy korlátozásos egycélú redukált feladatnak van optimális meg-
oldása, akkor az az eredeti feladatnak gyenge e�ciens megoldása lesz.

3.2. Lehetséges célfüggvények szállítmánytervezési fel-

adatoknál

Amennyiben egy több körutas szállítmánytervezési feladat van, akkor a kör-
utak összhossza mellett egyéb függvényeket is szokás vizsgálni. Többcélú
szállítmánytervezésr®l részletek találhatóak a [12] cikkben.

• El®fordulhat, hogy az éleknek két különböz® költsége van. A legtöbb
útvonal keres® szoftver esetén lehet minimalizálni megtett távolságra,
id®re és költségre is. Ezek hasonló mér®számok de nem feltétlenül
ugyanazok az optimális utak.

• A legkézenfekv®bb második költségfüggvény a körutak száma, szállí-
tások esetén minden körút újabb szállítóeszközt és emberi er®forrást
igényelhet, így nyilvánvalóan extra költséget jelent. Ezt gyakran beszá-
mítják a célfüggvénybe, azaz aggregált függvényeket néznek. A további
célfüggvények akkor érdekesek, ha adott a tervezend® körutak száma.

• Egy lehetséges célfüggvény a maximális körúthossz minimalizálása. Nyil-
ván ez csak abban az esetben érdekes, ha adott a körutak száma (külön-
ben a megoldás) a depon kívül egyetlen pontot tartalmazó körutakat
használna.

• Egy további célfüggvény a körutak egyensúlyozottsága. Ehhez de�ni-
álnunk kell a körutak terheltségét, ami lehet a hosszuk, de a kiszolgált
kérések száma is �gyelembe vehet®. Ezt követ®en vesszük a legkisebb
terheltség¶ körúttól való terhelési különbségét a többi körútnak és ezek
összegét minimalizáljuk.

• Az egyes élekhez kockázati értékek is rendelhet®k, amik a balesetek,
késések valószín¶ségét adják meg. Ilyen esetekben cél lehet a kis koc-
kázatú utak keresése is.

12

• Szokás olyan függvényeket is vizsgálni, amelyek nem csak az élekt®l
függnek hanem a kérésekt®l. Ilyen modelleket akkor tekintenek, ha
nem kell az összes kérést kiszolgálni. Ezeket a többcélú modelleket az
alábbiakban tekintjük át.

3.3. Visszautasításos modellek

A visszautasításos vagy büntet® TSP esetén minden ponthoz hozzátartozik
még egy további érték. Ez egy πi büntetés, amit azon pontok után kell
�zetni, amelyeket nem látogattunk meg. Tehát a költségünk két részb®l adó-
dik össze, egyrészt ki kell �zetnünk a büntetéseket minden pontra, amit nem
látogattunk meg, másrészt a meglátogatott pontokat bejáró körútra venni
kell a körút költségét, ami a szokott módon a körútban szerepl® élek súlyai-
nak összege. A feladat NP-nehéz, hiszen ha minden büntetés végtelen, akkor
megkapjuk a TSP feladatot. Az alábbiakban bemutatunk egy érdekes köze-
lít® megoldást adó algoritmust a [4] dolgozat alapján. Az algoritmus szim-
metrikus és a háromszög egyenl®tenséget kielégít® költségmátrixok esetén
m¶ködik. Az alapötlet az, hogy minden j-re de�niáljuk a BTSP(j) feladatot,
ami a fenti feladat azon megszorítás mellett, hogy a j pontot mindenkép-
pen meg kell látogatnunk. Ez azért jó, mert a feladat optimális megoldása
vagy ezen BTSP(j) feladatok megoldásai közül lesz a legjobb vagy az lesz,
hogy minden kérést visszautasítunk. Tehát elegend® ezen BTSP(j) feladatok
optimális megoldásait jól közelíteni.

Egy ilyen feladat felírható egészérték¶ programozási feladatként, ahol az
xe változók (e ∈ E) a kiválasztott éleket adják meg a szokott módon, a vál-
tozó értéke 1 ha az e él benne van a körútban, és az yj változók (j ∈ N) pedig
a kiválasztott csúcsokat yi = 1, ha az i várost meglátogattuk, 0 egyébként.
Az egyszer¶ leírás érdekében használjuk a δ(S) jelölést, ami azokat az éle-
ket jelöli, amelyek az S halmaz és a komplementere között mennek, például
δ({i}) az i pontból kimen® élek. Ekkor a feladat∑

e∈E cexe +
∑

i∈N(1− yi)πi → min∑
e∈δ({i}) xe = 2yi ∀i ∈ N∑
e∈δ(S) xe ≥ 2yi ∀i ∈ N,S ⊂ N with |S ∩ {i, j}| = 1

yj = 1
A célfüggvény helyessége adódik az xe és yi változók de�níciója alapján.

Az els® feltétel garantálja, hogy ha egy pont yi szerint benne van a körútban,
akkor átmegy rajta körút, a második feltétel pedig a részkörút kizáró feltétel.
Ez biztosítja, hogy ha egy i pont benne van a körútban, akkor minden olyan

13

S halmazból, ami i és j közül pontosan az egyiket tartalmazza kell kimen-
jen él. Az egészérték¶ felírás segítségével de�niálhatjuk az alábbi közelít®
algoritmust.

BGSW algoritmus:

• Minden j-re hajtsuk végre a következ® lépéseket

� Vegyük a BTSP(j) feladat egészérték¶ programozási felírásánal LP
relaxációját, azaz azt a változatot, ahol xe-r®l és yi-r®l csak annyit
kötünk ki, hogy a [0, 1] intervallumban vannak és nem követeljük
meg, hogy egészek.

� Oldjuk meg ezt az LP relaxációt egy polinom idej¶ algoritmussal
(pl bels® pontos módszer).

� Válasszuk ki azokat a pontokat, amelyekre az LP relaxáció meg-
oldásában yi ≥ 3/5.

� Az ezen pontokból álló TSP feladatra adjunk egy közelít® kör-
utat a Christofedes heurisztikával, a többi kérést utasítsuk vissza.
Legyen ez a megoldás Mj.

• Vegyük az Mj megoldások közül a legkisebb költség¶t.

• Ha ennek a megoldásnak a költsége kisebb, mint minden kérés vissza-
utasítása, akkor ezt adja vissza az algoritmus, egyébként minden kérést
visszautasít.

Az algoritmus legrosszabb esetben is jól közelíti az optimumot, amint azt
az alábbi állítás mutatja.

10. Tétel. A BGSW algoritmus 5/2-approximációs.

3.4. Díjgy¶jt® modellek

A díjgy¶jt® utazó ügynök modellben minden ponthoz hozzátartozik a bün-
tetésen kívül még egy további érték. Ez egy wi díj, amit akkor kapunk meg,
ha a pontot az ügynök meglátogatta. Továbbá adott egy Q kvóta érték, ami
a minimálisan összegy¶jtend® díjak összegét adja meg. Tehát a lehetséges
megoldások olyan körutak, amelyekben legalább Q értéknyi díjat összegy¶j-
tünk, és ezek közül keressük a minimális költség¶t. Egy adott körút költsége

14

két részb®l adódik össze. Vennünk kell az ügynök által megtett távolságnak
(ami a körútban szerepl® élek költségeinek összege) és a nem meglátogatott
pontok büntetéseinek összegét. Ha minden büntetés 0, azaz a feladat csak egy
minimális hosszúságú köút megtalálása, amely kielégíti a kvótára vonatkozó
feltételt, akkor kvóta TSP-r®l beszélünk.

Az online feladatban a kéréseknek van egy érkezési ideje is, amit a j-edik
kérés esetén rj jelöl és ezen id®pont el®tt nem lehet kiszolgálni a kérést. Itt
is egy olyan körutat kell tennünk, amelyben a meglátogatott pontok díjaiból
összegy¶jtünk legalább Q értéket, és a cél a körút befejezési idejének és a
nem meglátogatott pontok büntetéseinek összegének összege.

Az online feladat megoldására a WGR (wait and go with restart) algorit-
must fejlesztették ki. Az alapötlete az, hogy igyekszik kivárni, amíg elegend®
információt kap és ezáltal elkerülni a kezdeti rossz döntéseket. Két állapota
van a várakozási és dolgozó állapotok. Kezdetben az algoritmus várakozási
állapotban van, majd az alábbi szabályok szerint m¶ködik.

• Ha várakozási állapotban van, akkor vár addig a t id®pontig, amelyre a
t id®pontig megérkezett kéréseke kiszolgálásának optimális o�ine költ-
sége pontosan t, és ekkor átlép a dolgozó állapotba.

• Ha az algoritmus a tD id®pontban lép a dolgozó állapotba, akkor egye-
nes visszamegy az origoba. Utána kiszámolja a hátralev® kérések opti-
mális megoldását és elkezdi azt a körutat bejárni. Ha befejezte újra a
várakozó állapotba kerül. Továbá, ha dolgozó állapotban van és ezalatt
egy új kérés érkezik egy t id®pontban, akkor kiszámolja a t id®pon-
tig érkezett kérések kiszolgálásának optimális o�ine költségét, és ha ez
nagyobb, mint t, akkor megáll és átlép várakozó állapotba.

Az algoritmus versenyképességét adja meg az alábbi állítás.

11. Tétel. A WGR algoritmus 7/3-versenyképes az online díjgy¶jt® TSP
feladatra.

4. Egyéb nem versenyképesség alapú dinami-

kus megközelítések

A versenyképességi elemzésben tekintett algoritmusok többnyire részfeladat-
ként megoldanak NP-nehéz problémákat. Ezen elemzés során a futási id®k-
kel nem foglalkozunk, így ezt nem tekintjük problémának, mint említettük

15

minden algoritmus kiterjeszthet® olyan módon, hogy az optimális megoldás
helyett valamilyen gyorsabb, közelít® módszert használunk. Amennyiben a
közelít® módszerre adott egy legrosszabb approximácós korlát (mint például
a fentiekben bemutatott büntetéses modellben használt algoritmus, vagy az
alap TSP-nél használt Christo�des algoritmus esetén, akkor általában ennek
felhasználásával kaphatunk egy versenyképességi korlátot az online megol-
dásra is.

A gyakorlati feladatoknál fontos a számítást segít® algoritmusok futási
ideje, hiszen egy módosított tervet csak akkor tudunk elkezdeni, ha végre-
hajtottuk a tervet elkészít® számításokat. Ennek megfelel®en az újraopti-
malizáláson alapuló dinamikus megoldó algoritmusokat két osztályba szokás
sorolni.

Periodikus újraoptimalizálós algoritmusok: Ez a csoportja az al-
goritmusoknak a kézenfekv® megoldást választja. Vagy adott id®közönként
vagy minden új dinamikus kérés megjelenése esetén, veszi az aktuális állapo-
tot (a szerver vagy szerverek állapota, a még nem teljesített kérések) és ezen
inputra meghatároz egy statikus megoldó algoritmussal egy optimális meg-
oldást. Ezt követ®en a következ® újraoptimalizálásig ezt a megoldást követi.
Ezen megközelítés el®nye, hogy a széles körben kutatott statikus megoldó al-
goritmusok halmazából választhatunk egy algoritmust. A megközelítés hát-
ránya, hogy az újraoptimalizálás a kezdetekt®l indul nem használjuk ki a már
esetlegesen meglev® információkat, megoldáskezdeményeket.

Folytonos újraoptimalizálás: Ez a csoportja az algoritmusoknak igyek-
szik kihasználni a meglev® információkat. Az aktuális megoldáshoz használt
segédinformációkat nem töröljük, hanem karbantartjuk, hogy kés®bb a dina-
mikusan érkezett új kérések miatt kicsit megváltozott input megoldásában
segítségünkre lehessenek. Ezt a megközelítést jól használhatjuk különböz®
metaheurisztikáknál, mint a lokális keres® vagy genetikus algoritmusok. Szá-
mon tartjuk juó megoldásoknak egy halmazát, és amennyiben változik az
input ezeket a megoldásokat megfelel®en változtatjuk és innen kezdjük az
újabb feladat megoldásainak keresését. Ezzel csökkenthetjük az újraoptima-
lizáló algoritmus futási idejét, és ezáltal javíthatunk a dinamikus változásokra
való reagálásunk idején.

16

Hivatkozások

[1] G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, M. Talamo, Al-
gorithms for the on-line traveling salesman. Algorithmica 29, 560�581,
2001.

[2] N. Ascheuer, S.O. Krumke, J. Rambau, Online dial-a-ride prob-
lems: Minimizing the completion time. In: Proceedings of the 17th
STACS.Volume 1770 of Lecture Notes in Computer Science, Springer
639�650, 2000.

[3] G. Berbeglia, J.F. Cordeau, G. Laporte, Dynamic pickup and delivery
problems, European Journal of Operational Research 202 (2010) 8�15

[4] D. Bienstock, M. Goemans, D. Simchi-Levi, D. Williamson, A note on
the prize collecting traveling salesman problem, Mathematical Program-
ming, 59, 413�420, 1993.

[5] M. Blom, S:O, Krumke, W.E. de Paepe, L. Stougie, The online TSP
against fair adversaries, INFORMS J. Computing 13 138�148, 2001.

[6] A. Borodin, R. El-Yaniv, Online Computation and Competitive Analysis,
Cambridge University Press, 1998.

[7] P. Damaschke, Two short notes on the on-line travelling salesman: hand-
ling times and lookahead. Theoretical Computer Science, 289 (2002),
845�852.

[8] Gy. Dósa, Cs. Imreh, Online Algoritmusok, online tankönyv, Typotex,
2012.

[9] Feuerstein, E., Stougie, L.: On-line single server dial-a-ride problems.
Theoretical Computer Science 268 (2001), 91�105.

[10] Grötschel M., Krumke, S.O., Rambau, J, Online optimization of comp-
lex transportation systems. Online optimization of large scale systems,
(2001) 705�729, Springer, Berlin, 2001.

[11] Cs. Imreh, Competitive analysis, In Algorithms of Informatics Volume
1, ed. Antal Iványi, mondAt, Budapest 2007, 395�428.

17

[12] N. Jozefowiez, F. Semet, E.G. Talbi, Multi-objective vehicle routing
problems, European Journal of Operational Research 189 (2008) 293�
309.

[13] Krumke, S.O., de Paepe, W. E., Poensgen, D., Stougie, L.: News
from the online traveling repairman. Theoretical Computer Science 295
(2003), 279�294.

[14] V. Pillac, M. Gendreau, C. Gueret, A.L. Medaglia, A Review of Dynamic
Vehicle Routing Problems, European Journal of Operational Research

18

