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Abstract This paper describes a tabu search heuristic with path relinking for the vehicle

routing problem. Tabu search is a local search method that explores the solution space more

thoroughly than other local search based methods by overcoming local optima. Path relinking

is a method to integrate intensification and diversification in the search. It explores paths that

connect previously found elite solutions. Computational results show that tabu search with

path relinking is superior to pure tabu search on the vehicle routing problem.

Keywords Vehicle routing · Tabu search · Path relinking

The Vehicle Routing Problem (VRP) is defined on a complete undirected graph G = (V, E),

where V = {0, 1, . . . , n} is the set of vertices and E = {(i, j) : i, j ∈ V, i < j} is the edge

set. It should be mentioned that we use both the notation (i, j) and ( j, i) to refer to edge

(i, j), where i < j . Vertices 1, . . . , n represent customers; with customer i are associated a

nonnegative demand di and a nonnegative service duration ti . Vertex 0 is the depot at which

is based a fleet of m homogenous vehicles of capacity q. The fleet size is treated as a decision

variable. To each edge (i, j) is associated a traveling cost or travel time ci j ; travel costs satisfy

the triangle inequality. The VRP consists of designing m vehicle routes on G such that (i)

every route begins and ends at the depot; (ii) every customer is visited exactly once; (iii) the

total demand of any vehicle route does not exceed q; (iv) the total duration (i.e., the total

length of the edges traversed plus the service times of served customers) of any vehicle route
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does not exceed a given limit L; and (v) the total cost of all vehicle routes is minimized. A

comprehensive survey of solution techniques for the VRP can be found in the book edited

by (Toth and Vigo, 2002).

While many heuristic approaches have been used to successfully tackle the VRP during

the past five decades (Alfa, Heragu, and Chen, 1991; Kawamura et al., 1998; Bullnheimer,

Hartl, and Strauss, 1998; Bullnheimer, Hartl, and Strauss, 1999; Reimann, Doerner, and

Hartl, 2004; Berger and Barkaoui, 2003; Prins, 2004; Tarantilis, 2005), Tabu Search (TS)

has been the most widely applied technique to provide good approximate solutions for the

problem. This method was originally proposed by Glover (1986) as a local search technique

that does not terminate when it encounters local optima, but rather proceeds with moves that

degrade the objective function. Cycling is prevented by the use of tabu lists in which the

recent history of the search trajectory is recorded. An early TS approach for the VRP was

proposed by Osman (1993) who introduced the λ-interchange operator, which consists in

swapping subsets of at most λ customers between two routes. A rather more involved TS

heuristic of the early 90’s is Taburoute (Gendreau, Hertz, and Laporte, 1994). In Taburoute,

the neighborhood operator consists in removing a vertex from its current route, inserting

it in a route containing one of its closest neighbors (this could be the same route), and

performing a local reoptimization of this route. This method contains some innovative features

like the temporary acceptance of infeasible solutions and self-adjusting penalty parameters

for infeasible solutions. Taillard (1993) proposed a TS algorithm using a decomposition

method that makes it possible to benefit from parallel computing. To this date, this algorithm

remains one of the most effective TS heuristic for the VRP. A highly effective method

for generating good and diverse solutions is the adaptive memory procedure proposed by

Rochat and Taillard (1995). It keeps track of good solutions found during the search and

uses them as a basis for the construction of new ones. Xu and Kelly (1996) proposed a

TS heuristic based on a network flow model, and defined the neighborhoods by ejection

chains. Rego and Roucairol (1996) also used ejection chain based neighborhoods; parallel

computing allowed for a more extensive exploration of the search space. Cordeau, Laporte,

and Mercier (2001) proposed a simple and flexible TS heuristic— Unified Tabu Search.

It should be noted that the Unified Tabu Search heuristic is applicable to problems with

or without time windows. Its neighborhood structure relies on the relocate operator that

simply moves one vertex from one route to another. Like Taburoute, it allows intermediate

infeasible solutions. The granularity concept proposed by Toth and Vigo (2003) is a candidate

list strategy whose purpose is to limit the size of the neighborhood by permanently removing

long edges that have a small probability of belonging to an optimal solution. This method is

fast and capable of generating very good solutions. For surveys on VRP metaheuristics, the

reader is referred to Gendreau, Laporte, and Potvin (2002), Cordeau and Laporte (2004) and

Cordeau et al. (2005).

While TS has been widely used in VRP heuristics for several years, Path Relinking is a

fairly new approach introduced just a few years ago (Glover and Laguna, 1993), and has not yet

been applied to the VRP. However, it has been applied to other combinatorial problems with

great success (Aiex, Binato, and Resende, 2003; Aiex et al., 2005; Ghamlouche, Crainic, and

Gendreau, 2004; Oliveira, Pardalos, and Resende, 2004; Resende and Ribeiro, 2003; Souza,

Duhamel, and Ribeiro, 2003).

In this paper, we present a new TS heuristic for the VRP that makes use of path relinking

as an intensification and diversification mechanism. The paper is organized as follows. In

Section 1, we present a basic TS heuristic for the VRP. A brief review of path relinking and

how it is combined with TS to solve the VRP is given in Section 2. Experimental results
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showing the improvements in the performance of the TS heuristic when path relinking is

used are presented in Section 3. Finally, Section 4 concludes the paper.

1. The basic tabu search heuristic

Tabu search is a memory-based search strategy that allows the local search process to

proceed beyond local optima. This is achieved by allowing the objective function to de-

teriorate when the current solution is a local optimum, and by keeping track of recent

moves or solutions in a so-called tabu list. Whenever the algorithm attempts to move to

a solution or to perform a move recorded in the tabu list, the move is banned. This rule

prevents cycling and forces other solutions to be explored. However, this feature is not

strict, as it can be overridden when some aspiration criterion is satisfied. A commonly

used criterion is that the objective function value of a tentative solution be the best ever

seen. If this is the case, the search may be allowed to proceed to this tentative solution,

since it has obviously never been encountered before, which guarantees that cycling cannot

occur.

1.1. Notation of the heuristic

As in Gendreau, Hertz, and Laporte (1994), we allow the search to be conducted in the

infeasible part of the solution space. We letX denote the set of solutions satisfying constraints

(i) and (ii). Each solution x ∈ X consists of m vehicle routes starting and ending at the depot,

such that every customer is visited exactly once. This solution may violate the capacity and

duration constraints.

For a solution x , let c(x) denote its travel cost, and let q(x) and t(x) denote the to-

tal violation of the load and duration constraints, respectively. The routing cost of a

vehicle k corresponds to the sum of the costs ci j associated with the edges (i, j) tra-

versed by this vehicle. The total violation of capacity and duration constraints is com-

puted on a route by route basis with respect to q and t . Each solution x is evaluated by

a cost function z(x) = c(x) + αq(x) + βt(x), where α and β are self-adjusting positive

parameters.

The number of vehicles available is assumed to be unlimited, but as a starting number, m, it

is set to the minimum possible subject to the capacity constraints, i.e. m = �∑i∈V\{0} di/q�.

However, this number may be increased if it will lead to cost savings during the search

process.

1.2. Initial solution

A total of I initial solutions are generated by a stochastic insertion heuristic, which works as

follows. The routes are initialized by randomly selecting m seed customers. Each route only

services a single customer. The remaining unrouted customers are then inserted one by one

(in a random order) at the location that minimizes the cost of inserting this customer over the

current set of routes. The solutions thus obtained are usually not very good ones, therefore

they need to be improved before proceeding any further. To do so, a short tabu search with the

relocate neighborhood operator is applied to each solution for μ iterations. This tabu search

is identical to the one used for the main phase. The best solution among these I solutions is

chosen to initiate the main search process.
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1.3. Neighborhood structure

The neighborhood structure is based on the relocate operator: the neighborhood of solution x ,

denoted N (x), is made up of all solutions that can be reached from x by moving a customer

i from its route k to another route l, with k �= l. Such a move is denoted by (k, i, l).

1.4. Recency based memory and tabu tenure

To avoid cycling whenever a move (k, i, l) is performed, any move that transfers i back into

route k is declared tabu for θ iterations, where θ is a user defined parameter. A tabu move will

still be chosen if it satisfies the aspiration criterion of improving the best known solution.

1.5. Frequency-based memory

To diversify the search and to induce it to explore a wider part of the solution space, frequently

made moves are penalized. The frequency associated with move (k, i, l) is the number of times

customer i has been moved to vehicle l. For any solution x̄ ∈ N (x), whenever z(x̄) ≥ z(x), a

penalty is added to z(x̄). Only moves that lead to non-improving solutions are penalized since

it makes no sense to penalize improving moves. The penalty φ(x̄) is defined as λc(x̄)
√

nm ′ϑik ,

where ϑik denotes the number of times customer i has been moved to vehicle k during the

search so far, m ′ denotes the number of non-empty vehicles in solution x̄ , and λ is an user

defined parameter that controls the intensity of diversification.

1.6. Search process

The tabu search heuristic starts off with the initial solution defined in section 1.2. At each

iteration, the least cost non-tabu solution x̄ is selected from N (x). Then parameters α and

β are modified. Parameter α is adjusted as follows: if there is no violation of the capacity

constraints, the value of α is divided by 1 + δ, otherwise it is multiplied by 1 + δ, where

δ is a positive parameter. A similar rule applies also to β with respect to route duration

constraints. This process terminates after γ iterations, and is summarized below.

2. Path relinking

Path relinking was first introduced by Glover and Laguna (1993) in connection with TS as

a way of exploring trajectories between elite solutions. The fundamental idea behind this
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method is that good solutions to a problem should share some characteristics. By generating

paths (i.e., sequences of intermediate solutions) between elite solutions, one could reasonably

hope to find better ones. A more thorough description of Path relinking can be found in Glover

(1997, 1998) and Glover, Laguna, and Martı́ (2000).

Path relinking can be interpreted as an evolutionary method where solutions are generated

by combining elements from other solutions. Unlike other evolutionary procedures, such as

genetic algorithms, where randomness is a key factor in the creation of offsprings from parent

solutions, path relinking utilizes systematic, deterministic rules for combining solutions. To

generate the desired paths, an initial solution and a guiding solution are chosen in a so-called

reference set of elite solutions to represent the starting and the ending points of the path.

Attributes from the guiding solution are gradually introduced into the intermediate solutions,

so that these solutions contain less characteristics from the initial solution and more from the

guiding solution as one moves along the path.

Any path relinking implementation revolves around the following three components that

are critical in the design of the algorithm:

� Rules for building the reference set,� Rules for choosing the initial and guiding solutions,� A neighborhood structure for moving along paths.

2.1. Building the reference set

The quality (w.r.t. to the objective function of the problem) and the level of diversity of the

solutions included in the reference set R have a major impact on the quality of the generated

solutions. In our method, R is built during TS and enriched during the path relinking phase.

We consider five strategies, originally proposed by Ghamlouche, Crainic, and Gendreau

(2004), for building R in the context of network design problems:

Strategy S1: R is built with the solutions that at some point during TS become the best

overall solution. Here, the idea is to link the overall improving solutions.

Strategy S2: R contains the best local minima encountered during the TS phase. This strat-

egy is motivated by the fact that local minimum solutions should share some common

characteristics with optimum solutions.

Strategy S3: This strategy selects R-improving local minima, i.e., local minimum solutions

that have a better objective function value than those already in R. The idea here is to

introduce the time aspect into the selection process: since usually the better solutions

are encountered when the search has been proceeding for some time, this strategy

considers less local minima obtained at that stage and thus retains potentially good

solutions found early during the search.

Strategy S4: This strategy accounts both for the attractiveness and the diversity, or dissim-
ilarity, of a potential solution when deciding whether or not it should be included in

the reference set. Define Db
s , the level of dissimilarity between solution s and the best

solution b, as the number of different edges between the two solutions:

Db
s =

∑
(i, j)∈E

hi j ,
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where

hi j =
{

1, if (i, j) is an edge of either solution s or solution b, but not both;

0, otherwise.

This can also be viewed as the Hamming distance between solutions s and b if the

two solutions are encoded as binary vectors in which the k-th element is 1 iff the edge

number k is used by the solution.

We also define the median position of all solutions x ∈ R relatively to the best solution

b as:

Median =
∑x �=b

x∈R Db
x

|R| − 1
,

where |R| denotes the number of solutions in the reference set. A solution s is included

inR if the solution value of s is better than the value of the best solution b, or if it is better

than the solution value of the worst solution in R and its level of dissimilarity exceeds

the median, Db
s > Median. In both cases, the worst solution in R is replaced by s.

Strategy S5: This strategy ensures both the quality and diversity of the solutions when

building R. Laguna and Armentano (2005) pointed out that this strategy was one of

the important lessons they learned in how a reference set should be updated, and is

a standard technique for generating the reference set used in scatter search. Starting

with a large set of good solutions P , R is then partially filled with the best solutions

found in P to ensure the quality of the solutions. R is then extended with solutions

that differ significantly from those already in R. The procedure to implement this

strategy can be described as follows:

1. Fill R with min{|R|,Rmax}/2 solutions satisfying strategy S1, where Rmax is

the maximum number of solutions in R.

2. For each solution s ∈ {P\R}, calculate the level of diversity 
R
s between

solution s and all solutions x ∈ R where 
R
s = ∑

x∈R Ds
x/|R|.

3. Extend R with solutions s ∈ {P\R} that maximize 
R
s .

2.2. Choosing the initial and guiding solutions

The choice of initial and guiding solutions is as important as the contents of R for the path

relinking phase, since the quality of the new generated solutions, and thus the performance

of the method, is highly dependent upon these solutions. We followed again the suggestions

of Ghamlouche, Crainic, and Gendreau (2004) and examined the impact of the following

five selection criteria:

C1: The guiding and initial solutions are defined as the best and worst solutions in R,

respectively.

C2: The guiding solution is chosen to be the best solution in R, while the initial solution is

the second best one.

C3: The guiding solution is chosen as the best solution in R, while the initial solution is

defined as the solution with maximum Hamming distance from the guiding solution.

C4: The guiding and initial solutions are chosen randomly in R.

C5: The guiding and initial solutions are chosen as the most distant solutions in R.
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2.3. Moving along paths

The aim of the path relinking phase is to introduce progressively attributes of the guiding

solution into solutions obtained by moving away from the initial solution. Identical parts of the

two solutions should remain unchanged during the process. In the context of the VRP, it is not

always obvious to identify identical parts of the initial and guiding solutions, because similar

solutions may exhibit a different numbering of the routes. For instance, route 1 of the initial

solution might correspond to route 2 of the guiding solution, with perhaps a few differences.

We must therefore make sure that similarities and differences in the structure of the initial and

guiding solutions can be properly identified. To do so, once the initial and guiding solutions

have been selected, we perform a matching of their routes. The matching procedure amounts

to solving an Assignment Problem on an auxiliary complete bipartite graph G ′ = (V ′, E ′),
where V ′ = V ′

i ∪ V ′
g and the vertices of V ′

i and V ′
g correspond respectively to the routes of the

initial and of the guiding solutions. To each edge (k, l) ∈ E ′ is associated a weight ckl , which

is defined as the number of identical customers in routes k and l of the two solutions. We look

for a maximum weight matching in G ′, i.e., we want to find a matching of the routes of the

two solutions such that the number of identical customers in matched routes is maximized.

This problem is solved using a greedy approach that can be described as follows:

Compute the weights ckl for all edges (k, l) ∈ E ′.
Set W = E ′.
Set J = ∅.

repeat
Choose the pair of routes (k, l) ∈ W with largest weight ckl .

Set J = J ∪ (k, l).
Delete from W all edges incident to vertex k ∈ V ′

i and to vertex l ∈ V ′
g .

until W = ∅.

In the path relinking phase, we must make sure that the algorithm is making progress

towards the guiding solution. To do so, we use two neighborhoods N1(x) and N2(x). To

simplify the exposition, let us assume that the routes of the guiding solution have been

relabeled in accordance with the matching of the routes determined previously, i.e., if (k, l) ∈
J , we now assign label k to route l of the guiding solution. The first neighborhood, N1(x), is

made up of all the potential solutions that can be reached from x by moving customers from

their current route to another while taking into account the structure of the guiding solution.

More precisely, a customer i is eligible to be moved from its current route k if it does not

belong to route k in the guiding solution; it will then be relocated into the route l to which it

belongs in the guiding solution. N1(x) thus contains solutions that are closer to the guiding

solution than the current solution x . The second neighborhood, N2(x) is defined similarly as

the set of all potential solutions that can be reached from x by exchanging two customers i
and j between their respective routes while taking into account the structure of the guiding

solution. Again, customer i is eligible to be moved from its current route k only if it belongs

to a different route l in the guiding solution; it may be swapped with any customer j of route l
that does not also belong to route l in the guiding solution. As the neighborhoods of solution

x could be fairly restricted if they were limited only to feasible solutions, we allow tunneling

through infeasible regions of the solution space. It should be noted that self-adjusting penalties

are initialized every time path relinking is started. Algorithm 2 summarizes the path relinking

procedure.
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2.4. Tabu search with path relinking

In the following, we show how tabu search and path relinking are combined in our imple-

mentation. Algorithm 3 describes the resulting procedure.

Initially, the reference set R is empty, and is extended with solutions according to one of

the strategies of Section 2.1. Before path relinking is started, R is sorted and the Rmax best

solutions are chosen to be retained in the set. Path relinking is performed every ϕ iterations

of the main TS loop. One round of path relinking consists of generating several paths with

different initial and guiding solutions from R. The initial and guiding solutions are chosen

according to one of the criteria listed in Section 2.2. Long paths are favored, since they

will have a better chance of producing good solutions. After path relinking is finished, TS
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continues with the solution it had before path relinking was triggered. The whole process

terminates after γ iterations.

3. Computational experiments

Standard benchmark instances for the VRP were used for experimentation. These include

the fourteen classical Euclidean VRP and distance-constrained VRP instances described in

Christofides and Eilon (1969) and Christofides, Mingozzi, and Toth (1979) and the twenty

large scale instances described in Golden et al. (1998). The characteristics of these instances

are given in Tables 1 and 2, respectively. For each problem instance, the table indicates the

number of customers (n), the vehicle capacity (q), the route maximum length (L) and the

service time (t) for each customer. The table also gives for each problem instance the best

known solution so far and the reference to where this solution can be found.

The results given in this paper were obtained with the following parameter settings:

Rmax = 10, δ = 0.5, I = 5, μ = 100, θ = [7.5 log10 n] (where [y] is the nearest integer to

y), λ = 0.015, ϕ = 10, 000 and γ = 100, 000. The values chosen for parameters δ, θ and λ

were taken from Cordeau, Laporte, and Mercier (2001) for a similar tabu search heuristic.

The frequency of path relinking, ϕ, was determined by running every benchmark instance

once for each of the predetermined values of ϕ and for three different combinations of criteria

and strategies. This calibrating process is important because if path relinking is performed

too frequently, the search will tend to focus too much on a small portion of the search space.

On the opposite, if it is performed very rarely, its impact will be negligible. It is important

to find a balance between these two extremes. Table 3 shows the average deviations from

the best known solutions for the different values of ϕ, and it identifies ϕ = 10, 000 as the

value yielding the best results. Thus this value was used in all the experiments reported in the

remainder of this section. The other parameters were not tuned prior to the experimentation.

Table 1 Characteristics of the benchmarks instances used for computational
experiments

Problem n q L t Best known Ref.

1 50 160 ∞ 0 524.61 Taillard (1993)

2 75 140 ∞ 0 835.26 Taillard (1993)

3 100 200 ∞ 0 826.14 Taillard (1993)

4 150 200 ∞ 0 1028.42 Taillard (1993)

5 199 200 ∞ 0 1291.29 Mester and Bräysy (2005)

6 50 160 200 10 555.43 Taillard (1993)

7 75 140 160 10 909.68 Taillard (1993)

8 100 200 230 10 865.94 Taillard (1993)

9 150 200 200 10 1162.55 Taillard (1993)

10 199 200 200 10 1395.85 Rochat and Taillard (1995)

11 120 200 ∞ 0 1042.11 Taillard (1993)

12 100 200 ∞ 0 819.56 Taillard (1993)

13 120 200 720 50 1541.14 Taillard (1993)

14 100 200 1040 90 866.37 Taillard (1993)
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Table 2 Characteristics of the large scale benchmarks instances used for
computational experiments

Problem n q L t Best known Ref.

1 240 550 650 0 5627.54 Mester and Bräysy (2005)

2 320 700 900 0 8447.92 Prins (2004)

3 400 900 1200 0 11036.22 Prins (2004)

4 480 1000 1600 0 13624.52 Prins (2004)

5 200 900 1800 0 6460.98 Prins (2004)

6 280 900 1500 0 8412.80 Prins (2004)

7 360 900 1300 0 10195.56 Mester and Bräysy (2005)

8 440 900 1200 0 11663.55 Mester and Bräysy (2005)

9 255 1000 ∞ 0 583.39 Mester and Bräysy (2005)

10 323 1000 ∞ 0 742.03 Mester and Bräysy (2005)

11 399 1000 ∞ 0 918.45 Mester and Bräysy (2005)

12 483 1000 ∞ 0 1107.19 Mester and Bräysy (2005)

13 252 1000 ∞ 0 859.11 Mester and Bräysy (2005)

14 320 1000 ∞ 0 1081.31 Mester and Bräysy (2005)

15 396 1000 ∞ 0 1345.23 Mester and Bräysy (2005)

16 480 1000 ∞ 0 1622.69 Mester and Bräysy (2005)

17 240 200 ∞ 0 707.79 Mester and Bräysy (2005)

18 300 200 ∞ 0 998.73 Mester and Bräysy (2005)

19 360 200 ∞ 0 1366.86 Mester and Bräysy (2005)

20 420 200 ∞ 0 1821.15 Mester and Bräysy (2005)

Table 3 Average deviation from
best for different values of ϕ S2, C1 S3, C5 S4, C3

ϕ (%) (%) (%)

5,000 1.05 1.16 1.08

10,000 0.62 0.54 0.64

20,000 0.97 0.83 1.13

30,000 0.70 0.80 1.05

40,000 0.77 0.79 0.82

The heuristic was coded in C++ and all experiments were performed on a Pentium 4, 2.53

GHz computer.

We want to investigate the benefits of integrating path relinking into tabu search. This is

done by performing for each instance a single run of the pure tabu search heuristic, as well

as of the different variants of tabu search with path relinking. The main results obtained are

reported in Tables 4 and 5. In these tables, the first column gives the name of the respective

benchmark instances while the results for pure tabu search runs of 100,000 iterations and

200,000 iterations are displayed in the two next columns, and CPU times (in minutes) for

200,000 iteration TS runs in the following one. The column TS + PR describes the results

for the best combination of strategy and criterion, S3 and C5, when running tabu search for
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Table 4 TS and TS with PR results for classical benchmark instances

Problem TS 100,000 TS 200,000 Time TS + PR Time

1 527.98 527.98 1.22 524.61 0.78

2 835.89 835.89 3.74 836.37 1.94

3 831.16 828.98 4.36 828.26 2.41

4 1045.31 1042.01 11.26 1034.08 5.53

5 1318.47 1315.69 21.08 1311.78 10.47

6 555.82 555.43 1.13 555.43 0.75

7 911.41 910.05 2.58 909.68 1.64

8 867.37 865.94 4.13 866.71 2.48

9 1189.70 1179.53 10.98 1177.01 6.77

10 1429.23 1424.31 17.90 1420.66 10.55

11 1122.80 1047.01 6.86 1042.97 3.60

12 821.73 821.11 5.29 819.56 2.93

13 1579.01 1572.79 9.20 1568.79 5.66

14 869.11 867.13 4.08 866.37 2.34

Average deviation

from best and time 1.50% 0.76% 7.42 0.54% 4.13

100,000 iterations. The results reported in these tables clearly show that running tabu search

for 100,000 iterations with path relinking is much more effective than running pure tabu

search for 200,000 iterations. In the case of the combination S3 and C5, the average gap was

reduced by 0.22% and the average running time was reduced by about 44%. Adding a path

relinking phase to TS-100,000 is not costly in terms of CPU time. A TS-100,000 run takes

approximately 7.42/2 minutes on average, versus 4.13 minutes for TS + PR. In the case of

large scale instances, the average gap was reduced by 0.54% and the average running time

was reduced by about 43%.

The first number of each combination in Tables 6 and 7 describes the average improvement

over pure tabu search in the case of 100,000 iterations, whereas the second number gives the

average improvement for 200,000 iterations. As shown in these tables, every combination

of strategy and criterion is capable of improving the results of TS. The tables identify the

combination S3 and C5 as the one giving the best results for both classical and large scale

instances. This combination considers a set of very good solutions obtained over time, and

the focus is on search diversification. It should be noted that our conclusions coincide with

those of Ghamlouche, Crainic, and Gendreau (2004) who also obtained their best results with

the combination S3, C5.

It should be mentioned that the second best combination of strategies is S3 and C2 (in the

case of classical instances) which differs somewhat from the previous one with a focus on

search intensification close to the very best solutions of the reference set. In the case of large

scale instances, the second best combination is S2 and C4. This combination considers a set

of good local minimum solutions with a mix of search intensification and diversification.

One would expect strategy S2, which selects local minima, to not perform too well. This

is not always the case, one explanation may be that some of the solutions in R are not “real”

minima. As we allow infeasible regions to be explored, and infeasible solutions cannot be a
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Table 5 TS and TS with PR results for large scale instances

Problem TS 100,000 TS 200,000 Time TS + PR Time

1 5889.88 5832.50 21.27 5850.28 17.09

2 8923.17 8808.37 43.35 8799.33 14.31

3 11861.20 11726.70 147.60 11715.90 70.77

4 14554.00 14515.50 162.92 13973.50 95.39

5 6811.98 6737.69 57.30 6546.19 24.85

6 8942.19 8873.44 141.49 8755.48 63.13

7 10671.50 10608.50 45.19 10716.80 36.72

8 12688.80 12379.80 85.64 12170.90 52.09

9 592.54 591.86 23.76 589.39 13.51

10 751.01 751.01 37.22 749.04 23.08

11 928.91 928.34 53.76 927.99 36.19

12 1125.77 1124.91 72.52 1124.44 51.91

13 880.60 878.85 37.51 875.13 21.99

14 1102.83 1101.98 54.24 1105.49 29.80

15 1376.63 1370.54 76.78 1369.70 44.47

16 1655.30 1649.76 109.85 1648.10 65.08

17 715.17 715.00 31.31 713.68 18.44

18 1024.01 1023.20 45.74 1017.65 26.87

19 1394.09 1392.29 69.82 1397.16 39.45

20 1883.08 1871.37 94.10 1864.01 53.97

Average deviation

from best and time 3.66% 3.09% 70.57 2.55% 39.96

part of R, the closest feasible solutions to the actual minimum solutions are chosen. The best

performance of strategy S2 is obtained jointly with criterion C2 that builds a path from the

second best to the best solution in R. This is the third best combination, and like the second

one, it focuses on search intensification (in this case, close to the local minima). In the case

of large scale instances, the best performance of strategy S2 is obtained with criterion C4

which is the second best combination mentioned above.

We have shown that TS with path relinking produces better solutions than pure TS. In the

following, we will further assess its performance by comparing it to other methods proposed

for solving the VRP.

Table 8 provides a comparison on the results obtained on the fourteen classical instances

by some of the metaheuristics for the VRP. These are Taillard (1993), Gendreau, Hertz, and

Laporte (1994), Rochat and Taillard (1995), Rego and Roucairol (1996), Rego (1998), Toth

and Vigo (2003), Cordeau, Laporte, and Mercier (2001), Tarantilis (2005), Reimann, Doerner,

and Hartl (2004), Berger and Barkaoui (2003), Prins (2004) and TS + PR (columns marked

T1, GHL, RT, RR, R, TV, CLM, T2, RDH, BB, P and HG). The results are expressed in terms

of total distance traveled. For our entry in Table 8, we report the results from combination

S3 and C5, which is the best one.
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Table 6 Average improvement
over pure tabu search for classical
VRP instances

C1 C2 C3 C4 C5

(%) (%) (%) (%) (%)

S1 −0.83 −0.80 −0.82 −0.49 −0.76

−0.12 −0.09 −0.12 0.22 −0.05

S2 −0.84 −0.86 −0.78 −0.73 −0.86

−0.14 −0.16 −0.08 −0.03 −0.16

S3 −0.85 −0.87 −0.79 −0.76 −0.92

−0.15 −0.17 −0.09 −0.06 −0.22

S4 −0.84 −0.81 −0.82 −0.70 −0.83

−0.14 −0.11 −0.12 0.00 −0.13

S5 −0.83 −0.80 −0.82 −0.55 −0.76

−0.12 −0.09 −0.12 0.15 −0.05

Table 7 Average improvement
over pure tabu search for large
scale VRP instances

C1 C2 C3 C4 C5

(%) (%) (%) (%) (%)

S1 −0.68 −0.70 −0.67 −0.71 −0.73

−0.14 −0.16 −0.14 −0.17 −0.20

S2 −0.81 −0.81 −0.81 −1.01 −0.83

−0.28 −0.27 −0.28 −0.47 −0.29

S3 −0.85 −0.83 −0.65 −0.80 −1.04

−0.15 −0.29 −0.12 −0.27 −0.51

S4 −0.80 −0.84 −0.92 −0.89 −0.85

−0.26 −0.31 −0.38 −0.35 −0.32

S5 −0.66 −0.68 −0.65 −0.76 −0.79

−0.12 −0.14 −0.12 −0.22 −0.25

From the table we see that our method improves some of the well-known tabu search

heuristics such as Taburoute (Gendreau, Hertz, and Laporte, 1994), the ejection chain method

(Rego and Roucairol, 1996), the subpath ejection chain method (Rego, 1998), the granular

tabu search (Toth and Vigo, 2003) and the adapted Unified Tabu Search (Cordeau, Laporte,

and Mercier, 2001).

It is not easy to compare running times for the various metaheuristics due to differ-

ent computers, compilers, data structures, computer languages, parallel implementations,

and the programming skills of the developer. However, we attempted to scale the com-

puting times on various computers to equal those on a Pentium 2.53 GHz computer, us-

ing the factors determined by Dongarra (2004). Table 9 provides a computational com-

parison of various metaheuristics. The second column reports the average deviation from

best known results, while average computing time in minutes is given in the third column.

Parallel indicates whether a parallel implementation is used, and computer refers to the

computer used for running the algorithm. The last column reports the scaled computing

time.

Our heuristic is faster than the adapted Unified Tabu Search, but it is slower than the rest

of the other methods. However, we obtained good results using reasonable computing time.

Table 10 provides a comparison of metaheuristics on large scale instances with Golden et

al. (1998), Ergun, Orlin, and Steele-Feldman (2003), Li, Golden, and Wasil (2005), Mester and
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Table 8 Results of some of the metaheuristics on the fourteen classic
benchmark instances

Pr T1 GHL RT RR R TV

1 524.61 524.61 524.61 524.61 524.81 524.61

2 835.26 835.77 835.26 835.32 847.00 838.60

3 826.14 829.45 826.14 827.53 832.04 828.56

4 1028.42 1036.16 1028.42 1044.35 1047.21 1033.21

5 1298.79 1322.65 1291.45 1334.55 1351.18 1318.25

6 555.43 555.43 555.43 555.43 559.25 555.43

7 909.68 913.23 909.68 909.68 922.21 920.72

8 865.94 865.94 865.94 866.75 876.97 869.48

9 1162.55 1177.76 1162.55 1164.12 1191.30 1173.12

10 1397.94 1418.51 1395.85 1420.84 1460.83 1435.74

11 1042.11 1073.47 1042.11 1042.11 1052.04 1042.87

12 819.56 819.56 819.56 819.56 821.63 819.56

13 1541.14 1573.81 1541.14 1550.17 1558.06 1545.51

14 866.37 866.37 866.37 866.37 867.79 866.37

ADFB 0.05% 0.86% 0.00% 0.55% 1.54% 0.64%

Pr CLMa T2 RDHb BB P HG

1 524.61 524.62 524.61 524.61 524.61 524.61

2 835.28 835.28 839.59 835.26 835.26 836.37

3 826.14 826.14 828.15 827.39 826.14 828.26

4 1032.68 1029.64 1038.16 1036.16 1031.63 1034.08

5 1315.76 1311.48 1308.22 1324.06 1300.23 1311.78

6 555.43 555.43 555.43 555.43 555.43 555.43

7 909.68 909.68 919.77 909.68 912.30 909.68

8 865.95 865.94 866.31 868.32 865.94 866.71

9 1167.85 1163.19 1169.54 1169.15 1164.25 1177.01

10 1416.84 1407.21 1418.03 1418.79 1420.20 1420.66

11 1073.47 1042.11 1042.77 1043.11 1042.11 1042.97

12 819.56 819.56 819.56 819.56 819.56 819.56

13 1549.25 1544.01 1545.48 1553.12 1542.97 1568.79

14 866.37 866.37 866.37 866.37 866.37 866.37

ADFB 0.56% 0.20% 0.48% 0.49% 0.24% 0.54%

ADFB: Average deviation from best known results.
aComputational results obtained from Cordeau et al. (2005).
bComputational results obtained from Reimann (2004).

Bräysy (2005) and Tarantilis (2005) denoted by GWKC, EOS, LGW, MB and T, respectively.

Table 11 gives a summary of the computational results of the metaheuristics on the large scale

instances. When testing these instances we obtained better results than three of the mentioned

methods, but using more computing time.
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Table 9 Summary of computational comparison of various metaheuristics on the classical
benchmark instances

ADFB

Metaheuristic (%) CPU time Parallel Computer Scaled

T1 0.05 n.a. Yes Silicon Graphics 100 MHz −
GHL 0.86 46.8 No Silicon Graphics 36 MHz n.a.

RT 0.00 n.a. No Silicon Graphics 100 MHz −
RR 0.55 24.65 Yes 4 Sun Sparc IPC n.a.

R 1.54 2.32 No HP 9000/712 0.06

TV 0.64 3.84 No Pentium 200 MHz 0.10

BB 0.49 21.25 No Pentium 400 MHz 1.33

T2 0.20 5.63 No Pentium 400 MHz 0.35

RDH 0.48 3.63 No Pentium 900 MHz 0.66

CLM 0.56 24.62 No Pentium 2 GHz 19.41

P 0.24 5.19 No Pentium 1 GHz 1.24

HG 0.54 4.13 No Pentium 2.53 GHz 4.13

n.a.: not available

Table 10 Results of metaheuristics on large scale VRP instances

Pr GWKC TV EOS LGW CLM

1 5834.60 5736.15 5741.79 5666.42 5681.97

2 9002.26 8553.03 8917.41 8469.32 8657.36

3 11879.95 11402.75 12106.64 11145.80 11037.40

4 14639.32 14910.62 15316.69 13758.08 13740.60

5 6702.73 6697.53 6570.28 6478.09 6756.44

6 9016.93 8963.32 8836.25 8539.61 8537.17

7 11213.31 10547.44 11116.68 10289.72 10267.40

8 12514.20 12036.24 12634.17 11920.52 11869.50

9 587.09 593.35 587.89 588.25 587.39

10 749.15 751.66 749.85 749.49 752.76

11 934.33 936.04 932.74 925.91 929.07

12 1137.18 1147.14 1134.63 1128.03 1119.52

13 881.04 868.80 870.90 865.20 875.88

14 1103.69 1096.18 1097.11 1097.78 1102.03

15 1364.23 1369.44 1367.15 1361.41 1363.76

16 1657.93 1652.32 1643.00 1635.58 1647.06

17 720.44 711.07 716.46 711.74 710.93

18 1029.21 1016.83 1023.32 1010.32 1014.62

19 1403.05 1400.96 1404.84 1382.59 1383.79

20 1875.17 1915.83 1883.33 1850.92 1854.24

ADFB 3.91% 2.87% 3.76% 1.05% 1.45%

(Continued on next page).
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Table 10 (Continued).

Pr P RDH MBa T HG

1 5646.63 5644.02 5627.54 5676.97 5850.28

2 8447.92 8449.12 8447.92 8459.91 8799.33

3 11036.22 11036.22 11036.22 11036.22 11715.90

4 13624.52 13699.11 13624.52 13637.53 13973.50

5 6460.98 6460.98 6460.98 6460.98 6546.19

6 8412.80 8412.90 8412.88 8414.28 8755.48

7 10195.59 10195.59 10195.56 10216.50 10716.80

8 11828.78 11828.78 11663.55 11936.16 12170.90

9 591.54 586.87 583.39 585.43 589.39

10 751.41 750.77 742.03 746.56 749.04

11 933.04 927.27 918.45 923.17 927.99

12 1133.79 1140.87 1107.19 1130.40 1124.44

13 875.16 865.07 859.11 865.01 875.13

14 1086.24 1093.77 1081.31 1086.07 1105.49

15 1367.37 1358.21 1345.23 1353.91 1369.70

16 1650.94 1635.16 1622.69 1634.74 1648.10

17 710.42 708.76 707.79 708.74 713.68

18 1014.80 998.83 998.73 1006.90 1017.65

19 1376.49 1367.20 1366.86 1371.01 1397.16

20 1846.55 1822.94 1821.15 1837.67 1864.01

ADFB 0.91% 0.60% 0.00% 0.60% 2.55%

aComputational results obtained from Mester and Bräysy (2005) and
Cordeau et al. (2005).

Table 11 Summary of computational comparison of various metaheuristics on the
large scale instances

Metaheuristic ADFB CPU time Parallel Computer Scaled

(%)

GWKC 3.91 37.20 No Pentium 100 MHz 0.40

TV 2.87 17.55 No Pentium 200 MHz 0.48

EOS 3.76 137.95 No Pentium 733 MHz 15.49

LGW 1.05 n.a. No n.a. -

CLM 1.45 56.11 No Pentium 2 GHz 44.24

P 0.91 66.90 No Pentium 1 GHz 15.97

RDH 0.60 49.33 No Pentium 900 MHz 9.02

MB 0.00 72.94 No Pentium 2 GHz 57.51

T 0.60 45.58 No Pentium 400 MHz 2.84

HG 2.55 39.96 No Pentium 2.53 MHz 39.96
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Tables 8–12 show that tabu search with path relinking is competitive with other VRP

methods with respect to the quality of the results that it produces and also the computing

time required.

4. Conclusion

In this paper, we presented a tabu search heuristic with path relinking for the vehicle routing

problem. Path relinking uses previously encountered good solutions to obtain diversification

and intensification in the search. Using path relinking periodically in the search speeds up the

identification of very good solutions. Computational results show that tabu search with path

relinking is able to produce better solutions than pure tabu search using much less computing

time.
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