1. Online és dinamikus problémak

1.1. Online problémak

A gyakorlati problémakban gyakran fordulnak el§ olyan optimalizalasi fel-
adatok, ahol a bemenetet (més néven inputot, vagyis a feladatot definialo
szamadatokat) csak részenként ismerjiik meg, és a dontéseinket a mar megka-
pott informéciok alapjan, a tovabbi adatok ismerete nélkiil kell meghoznunk.

Ilyen feladatok esetén on-line problémdrdl beszéliink. Az on-line algorit-
musok elméletének igen sok alkalmazésa van a szamitastudomany, a kézgaz-
dasagtan, és az operéacidokutatés kiillonbozd teriiletein.

Az on-line algoritmusok elméletének teriiletérél az els6 eredmények az
1970-es évekbdl szarmaznak, majd a 90-es évek elejétsl kezdve egyre tobb
kutato kezdett el az on-line algoritmusok teriiletéhez kapcsolod6 problémak-
kal foglalkozni. Szamos részteriilet alakult ki és napjainkban is a legfon-
tosabb, algoritmusokkal foglalkoz6 konferencidkon rendszeresen ismertetnek
1j eredményeket ezen témakorbsl. Ennek a jegyzetnek nem célja a téma-
kor részletes attekintése, terjedelmi okokbol ez nem is lenne lehetséges ezen
keretek kozott, tovabbi eredmények talalhatoak a [6], |8], [11] mivekben.
Célunk néhéany részteriilet részletesebb ismertetésén keresztiil a legfontosabb
algoritmustervezési technikdk és bizonyitasi modszerek bemutatasa.

1.2. Elemzési médszerek

Mivel egy online algoritmusnak részenként kell meghozni a dontéseit a tel-
jes bemenet ismerete nélkiil, ezért egy ilyen algoritmust6l nem varhatjuk el,
hogy a teljes informéaciéval rendelkezd algoritmusok altal megkaphato opti-
malis megoldast szolgaltassa. Azon algoritmusokat, amelyek ismerik a teljes
inputot off-line algoritmusoknak nevezziik.

Az online algoritmusok hatékonysiganak vizsgalatara két alapvetd mod-
szert hasznélnak. Az egyik lehetGség az atlagos eset elemzése, ebben az
esetben fel kell tételezniink valamilyen valosziniiségi eloszlast a lehetséges
bemenetek terén, és a célfiiggvénynek az erre az eloszlasra vonatkozo var-
hato értékét vizsgaljuk. Ezen megkozelités hatranya, hogy altaldban nincs
informéacionk arr6l, hogy a lehetséges inputok milyen valoszintiségi eloszlast
kovetnek. Amennyiben elérhetéek valo adatok, akkor az atlagos eset elemzés
helyettesithets az algoritmusok empirikus analizisével, azaz a valos tesztada-
tokon elért eredmények 6sszehasonitasaval. Ilyen esetekben nincs sziikségiink



az input eloszlasok ismeretére, és a varhato érték szamitasara sem.

A masik megkozelités egy legrosszabb-eset elemzés, amelyet versenyké-
pességi elemzésnek neveziink. Ebben az esetben az online algoritmus altal
kapott megoldas célfiiggvényértékét hasonlitjuk Ossze az optimélis off-line
célfiiggvényeértékkel.

Egy online minimalizalasi probléma esetén egy online algoritmust C-
versenyképesnek neveziink, ha tetszéleges inputra teljesiil, hogy az algoritmus
altal kapott megoldas koltsége nem nagyobb mint az optimalis off-line kdltség
C-szerese. Egy algoritmus versenyképességi hanyadosa a legkisebb olyan C
szam, amelyre az algoritmus C-versenyképes.

Altalaban egy tetszéleges ALG online algoritmusra az I inputon felvett
célfiiggvényértéket ALG(I)-vel jeloljik. Az I inputon felvett optimélis off-
line célfiiggvényértéket OPT(I)-vel jeloljiik. Hasznélva ezt a jelolésrendszert
a versenyképességet minimalizaldsi probléméakra a kévetkezGképpen definial-
hatjuk.

Az ALG algoritmus C-versenyképes ha ALG(I) < C' - OPT(I) teljesiil
minden [ input esetén.

Szokas hasznalni a versenyképesség tovabbi két valtozatat. Egy minima-
lizalasi probléma esetén az ALG algoritmus enyhén C-versenyképes ha van
olyan B konstans, hogy ALG(I) < C-OPT(I)+ B teljesiil minden I input
esetén.

Egy algoritmus enyhe versenyképességi hanyadosa a legkisebb olyan C
szam, amelyre az algoritmus enyhén C-versenyképes.

Természetesen igaz, hogy ha egy algoritmus erGsen versenyképes valamely
C konstanssal, akkor ezzel egyidejtileg ugyanezzel a konstanssal gyengén is
versenyképes.

A fentiekben a minimalizalasi probléméakra definidltuk a versenyképes-
ségi analizis fogalmait. A definiciok hasonloan értelmezhetGek maximali-
zalési problémék esetén is. Ekkor az ALG algoritmus C-versenyképes ha
ALG(I) > C - OPT(I) teljesiil minden I input esetén, illetve enyhén C-
versenyképes ha valamely B konstans mellett ALG(I) > C - OPT(I) + B
teljesiil minden [ inputra. Tehit amig mimimalizalando célfiiggvény esetén
az elgbbi konstansra C' > 1, addig maximalizadland6 célfiiggvény esetén pedig
C<1.



1.3. Online problémak a szallitmanytervezésben

A szallitasi problémak on-line jellege tobb esetben is el6fordulhat. Egyrészt
sok esetben a szallitas folyamata soran keletkeznek 1j igények, amelyeket
szintén ki kell szolgalnunk. Bizonyos alkalmazasokban megvarhato, amig az
eddigi tervek szerinti végrehajtasban keletkezik szabad erdforras, mas ese-
tekben az 10 kérés nem varhat hosszan és azonnal Ujratervezés sziikséges.
Egy maésik online jelleg abbol adédik, hogy a szallitas folyamat kézben val-
tozhatnak a koriilmények: valtozhatnak az dthélozat paraméterei, tovabba
a szallitasi tervhez képest keletkez6 egyéb eltérések is sziikségessé tehetik
az elGzetes tervek megvaltoztatasat. A szallitmanytervezés teriiletén beliil
szokéas az online feladatokat dinamikus problémanak is nevezni (1d. 3| és
14]).

A megvéltozott koriilmények kezelésére két alapvets stratégidt haszna-
lunk. Az egyik stratégia befejezi a kozvetlentil nem érintett szallitasi terveket
és csak a kozvetleniil érintett tervek dtvonalait modositja, a masik megko-
zelités a tervek Osszességét tjraoptimalizalja a megvaltozott koriilményeknek
megfelelGen. Ezeknek a stratégidknak és tobb mindkét stratégiat hasznalo
algoritmusnak a vizsgalata jelenleg is folyik.

Altalaban a valos alkalmazasokban az input adatokkal kapcsolatosan két
kérdés meriil fel, egyrészt azoknak a lényeges valtozasa, evolucidja amely tel-
jesen 1j kérések megjelenését tekinti, a masik az input adatok minGsége, ami
azok stabilitasat jellemzi. A mindséget altaldban sztochasztikus modellekkel
jellemzik, ezzel ebben a tanulmanyban nem foglalkozunk. Azzal kapcsolat-
ban, hogy mennyire dinamikus az input kiilonb6z6 mérészamokat vezettek
be. A dinamikussag altal okozott nehézség tulajdonképpen két tulajdonséag-
tol fiigg, az egyik az, hogy mekkora az j adatok mennyisége, a masik az,
hogy mennyire slirgds az azokban megjelent kérések kiszolgélasa. Az els6 mé-
részaém a dinamizmus foka, amit a § = ng;, /N, formulaval definialhatunk,
ahol ng;, a dinamikus, kés6bb megjelent kérések szédma, ny,; pedig az Gsszes
kérés szama. A {6 kiilonbség az online algoritmusok klasszikus teriiletéhez
képest, hogy a dinamikus szallitmanytervezési esetben gyakran olyan prob-
léméakat vizsgalnak, ahol a dinamizmus foka viszonylag alacsony, mig ilyen
kikotések az online algoritmusoknal nem szokasosak. Amennyiben a dinami-
kus kérések siirgGsségét is figyelembe vessziik, akkor szamit, hogy egy kérés
mikor valik ismerté, ezt az i kérésre az r; érkezési id§ adja meg. Amennyiben
T jeloli a teljes széllitds végrehajtasi idejét, D pedig a dinamikusan érkezett
kérések halmazat, akkor hasznélhatjuk a kovetkezd slirgGsséget is figyelembe



vevlé mérdszamot, amit a dinamizmus effektiv fokdnak neveznek

1 i
5¢ = i

n T
tot sep

Fontosnak tartjuk megegyezni, hogy amennyiben idGablakok is vannak a
kérések teljesitéséhez, akkor a slirgdsség nem a teljes szallitas végrehajtasi
idejétol fligg, hanem az aktuéalis igény engedélyezett idGablakanak a végétdl.
Legyen ¢; az i-dik kérés id6ablakanak a befejezési idépontja. Erre a modellre
a dinamizmus effektiv fokit a kovetkezSképpen terjesztették ki.

1 C, —T;
1— .
(-0

€D

orw© =
Mot

2. Online utazoé ligynok modellek

Ebben a fejezetben a szallitasi utvonaltervezés azt a véltozatat foglaljuk
Ossze, amelyben az igények on-line érkeznek tovabba csak az utvonalter-
vezés problémajat vessziik, igy a szallitoeszkozok kapacitédsat nem vessziik
figyelembe. Az algoritmusok kozvetleniil hasznalhatoak abban az esetben ha
a szallitandé mennyiségek kicsik, nem haladhatjak meg a szallitoeszkozok
kapacitasat, tovabbé az itt tervezett algoritmusok tovabbfejlesztései hasznél-
hatoak lesznek majd a szallitmanytervezés on-line valtozatdnak megoldéisa
soran. A kovetkezd modelleket mutatjuk be.

2.1. On-line utazo6 iigynok probléma

Adott valamennyi pont a grafban. A szallitbeszkoz az utjat egy meghata-
rozott O pontban kezdi. Kiilénb6z6 id6pontokban egy-egy cimet kap - a
célallomésok cimét -, ahova még el kell menjen. Ebben a pillanatban j-
ratervezheti az Gtjat agy, hogy az Osszes cimre, aminek a cimét megkapta,
eljusson. Ez a probléma a szallitményszervezés specialis eseteiben fordul-
hat el6, amikor a szallitoeszkoz begytijtési vagy szétosztasi feladatot hajt
végre. A probléma on-line utazo iigynok feladat (OLTSP) néven ismert t6bb
valtozatat vizsgaltak attol fliiggben, hogy milyen megszoritasokat alkalma-
zunk a feladat kifrasdban (1d. [1], [5],[7]) . A legfontosabb a kévetkezs két
valtozat. Az els6ben az eszkozt6l nincs megkovetelve az, hogy a kiindulasi
pontba visszatérjen miutan minden hozza beérkezé kérést kielégitett, a masik



megkozelitésben viszont ez elvart kovetelmény. Az elsé megkozelitést nomad
valtozatnak hivjuk és N-OLTSP-vel (Nomadic-OLTSP) jelolik, a mésodikat
pedig hazajaré TSP-nek nevezziik és H-OLTSP-vel (Homing-OLTSP) jelolik.
Mindkét megkozelitésben a cél a teljesitési id6 minimalizalasa.

Az N-OLTSP probléma megoldasara kifejlesztették a kovetkezd algorit-
must, amely egy moho jellegii stratégiat kovet. Minden alkalommal, amikor
1j kérés érkezik, tervezziik Gjra az utat tgy, hogy az a még ki nem szolgalt
kérések halmazara fektetett legrovidebb Hamilton at legyen.

Legyen S(t) a t id6pontig beérkezett még nem kielégitett igények hal-
maza, beleértve a legijabb kérést is és a kiindulasi pontot. Tegyiik fel, hogy
a t id6pontban, amikor az j kérés beérkezett, a jarmi a p(¢) pontban van.
Tervezziik meg azt az tvonalat, amely p(¢)-bél kiindulva minimélis id§ alatt
kielégiti az S(t)-ben szerepls igényeket és folytassa a széllitoeszkoz ezen tt-
vonalterv alapjan az elosztéast.

Ezt az algoritmust GTR algoritmusnak nevezik és a versenyképességére
az alabbi allitas teljesiil:

1. Tétel. A GTR algoritmus 2-versenyképes a nomad online TSP feladatra.

Fontos megjegyezniink, hogy a fentiekben leirt algoritmusok versenyké-
pessége kozel optimalis, mivel teljesiil az alabbi allités.

2. Tétel. A nomdd online TSP feladatra nincs olyan online algoritmus,
amelynek kisebb a versenyképessége, mint 2.

Az N-OLTSP-re bemutatott moho algoritmus kénnyen atalakithato egy,
a H-OLTSP-t megold6 mohé algoritmussé, annyit kell tenni, hogy nem uta-
kat, hanem a kiindulasi pontban végz6d6 utakat kell keresni. Masrészt a
H-OLTSP esetében egy moho keretrendszeren beliil felhasznalhato az a tény,
hogy legvégiil vissza kell érniink a kiindulasi pontba. Ezt gy érjiik el, hogy
kiilonbséget tesziink azon kérések kozott, amelyek viszonylag kozel vannak a
kiindulasi ponthoz, és azok kozott, amelyek viszonylag messze vannak téle.
Ezt a kovetkez6 PAH (Plan at Home) algoritmussal oldhatjuk meg.

1. Amikor a szerver a kiinduléasi pontban van, akkor azt az optimalis utat
kezdi el koévetni, amely optimalisan kiszolgalja az Osszes még ki nem
szolgalt kérést, majd visszatér az eredeti, kiindulasi pontba.

2. Ha a t id6pontban 1j kérés érkezik be a szallitoeszkozhoz az x pontbol,
akkor az alabbi két lépés egyikét fogja tenni:



(a) Ha d(z,0) > d(p(t), o), akkor a szerver visszamegy a kiindulasi
pontba (a legrévidebb uton), és az 1-es esetben leirtakat teszi.

(b) Ha d(z,0) < d(p,o), akkor a széllitbeszkoz a kérést addig fi-
gyelmen kiviil hagyja, amig Gjra vissza nem érkezik a kiindulasi
pontba.

3. Tétel. A PAH algoritmus 2-versenyképes a hazajdare modellben.

Ez az algoritmus optimalis abban az értelemben, hogy nincs kisebb ver-
senyképeséggel rendelkezé online algoritmus, amint azt az alabbi allitds mu-
tatja.

4. Tétel. A hazajdrd online TSP feladatra nincs olyan online algoritmus,
amelynek kisebb a versenyképessége, mint 2.

Mindkét algoritmusban az djraoptimalizilas soran egy N P-nehéz felada-
tot kell megoldanunk, ezért a fenti algoritmusok futéasi ideje exponencidlis.
Az algoritmusok egy gyorsitott polinomidlis ideji valtozatat kapjuk, ha az 4j-
raoptimalizalasi részben az egzakt megoldo6 algoritmusokat az utazé tigynok
probléméra széles korben vizsgalt soran heurisztikus eljarasokkal helyettesit-
jik.

2.2. Fuvarrendelési modellek

A szallitménytervezés soran az igények tobbnyire nem abban a formaban ér-
keznek, hogy a szallitoeszkoznek el kell mennie egy adott pontba, hanem
abban a formaban érkeznek, hogy a szallitoeszkoznek el kell mennie egy
pontba és onnan egy mésik pontba kell szallitania. Tehat ebben a modell-
ben a széllitbeszkoz az utjat egy meghatarozott O pontban kezdi és oda is
kell visszatérjen. Kiilonb6z6 idGpontokban egy-egy cimpart kap, egy szalli-
tas kezdd és végallomésat. Ebben a pillanatban tjratervezheti az utjat ugy,
hogy az Osszes szallitast, aminek az igényét megkapta végrehajthassa. Ez
a probléma a szallitmanyszervezés azon esetében fordul els, amikor a szél-
litoeszkoznek az egyes megrendeléseket kiilon-kiilon kell végrehajtania, nem
szallithat parhuzamosan kiilonb6z6 igényekhez tartoz6 értékeket egyszerre.
Az igy kapott on-line probléméat on-line fuvarrendelési feladatnak nevezik a
szakirodalomban (Id. [2],[9],[10]). A feladat megoldéasara a kovetkezs algo-
ritmusokat fejlesztették ki:



Ujratervezs algoritmus: Amennyiben egy 1j kérés érkezik, a szallitoeszkoz
befejezi az aktudlis szallitast, majd az eddig tervezett Gtvonaltervet elhagyja
és egy 0j optimalis ttvonaltervet dolgoz ki, az aktualis még ki nem elégitett
igények figyelembevételével.

Ignoralo algoritmus: Ez az algoritmus ignoralja az 1j kéréseket mind-
addig, amig be nem fejezi az aktualis korutat amivel visszatér a kiindulési
pontba. Utana az aktualis (mar megjelent, de még nem teljesitett) igények
alapjan az algoritmus kiszamit egy optimalis korutat és ez lesz az j aktuédlis
korit.

Ezen algoritmusok versenyképességét hatarozza meg az alabbi tétel.

5. Tétel. Mind az ujratervezd mind az ignordld algoritmus 5/2 versenyképes
a fuvarrendelési modellben fiiggetlendil attol, hogy a szdllitoeszkiznek mekkora
a kapacitdsa.

Amennyiben a szallitéeszkoz kapacitasa végtelen, azaz tetszéleges szami
kérést szolgalhat ki egyszerre, akkor a PAH algoritmus kovetkez§ kiterjesztése
egy hatékony megoldo algoritmus. Ezt az algoritmust TIR (Temporaly Ignore
Request) algoritmusnak nevezték el.

Megfontolt (SMART) algoritmus: Az algoritmus futésa soran a szallito-
eszkodz a kovetkezd harom allapotban lehet.

e {ires: Ebben az allapotban a szallitéeszkoz a kiindulési O pontban van,
és nincs olyan igény, amelyet ki kellene szolgalnia.

e alvo: Ebben az allapotban vannak igények, amiket ki kellene szolgalni,
de ezek azonnali kiszolgalasa ttl koltséges (a koltségbecsld subrutin
alapjan), igy az algoritmus még var tovabbi igényekre.

e dolgozd: Ebben az allapotban az algoritmus egy (a koltségbecsls sub-
rutin altal meghatarozott) terv szerint szolgalja ki az igényeket.

A koltségbecsl subrutin egy © > 1 paramétertdl fligg és a kovetkezkép-
pen miikodik: Az algoritmus kiszdmolja a minimélis ideji S korutat, amely
a kiindulasi pontban kezd&dik, kiszolgilja az Gsszes aktualis igényt és a ki-
indulési pontban végzédik. Amennyiben a korit befejezheté a Ot idépont
el6tt (¢ az aktudlis idGpont), akkor a subrutin az (S, dolgozo) értéket adja
vissza, ellenkezd esetben az (S, alvo) valaszt.

Az allapotokat az algoritmus a kdvetkezGképpen valtogatja:

7



e Ures allapot: Amennyiben az algoritmus az iires allapotban van, akkor
megvarja az elsé T id6pontot, amelyben 1j igény meriil fel. Ebben az
idépontban meghivja a koltségbecsl§ subrutint. Amennyiben az ered-
mény (S, dolgozo), akkor az eljaras a dolgozé allapotba keriil, a jarm
elkezdi végrehajtani az S korutat. Ellenkez6 esetben az algoritmus az
alvo allapotba keriil, egy @ ébredési idével, amely a legkisebb T-nél
nagyobb olyan érték, ami kielégiti a 7'+ [(5) < OT feltételt (ahol [(.S)
a korut végrehajtasanak ideje).

o Alvo allapot: Az algoritmus az alvo allapotban az ébredési idejéig sem-
mit nem csindl. Az ébredési id6ben tjra meghivja a koltségbecsld sub-
rutint. Amennyiben az eredmény (S, dolgozd), akkor az eljaras a dol-
goz6 allapotba keriil, a jormd elkezdi végrehajtani az S korutat. Ellen-
kez6 esetben az algoritmus az alvo allapotba keriil, egy tjraszamitott
ébredési idgvel.

e Dolgozo allapot: A dolgozd allapot alatt, amig az aktualis korutat
be nem jarja, a jarmi a hivasokat figyelmen kiviil hagyja. Miutén
a jarmd visszaért a kiindulasi pontba vagy atall az iires allapotba (ha
nincs kielégitetlen igény) vagy meghivja a koltségbecsls subrutint, és az
eredménytdl fliggben tjra dolgozod allapotba vagy alvé allapotba keriil.

6. Tétel. A SMART algoritmus 2-versenyképes.

Mindhérom prezentalt algoritmus soran meg kell oldani a probléma offline
valtozatat, mivel ez egy NP nehéz feladat a gyakorlatban hasznalhatunk
heurisztikdk vagy kozelité algoritmusok altal kapott megoldasokat is.

2.3. Online utazo6 szerel6 probléma

Amennyiben a célfiiggvény a varosokba valo érkezési idGk Osszege illetve at-
laga, akkor az on-line utazo szerel6 problémarol beszéliink. Ezt a problémat
a [13, 9] cikkekben vizsgaltak. A feladat igen nehéz a szakirodalomban fGleg
csak egyenes esetén vizsgaltdk az online problémét. Két esetet kiilonboztet-
hetiink meg a klasszikus utazo szerel6 probléma esetén a kérések egy pontként
jelennek meg és a szervernek oda kell mennie a kiszolgilashoz, és a megér-
kezésének az id6pontjat tekintjiik a kérés kiszolgalasi idejének. Mésrészt itt
is szokas a fuvarrendelési modellek vizsgélata is, ahol a kérés a metrikus tér



két pontja, és a kérés kiszolgalasahoz elsGként el kell menniink a kérés kezdo-
pontjaba, majd a végpontjaba és a végpontba valé megérkezéskor szolgaltuk
ki a kérést. Itt figyelembe kell venniink azt is, hogy van-e kapacitaskorlatja
a szervernek. Amennyiben a szerver kapacitasa 1, akkor egy kérés kiszolga-
lasanak megkezdését kdvetGen azt a kezdSpontbol el kell vinnie a végpontba,
azaz egyszerre nem szolgdlhatunk ki tobb kérést. Ha a szerver kapacitasa
végtelen, akkor egyszerre parhuzamosan tobb kérés kiszolgalasa is folyhat.
Ez azt jelenti, hogy egy kérés kiszolgalasa az els6 olyan, a kérés megjelenését
kovets idSpontban kezd&dik, amikor a kezd6pontjiba megy a szerver és az
ezt kovets els6 olyan id6pontban fejezédik be, amikor a végpontjaba megy
a szerver. FEzen végtelen kapacitésos feladat megoldasara az alabbi BCR
(Blindly Construct Route) algoritmust javasoltak a [9] cikkben.

BCR Algoritmus: Legyen 0 = min{¢; |u|}, ahol u a 0 idépontban meg-
jelent kérések kezdGpontjai koziil a 0-hoz legkozelebbinek az 0-t6l valo tavol-
sadga (amennyiben van ilyen kérés) és t az els§ nem 0 id6pontban megjelend
kérés megjelenési ideje. A 0 idépontban a szerver elkezd jobbra mozogni,
amig a o pontba meg nem érkezik. Ezt kovetGen visszamegy 0-ba. Majd el-
megy a masik iranyba a —20 pontig és onnan visszatér a 0-ba. Igy folytatja
a k-dik fazisban a (—2)*o pontig megy majd onnan vissza 0-ba. Minden ké-
rést akkor kezd kiszolgalni, amikor a kérés megjelenése utan elGszoér atmegy
a kezdGpontjan, és akkor fejezi be a kiszolgalast, mikor ezt kovetGen elsGként
ér oda a kérés végpontjahoz.

7. Tétel. (/9]) Ha a metrikus tér egy egyenes, akkor a BCR algoritmus 9-
versenyképes, ha minden kérésre ugyanaz o kezdd és végpont €s 15-versenyképes
az dltaldnos fuvarra hive modellben.

3. Tobbcélu valtozatok

Tobbceélt optimalizalasrél beszéliink, amikor egy feladat megoldésa soran
tobb, kiilonb6z6 szempontot is figyelembe kell venni, amelyek mindegyikét
egy-egy a feladat lehetséges megoldasain értelmezett célfiiggvény irja le. Bi-
zonyos esetekben ilyenkor van egy kiemelt célfiiggvény, amelynek a legna-
gyobb a jelentGsége és a tobbi célfiiggvény csak azon megoldasok rangso-
rolaséra szolgal, amelyek a kiemelt célfiiggvény szerint optimalisak. De az
esetek tobbségében nincs ilyen rangsorolas a célfiiggvények kozott, hanem
mindegyik célfiiggvényt egyformén, vagy hasonlé mértékben figyelembe kell



venniink. A probléma az, hogy ezekben az esetekben gyakran elGfordul, hogy
bizonyos megoldasok, amelyek nagyon j6 eredményt adnak az egyik célfiigg-
vény szempontjabol rosszul teljesitenek a masik célfiiggvény alapjan.

3.1. Tobbcéli optimalizidlasban hasznalt modellek

Tomoren Osszefoglaljuk milyen megkozelitéseket szokas hasznalni a tobb cél-
fiiggvényt is figyelembe vevé modellekben, majd részletesebben bemutatjuk
miként hasznélhatoak ezek a halozati folyamatok szintézisének esetén. Mi-
vel a halozati folyamatok témakorében tobbnyire minimalizalasi feladatokat
kell megoldanunk, ezért a tovabbiakban feltételezziik, hogy minden szempont
egy minimalizalandé célfiiggvény altal van megadva. Ennek megfelelGen mi-
nimum feladatokra adjuk meg az Gsszes definiciot. Mindezt az altalanossag
megszoritdsa nélkiil feltehetjiik, hiszen egy maximum feladat attranszfor-
méalhaté egy minimum feladatra ha a célfiiggvényt megszorozzuk —1-el. De
megjegyezziik, hogy a definiciok maguk is minden nehézség nélkiil kiterjeszt-
hetGek maximalizalasi feladatokra is.

Az alapvetd megkozelités, hogy olyan megoldasokat keresiink, amelyek
nem javithatoak egyik célfiiggvény szerint sem anélkiil, hogy mas célfiigg-
vényekben rontanank a megoldas hatékonysagéan. A matematikailag preciz
definici6 érdekében tegyiik fel, hogy k darab minimalizilandoé célfiiggvényiink
van, amiket fi,..., fi jelol, tovibba a probléma lehetséges megoldasainak a
halmazat jelolje S.

Két megoldast 0sszehasonlitva egy nyilvanvalé gondolat azt mondanunk,
hogy egy = € S megoldas akkor jobb, mint egy y € .S, ha minden szempont
szerint jobb, azaz minden i = 1,... k értékre teljesiil, hogy fi(z) < fi(v).
Ezen fogalom alapjan definidlhatjuk a gyenge efficiens megoldasokat. Egy
megoldas gyenge efficiensnek neveziink, ha nincsen nala jobb megoldas. Te-
hat egy x* € S megoldast akkor neveziink gyenge efficiens megoldasnak,
ha nincs olyan z € S megoldas, amelyre teljesiilne f;(x) < fi(z*) minden
1=1,...,k esetén.

Egy masik, az el6z6nél megenged&bb, és szélesebb korben hasznalt foga-
lom két megoldas Osszehasonlitdsara a kovetkez. Azt is mondhatjuk, hogy
egy © € S megoldés akkor jobb, mint egy y € S, ha egyik szempont sze-
rint sem rosszabb és legalabb az egyik szempont szerint jobb. Tehat minden
i =1,...,k értékre teljesiil, hogy fi(x) < fi(y) és van olyan j € {1,... k}
index, amelyre f;(z) < f;(y). Az ebben az értelemben vett legjobb megolda-
sokat szokéas erGsen efficiens vagy Pareto optimdlis megoldasoknak nevezni.

10



Tehat egy x* € S megoldast akkor neveziink Pareto optimalis megoldasnak,
ha nincs olyan z € S megoldés, amelyre teljesiilne f;(x) < fi(z*) minden
i=1,...,k esetén és f;(x) < f;(z*) valamely j € {1,...,k} indexre.
Toébbceélu optimalizalasi feladatok esetén az egyik megkozelités az, hogy
meghatarozzuk a Pareto optimalis megoldasokat. Mésrészt az Gsszes Pareto
optimélis megoldés legeneraldsén kiviil mas modszereket is szokés hasznalni
tobbcélu optimalizalasi feladatok megoldasara. Az egyik lehetGség, hogy a
kiilonboz6 célfiiggvényekbdl egy aggregalt célfiiggvényt hozzunk létre. En-
nek a legegyszertibb és legelterjedtebb moédja az, hogy vessziik a célfiiggveé-
nyek egy pozitiv silyokkal képzett silyozott Osszegét, és erre az aggregalt
fliiggvényre keressiik a minimalis megoldast. Masrészt indokolt esetben mas,
minden valtozéban szigortian monoton fiiggvény is hasznalhat6 aggregalt cél-
fiiggvényként. Igy a problémat visszavezetjiik egy egyetlen célfiiggvényes op-
timalizalasi feladatra. A két megkozelités kozotti kapcesolatot adja meg az
alabbi allitas.
8. Tétel. Minden optimalis megoldds amit eqy, az eredeti célfiigguények po-
zitiv sulyokkal vett linedris kombindcidjdval képzett aggreqdlt kiltségfiiggvény
alapjan kaptunk Pareto optimdlis megolddsa a tobbeéli optimalizadldsi feladat-
nak.

Fontosnak tartjuk megjegyezni, hogy a fenti allitas teljesen hasonldéan
igazolhat6 minden olyan aggregalt célfiiggvényre, ami szigortian monoton no-
vekvG az Osszes valtozoban. Bizonyos alkalmazasok esetén szoktak a linearis
kombinacional bonyolultabb aggregalt fiiggvényeket is vizsgalni.

Egy tovabbi megkozelitése a tobbceéli optimalizalasi problémaknak, amely-
ben kiemeliink egy célt és ezen cél szerint keressiik az optimélis megoldast,
mikozben a tobbi szempontot korlatozasi feltételként irjuk el§. Az egyszertibb
leiras érdekében tegyiik fel, hogy az f; fiiggvényt emeltiik ki, amely szerint
optimalizalni szeretnénk, ez a célfiiggvények &tjelolésével biztosithatd. Fzt
szokas e-korlatozas modszerének is nevezni. Tehat egy korlatozasos egycélu

redukcional adottak Cs, ..., C) konstansok és az optimalizalasi feladatunk a
kovetkezd:

min f(x

rels

Egy ilyen korlatozasos egycélu redukcional nem feltétlentil teljesiil, hogy
az optimélis megoldas az eredeti tobbcélu feladatnak Pareto optimalis meg-
oldasa lesz, hiszen elGfordulhatnak olyan megoldasai is a feladatnak, amelyek

11



f1 szerint ugyanazt az értéket veszik fel, mint a kivilasztott optimélis meg-
oldas, de a tobbi célfiiggvény szerint jobbak. Méasrészt egy kicsit gyengébb
allitast kimondhatunk.

9. Tétel. Ha eqy korldtozdsos eqycéli redukdlt feladatnak van optimdlis meg-
olddsa, akkor az az eredeti feladatnak gyenge efficiens megolddsa lesz.

3.2. Lehetséges célfiiggvények szallitmanytervezési fel-
adatoknal

Amennyiben egy tobb korutas szallitmanytervezési feladat van, akkor a kor-
utak Osszhossza mellett egyéb fliggvényeket is szokds vizsgalni. Tobbcéla
szallitmanytervezésrol részletek talalhatoak a [12]| cikkben.

e Eldfordulhat, hogy az éleknek két kiilonbozd koltsége van. A legtébb
iutvonal keresG szoftver esetén lehet minimalizalni megtett tavolsagra,
idére és koltségre is. FEzek hasonlé mérGszamok de nem feltétleniil
ugyanazok az optimalis utak.

o A legkézenfekvébb masodik koltségfiiggvény a koérutak szama, szalli-
tasok esetén minden korut tjabb széllitoeszkozt és emberi eréforrast
igényelhet, igy nyilvanvaléan extra koltséget jelent. Ezt gyakran besza-
mitjak a célfiiggvénybe, azaz aggregalt fliggvényeket néznek. A tovabbi
célfiiggvények akkor érdekesek, ha adott a tervezendd korutak szama.

e Egy lehetséges célfiiggvény a maximalis kortthossz minimalizalésa. Nyil-
van ez csak abban az esetben érdekes, ha adott a kérutak szama (kiilon-
ben a megoldéas) a depon kiviil egyetlen pontot tartalmazo korutakat
hasznélna.

e Egy tovabbi célfiiggvény a korutak egyensiilyozottsaga. Ehhez defini-
alnunk kell a korutak terheltségét, ami lehet a hosszuk, de a kiszolgalt
kérések szama is figyelembe vehets. Ezt kdvetGen vessziik a legkisebb
terheltségili korattol valod terhelési kiilonbségét a tébbi korutnak és ezek
Osszegét minimalizaljuk.

o Az egyes élekhez kockazati értékek is rendelheték, amik a balesetek,
késések valoszintiségét adjak meg. Ilyen esetekben cél lehet a kis koc-
kizata utak keresése is.

12



e Szokas olyan fiiggvényeket is vizsgalni, amelyek nem csak az élektdl
fiiggnek hanem a kérésektdl. Ilyen modelleket akkor tekintenek, ha
nem kell az Osszes kérést kiszolgalni. FEzeket a tobbcéli modelleket az
alabbiakban tekintjiik at.

3.3. Visszautasitasos modellek

A visszautasitasos vagy biintet6 TSP esetén minden ponthoz hozzatartozik
még egy tovabbi érték. Ez egy m; biintetés, amit azon pontok utan kell
fizetni, amelyeket nem latogattunk meg. Tehat a koltségiink két részbdl ado-
dik 6ssze, egyrészt ki kell fizetniink a biintetéseket minden pontra, amit nem
latogattunk meg, méasrészt a meglatogatott pontokat bejarod korutra venni
kell a korat koltségét, ami a szokott moédon a koratban szerepls élek sulyai-
nak osszege. A feladat NP-nehéz, hiszen ha minden biintetés végtelen, akkor
megkapjuk a TSP feladatot. Az aldbbiakban bemutatunk egy érdekes koze-
1it6 megoldast ado6 algoritmust a [4] dolgozat alapjan. Az algoritmus szim-
metrikus és a haromszog egyenlGtenséget kielégité koltségmatrixok esetén
miikodik. Az alapotlet az, hogy minden j-re definidljuk a BTSP(j) feladatot,
ami a fenti feladat azon megszoritas mellett, hogy a j pontot mindenkép-
pen meg kell latogatnunk. Ez azért jo, mert a feladat optiméalis megoldasa
vagy ezen BTSP(j) feladatok megoldéasai koziil lesz a legjobb vagy az lesz,
hogy minden kérést visszautasitunk. Tehat elegendd ezen BTSP(j) feladatok
optimalis megoldésait jol kozeliteni.

Egy ilyen feladat felirhaté egészértékli programozasi feladatként, ahol az
x. valtozok (e € F) a kivalasztott éleket adjak meg a szokott modon, a val-
tozo értéke 1 ha az e €l benne van a korutban, és az y; valtozok (j € N) pedig
a kivalasztott csicsokat y; = 1, ha az ¢ varost meglatogattuk, 0 egyébként.
Az egyszeri leirds érdekében hasznaljuk a §(S) jelolést, ami azokat az éle-
ket jeloli, amelyek az S halmaz és a komplementere kéz6tt mennek, példaul
d({i}) az i pontbol kimeng élek. Ekkor a feladat

ZeGE CeTe + ZieN(l — YT — min

Zeeé({i}) Te = 2y Vie N

D ees(s) Te = 2y Vi€ N,S C N with |[SN{i,j} =1
y; =1

A célfiiggvény helyessége adodik az x. és y; valtozok definicidja alapjan.
Az elso feltétel garantalja, hogy ha egy pont y; szerint benne van a kérautban,
akkor atmegy rajta korut, a masodik feltétel pedig a részkorat kizaro feltétel.
Ez biztositja, hogy ha egy ¢ pont benne van a kortatban, akkor minden olyan

13



S halmazbol, ami ¢ és 5 koziil pontosan az egyiket tartalmazza kell kimen-
jen él. Az egészértéki feliras segitségével definidlhatjuk az aldbbi kozelits
algoritmust.

BGSW algoritmus:

e Minden j-re hajtsuk végre a kovetkezd lépéseket

— Vegyiik a BTSP(j) feladat egészértéki programozasi felirdsanal LP
relaxaciojat, azaz azt a valtozatot, ahol x.-r6l és y;-r6l csak annyit
kotiink ki, hogy a [0, 1] intervallumban vannak és nem koveteljiik
meg, hogy egészek.

— Oldjuk meg ezt az LP relaxiciot egy polinom ideji algoritmussal
(pl belsé pontos modszer).

— Valasszuk ki azokat a pontokat, amelyekre az LP relaxaci6 meg-
oldasaban y; > 3/5.

— Az ezen pontokbdl allo TSP feladatra adjunk egy kozelité kor-
utat a Christofedes heurisztikaval, a tobbi kérést utasitsuk vissza.
Legyen ez a megoldas M;.

e Vegyiik az M; megoldasok koziil a legkisebb koltségtit.

e Ha ennek a megoldésnak a koltsége kisebb, mint minden kérés vissza-
utasitasa, akkor ezt adja vissza az algoritmus, egyébként minden kérést
visszautasit.

Az algoritmus legrosszabb esetben is jol kozeliti az optimumot, amint azt
az alabbi allitas mutatja.

10. Tétel. A BGSW algoritmus 5/2-approzimdcids.

3.4. Dijgytijté modellek

A dijgyjt6 utazo6 ligynok modellben minden ponthoz hozzatartozik a biin-
tetésen kiviil még egy tovabbi érték. Ez egy w; dij, amit akkor kapunk meg,
ha a pontot az iigynok meglatogatta. Tovabba adott egy ) kvota érték, ami
a minimalisan Osszegy(ijtend6 dijak Osszegét adja meg. Tehat a lehetséges
megoldasok olyan kérutak, amelyekben legalabb @) értéknyi dijat Osszegytij-
tiink, és ezek koziil keressiik a minimaélis koltségtit. Egy adott korut koltsége

14



két részbdl adodik 6ssze. Venniink kell az iigynok altal megtett tavolsagnak
(ami a koratban szerepld élek koltségeinek Osszege) és a nem meglatogatott
pontok biintetéseinek 6sszegét. Ha minden biintetés 0, azaz a feladat csak egy
minimalis hosszusagi kout megtaldlasa, amely kielégiti a kvotara vonatkozo
feltételt, akkor kvota TSP-r6l beszéliink.

Az online feladatban a kéréseknek van egy érkezési ideje is, amit a j-edik
kérés esetén r; jelol és ezen id6pont el6tt nem lehet kiszolgalni a kérést. Itt
is egy olyan korutat kell tenniink, amelyben a meglatogatott pontok dijaibol
Osszegytjtiink legaldbb () értéket, és a cél a korut befejezési idejének és a
nem meglatogatott pontok biintetéseinek Gsszegének Gsszege.

Az online feladat megoldasara a WGR, (wait and go with restart) algorit-
must fejlesztették ki. Az alapotlete az, hogy igyekszik kivarni, amig elegendd
informéaciot kap és ezaltal elkeriilni a kezdeti rossz dontéseket. Két allapota
van a varakozasi és dolgoz6 allapotok. Kezdetben az algoritmus varakozasi
allapotban van, majd az alabbi szabalyok szerint mikodik.

e Ha varakozasi allapotban van, akkor var addig a ¢ id6pontig, amelyre a
t id6pontig megérkezett kéréseke kiszolgalasanak optimalis offline kolt-
sége pontosan t, és ekkor atlép a dolgozé allapotba.

e Ha az algoritmus a tp idGpontban 1ép a dolgozé allapotba, akkor egye-
nes visszamegy az origoba. Utana kiszamolja a hatralevs kérések opti-
malis megoldésat és elkezdi azt a korutat bejarni. Ha befejezte tjra a
varakozo allapotba keriil. Tovabé, ha dolgoz6 allapotban van és ezalatt
egy 1j kérés érkezik egy t id6pontban, akkor kiszdmolja a ¢ idépon-
tig érkezett kérések kiszolgalasanak optimélis offline koltségét, és ha ez
nagyobb, mint ¢, akkor megall és atlép varakozo allapotba.

Az algoritmus versenyképességét adja meg az alabbi allitas.

11. Tétel. A WGR algoritmus 7/3-versenyképes az online dijgydjté TSP
feladatra.

4. Egyéb nem versenyképesség alapti dinami-
kus megkozelitések

A versenyképességi elemzésben tekintett algoritmusok tobbnyire részfeladat-
ként megoldanak NP-nehéz problémakat. Ezen elemzés soran a futéasi idék-
kel nem foglalkozunk, igy ezt nem tekintjiik problémanak, mint emlitettiik

15



minden algoritmus kiterjeszthetd olyan modon, hogy az optimélis megoldas
helyett valamilyen gyorsabb, kozelit6 modszert hasznalunk. Amennyiben a
kozelité modszerre adott egy legrosszabb approximécos korlat (mint példaul
a fentiekben bemutatott biintetéses modellben hasznalt algoritmus, vagy az
alap TSP-nél hasznalt Christofides algoritmus esetén, akkor altalaban ennek
felhasznalasaval kaphatunk egy versenyképességi korlatot az online megol-
désra is.

A gyakorlati feladatoknal fontos a szamitast segité algoritmusok futasi
ideje, hiszen egy moddositott tervet csak akkor tudunk elkezdeni, ha végre-
hajtottuk a tervet elkészité szamitasokat. Ennek megfelelGen az tjraopti-
malizalason alapuld dinamikus megoldé algoritmusokat két osztalyba szokas
sorolni.

Periodikus djraoptimalizalés algoritmusok: Ez a csoportja az al-
goritmusoknak a kézenfekvé megoldast valasztja. Vagy adott id6kézonként
vagy minden 14j dinamikus kérés megjelenése esetén, veszi az aktudlis allapo-
tot (a szerver vagy szerverek allapota, a még nem teljesitett kérések) és ezen
inputra meghataroz egy statikus megoldé algoritmussal egy optimalis meg-
oldast. Ezt kdvetSen a kovetkezd tjraoptimalizalasig ezt a megoldéast koéveti.
Ezen megkdzelités elénye, hogy a széles korben kutatott statikus megoldé al-
goritmusok halmazabol valaszthatunk egy algoritmust. A megkozelités hat-
ranya, hogy az jraoptimalizalas a kezdetekt6l indul nem hasznaljuk ki a mar
esetlegesen meglevs informaciokat, megoldaskezdeményeket.

Folytonos Gijraoptimalizilas: Ez a csoportja az algoritmusoknak igyek-
szik kihasznalni a meglevd informéaciokat. Az aktualis megoldashoz hasznalt
segédinformaciokat nem toroljiik, hanem karbantartjuk, hogy késébb a dina-
mikusan érkezett 4j kérések miatt kicsit megvaltozott input megoldasiban
segitségiinkre lehessenek. Ezt a megkozelitést jol hasznalhatjuk kiilonbozo
metaheurisztikdknal, mint a lokalis keres6 vagy genetikus algoritmusok. Sza-
mon tartjuk jué megoldasoknak egy halmazéit, és amennyiben valtozik az
input ezeket a megoldasokat megfelelGen valtoztatjuk és innen kezdjiik az
jabb feladat megoldasainak keresését. Ezzel csokkenthetjiik az ajraoptima-
lizalo algoritmus futasi idejét, és ezaltal javithatunk a dinamikus valtozasokra
valo reagilasunk idején.

16



Hivatkozasok

1]

2]

3]

4]

[5]

(6]

7]

8]

9]

[10]

[11]

G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, M. Talamo, Al-
gorithms for the on-line traveling salesman. Algorithmica 29, 560-581,
2001.

N. Ascheuer, S.O. Krumke, J. Rambau, Online dial-a-ride prob-
lems: Minimizing the completion time. In: Proceedings of the 17th
STACS. Volume 1770 of Lecture Notes in Computer Science, Springer
639-650, 2000.

G. Berbeglia, J.F. Cordeau, G. Laporte, Dynamic pickup and delivery
problems, European Journal of Operational Research 202 (2010) 8-15

D. Bienstock, M. Goemans, D. Simchi-Levi, D. Williamson, A note on
the prize collecting traveling salesman problem, Mathematical Program-
ming, 59, 413-420, 1993.

M. Blom, S:0, Krumke, W.E. de Paepe, L. Stougie, The online TSP
against fair adversaries, INFORMS J. Computing 13 138-148, 2001.

A. Borodin, R. El-Yaniv, Online Computation and Competitive Analysis,
Cambridge University Press, 1998.

P. Damaschke, Two short notes on the on-line travelling salesman: hand-
ling times and lookahead. Theoretical Computer Science, 289 (2002),
845-852.

Gy. Dosa, Cs. Imreh, Online Algoritmusok, online tankonyv, Typotex,
2012.

Feuerstein, E., Stougie, L.: On-line single server dial-a-ride problems.
Theoretical Computer Science 268 (2001), 91-105.

Grotschel M., Krumke, S.O., Rambau, J, Online optimization of comp-
lex transportation systems. Online optimization of large scale systems,
(2001) 705-729, Springer, Berlin, 2001.

Cs. Imreh, Competitive analysis, In Algorithms of Informatics Volume
1, ed. Antal Ivanyi, mondAt, Budapest 2007, 395-428.

17



[12] N. Jozefowiez, F. Semet, E.G. Talbi, Multi-objective vehicle routing
problems, European Journal of Operational Research 189 (2008) 293-
309.

|13] Krumke, S.O.; de Paepe, W. E.; Poensgen, D., Stougie, L.: News
from the online traveling repairman. Theoretical Computer Science 295
(2003), 279-294.

[14] V. Pillac, M. Gendreau, C. Gueret, A.L. Medaglia, A Review of Dynamic
Vehicle Routing Problems, European Journal of Operational Research

18



